Understanding Life in Extreme Environments; from a single colony to million sequences
Avinash Sharma (PhD) [email protected]
Wellcome Trust-DBT India Alliance Fellow
Source:www.microbiomesupport.eu
Microorganisms are everywhere
What are they?
Microbes living where nothing else can
Why are they are interesting?
Medicine, Environment, Human Gut, Agriculture, Food etc
Why we need to study Extreme Environments
• Microorganisms represent the most important and diverse group of organisms
• Widely distributed in many environmental habitats
• Important for ecosystems functioning
• Diversity and structure of complex microbial communities still poorly understood
• Great challenge in microbial ecology to evaluate
microbial diversity in complex environments
Woese and Fox, 1977
Introduction to Extremophiles
What are they?
Microbes living where nothing else can How do they survive?
Why are they are interesting?
Extremophiles are well know for their enzymes Why enzymes from extremophiles…?
Stabilty even at extreme conditions
Life in Extreme Environments
• Many organisms adapt to extreme environments
– Thermophiles (liking heat)
– Acidophiles (liking acidic environments) – Psychrophiles (liking cold)
– Halophiles (liking salty environments)
• Demonstrates that life flourishes even in the
harshest of locations
Environmental factor Category Definition Major microbial habitat
Temperature Hyperthermophile,
Thermophile Psychrophile
Opt. growth at > 80 ° C
< 15 ° C Hot springs and vents, sub-surface.
ice, deep-ocean, arctic
Salinity Halophile 2-5M NaCl. Salt lakes, solar salterns, brines.
Pressure Peizophile (Barophile) <1000atm Deep sea eg. Mariana Trench, sub-
surface
pH Low
High Acidophile
Alkaliphile pH < 2
pH > 10 acidic hot springs
soda lakes, deserts
Oxygen
No High Anaerobe (Anoxiphile) cannot tolerate O
2high O
2tention? sediments, sub-surface
sub-glacial lakes.
Radiation Radioresistant Soil contaminated areas
Toxic heavy metals Metallophiles tolerate heavy metals Contaminated areas
Low nutrition Oligotrophs Lakes
Inert substrates CH
4oxidizers, hydrocarbons etc. Soil, water etc.
Categories of Extremophiles
Microbial Identification Methods
• Morphological and microscopic features
– Colony morphology, cell shape and size, staining etc.
• Biochemical features
– Catalase, Oxidase, Indole, Citrate, Urease, Sugar fermentation, etc.
• Molecular features
– Nucleic acids (DNA and RNA), fatty acids, proteins, etc.
16S rRNA Gene Sequencing
• Most common housekeeping genetic marker used for a number of reasons
– Its presence in almost all bacteria
– Large enough for informatics purposes ( ̴1500 bp)
– No change in the function
• 1980 in the Approved Lists, 1,791 valid names
• Today, this number has ballooned to >16000
Unknown microbial diversity
The Great Plate Count Anomaly
The Great Plate Count Anomaly
• First generation:
-Maxam- Gilbert method -Sanger’s Dideoxy method
• Next Generation:
- Roche 454 - SOLiD by ABI
- Genome Analyzer/ Hiseq by Illumina
• Compact PGM Sequencer - Ion Torrent
- Miseq by Illumina
• Third Generation:
- SMRT by Pacific Bioscience
- Nanopore by University of ILLINOIS
Sequencing technologies
DNA sequencing technologies ideally should be 1. Fast
2. Accurate
3. Easy-to-operate 4. Cost effective
DNA sequencing: Importance
• Basic blueprint for life; Aesthetics.
• Gene and protein – Function – Structure – Evolution
• Genome-based diseases- “inborn errors of metabolism”
– Genetic disorders
– Genetic predispositions to infection – Diagnostics
– Therapies
• Remarkable improvement in sequencing efficiency since inception
• The amount of sequencing that one person can perform has increased dramatically
– 1980: 0.1– 1 kb per year – 1985: 2–10 kb per year – 1990: 25–50 kb per year – 1996: 100–200 kb per year – 2000: 500–1,000 kb per year --2020: ~ 300-1000 Gb per day
Evolution of Sequencing
Cost of sequencing technologies over the years
I have enough of sequencing data ..Whats next ?
Strategies for Microbial Diversity Analysis
Sample collectio
n
Community DNA
Direct cloning
Transformation
Metagenomic DNA library Structural and Functional analysis PCR Amplification
Phylogenetic Trees Sequencin
g
DGG E
Direct Sequencing using NGS Platform
Isolation of culturable
microorganisms Microbial Diversity Estimation
Microbial Community Structure and their survival strategies
Sample
ID Date Humidity
(%)
Overhead ozone
(DU)
Pressure (hPa)
Temperature (ºC)
Total radiation
(MJ m -2 )
Radiation UVA
(MJ m -2 )
radiation UVB
(MJ m -2 )
Wind Speed (m s
-1)
ST01 8-Jan-19 78.32 271.26 978.28 0.44 0.14 0.011 78.16 17.88
ST02 10-Jan-19 49.7 272.44 985.69 3.09 0.18 0.014 78.08 12.43
ST03 12-Jan-19 41.42 276.86 982.01 1.57 0.18 0.013 78.09 13.33
ST04 14-Jan-19 48.71 277.53 986.73 0.98 0.19 0.013 78.07 8.58
ST05 16-Jan-19 44.97 307.67 980.71 1.6 0.19 0.013 77.64 16.79
ST06 18-Jan-19 46.38 306.21 981.19 0.46 0.19 0.013 78.14 10.17
ST07 20-Jan-19 66.48 295.83 982.98 0.05 0.11 0.009 78.17 10.06
ST08 22-Jan-19 47.4 299.81 971.88 0.85 0.17 0.011 78.13 10.71
ST09 24-Jan-19 54.5 305.79 978.32 -2.53 0.12 0.009 78.15 7.8
ST10 26-Jan-19 72.97 304.04 977.76 -0.78 0.06 0.006 78.07 7.98
Assessment of physical parameters under temporal variation of UV radiation
Assessment of physical parameters under temporal variation of UV radiation
Sample ID Chao1 Observed ASVs Shannon
ST01 1863 1863 7.28
ST02 1151 1151 6.76
ST03 1550 1550 7.13
ST04 1431 1431 6.89
ST05 1629 1629 7.06
ST06 1746 1746 7.19
ST07 1448 1448 6.97
ST08 1240 1240 6.90
ST09 1584 1584 7.08
ST10 1431 1431 7.03
Estimates of alpha diversity parameters
Distribution of bacterial communities under the UVB radiation
Real time PCR based estimation of bacterial
biomass
Functional study: abundance and distribution of genes
Marisediminicola senii sp. nov. isolated from Queen Maud Land, Antarctica
Scanning electron micrograph of strain SM7_A14 T .
Strain SM7_A14T, isolated from the glacier fed sediment sample
collected the Queen Maud Land, Antarctica (70 0 45’28” S, 11 0 37’36” E)
Marisediminicola senii SM7_A14T(MT084553) Marisediminicola antarcticaZS314T(GQ496083) Glaciihabitans tibetensisMP203T(KC256953)
Glaciihabitans arcticusRP-3-7T(SISG01000001) Parafrigoribacterium mesophilumMSL-08T(EF466126) Galbitalea soliKIS82-1T(JX876866)
Yonghaparkia alkaliphilaKSL-113T(DQ256087) Lysinibacter cavernaeCC5-806T(KP411613)
Frigoribacterium faeni801T(Y18807)
Frigoribacterium endophyticumEGI 6500707T(KM114212) Frigoribacterium salinisoliLAM9155T(KX094417) Compostimonas suwonensisSMC46T(JN000316)
Aurantimicrobium minutumKNCT(AP017457) Cryobacterium mesophilumMSL-15T(EF466127)
Diaminobutyricibacter tongyongensisKIS66-7T(JX876865) Labedella endophyticaEGI 6500705T(KM095501)
Cryobacterium zongtaiiTMN-42T(JX949938) Cryobacterium arcticumSK-1T(GQ406814)
Cryobacterium psychrotoleransCGMCC 1.5382T(jgi.1076200) Cryobacterium psychrotoleransCGMCC 1.5382T(jgi.1076200) Frondihabitans australicusDSM 17894T(RBKS01000001)
Frondihabitans peucedaniRS-15T(FM998017) Frondihabitans sucicolaGRS42T(JX876867) Frondihabitans cladoniiphilusCafT13T(FN666417)
Subtercola lobariae9583bT(KM924549) Subtercola frigoramansK265T(AF224723) Subtercola vilaeDB165T(MF276890) Planctomonas deserti13S1-3T(MH287062)
Clavibacter sepedonicusATCC 33113T(AM849034) Clavibacter capsiciPF008T(CP012573)
Clavibacter michiganensissubsp.michiganensis VKM Ac-1403T(jgi.1118350) Clavibacter tessellariusATCC 33566T(MZMQ01000001)
Clavibacter insidiosusLMG 3663T(MZMO01000001) Clavibacter nebraskensisNCPPB 2581T(HE614873) Clavibacter michiganensissubsp. phaseoliLPPA 982T(HE608962) Clavibacter michiganensissubsp. chilensisZUM3936T(KF663872) Clavibacter michiganensissubsp. californiensisC55T(KF663871) Mycetocola tolaasinivoransCM-05T(AB012646)
Mycetocola saprophilusNRRL B-24119T(JOEC01000010) Mycetocola reblochoniJCM 30549T(RCUW01000025) Rathayibacter triticiDSM 7486T(X77438)
Rathayibacter festucaeDSM 15932T(CP028137) Rathayibacter rathayiVKM Ac-1601T(OCNL01000027)
Rathayibacter iranicusVKM Ac-1602T(jgi.1118354) Leucobacter komagataeJCM 9414T(D45063) 100
100
53 100
69 100
78 100
96 60
74 62 51 83
96 91
64
53 68
57
0.005