Empirically, each successive iteration produces diminishing additional improvement. c)In the normalized space of 𝑦, the corresponding densities 𝑝(𝑦2|𝑦1) are identical. d) The marginal𝑝(𝑦2) is identical to the conditional, soI (𝑦1;𝑦2) =0. So in this case a conditional affine transformation removed the dependencies. a) An autoregressive flow preprocesses a data set x1:𝑇 to produce a new set y1:𝑇 with reduced temporal dependencies. Train and test negative log-likelihood histograms for (a)SLVM and (b)SLVM + 1-AF on KTH actions. c) The generalization gap for SLVM + 1-AF remains small for varying amounts of KTH training data, while it becomes worse in the low data regime for SLVM.
Cybernetics
At the lowest level, this thesis presents two core techniques for improving probabilistic modeling, applied to both state estimation, or perception, and action selection, or control. At a higher level, this thesis strengthens a bridge between neuroscience and machine learning through the theory of predictive coding.
Neuroscience and Machine Learning, Convergence and Divergence . 3
Beheer
The Future of Feedback & Feedforward
L
Background
Introduction
Probabilistic Models
From this perspective, hierarchical latent variable models are an iterative application of the latent variable technique to generate increasingly complex empirical antecedents (Efron and Morris, 1973). We can also consider the inclusion of latent variables in sequential (autoregressive) probability models, which results in the creation of sequential models of latent variables.
Variational Inference
The second term quantifies the agreement with the prediction: samplingzfrom𝑞 we want to have high. lt;latexit sha1_base64="IEFcZ6TdJDNiYnM2MXVVhnD1rxA=">AAACjHicdVHLSiNBFK20j3HiKzrMyk1hEHQTulUYQQRxQFwqGBWSpqmu3E6KVHUVVbfqF2CGId3E6KVHUVvbfQF20CZG19BfVcVzVZQVZQVZQVZQVZQVZ QVZQVZQVZQVZQVZQVZQVZQVZQVZQVZQVQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQJ b/asHC4tLyj5Wf9dW19Y3Nxtb2ndOF5dDmWmr7kDIHUuTQRoESHowFplIJ9+nwb1W/fwTrhM5vcWQgVqyfi0xwhp 5KGr9N0sUBIKP7XcVwOTTDg+j8WiVgV28WiVgV2VVVVVVQVVVVVQVVVVVVVVVVVVVVVVVVVVVVQV JAjl8y5ThQajEtmUXAJ43q3cGAYH7I+dDzMmQIXlxP9Y7rnmR7NtPWZI52wHydKppwbqdR3Vhrd51pFflXrFJidxKXITYGQ8/ dDWSEpalq5QXvxn qNTPnUzWu79GPTCXDoHqa7WOyr/2FgfqGFnx+wDgovKu65w30L4k+P2Ae3B22oqPW4c1x8/xi+pwVskN2yT6JyB9yTq7INWkTTkryQl7JWlwixHaenCwbdcf5000000000 01 >. lt;latexit sha1_base64="GKYv3YBzSW+vcCnXm4SsDmmxo+c=">AAACknicdVHLTgIxFC3jG1+g7tg0EhLckBk00bhC3bhwoQkgCUxIp3SgoZ2ObceA4SEFc9aGnF5Of9aGnKy/Nh600000000000000N pt218Za2V1bX1jcyu7vbO7t5/LHzSViCQmDSyYkC0PKcJoQBqaakZaoSSIe4w8esObNP/4TKSiIqjrcUhcjvoB9SlG2lDdXOEJljsc6YHnxy8fnC6YHnxy8fnC6YHnxy8fnC6YHnxy1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 d/OZbqcncMRJoDFDSrUdO9RujKSmmJEk24kUCREeoj5pGxggTpQbT36RwJJhetAX0pxAwwk72xEjrtSYe6Yy1agWcyn5V64daf/CjWkQRpoE+GeQHz0KHQBQZQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ jtunIpLn5kb7/EkW4KzTCoj1Hw0X4dYX5gJA/4PTfFyQ6hIZFwVPWOgWYmzuIBl0KxWnNNK9eGsWLueLmcTFMAxKAMHnIMauAX3oAEweAPv4AN8WkfWpXVyGfy+lCuGfy+lCuGfy+lCuGfy+lCuGy lt;latexit sha1_base64=" 60DGexcpR/Fv1prZWkg4K8IbvkM=">AAACmnicdVFNTxsxEHW2LdC0fLXH9mARIdFLtBuQ4BjBhaoXkBJASlaR15lNLOyGVARAI/NLOy1ZVARA+iThGZ1Zc/NLOy1ZVara+i +kxgpHIbhv1rw4eOnldW1z/UvX9c3Nre2v10 4nVsOXa6ltlcJcyBFBl0UKOHKWGAqkXCZXJ9U+csbsE7orINTA7Fio0ykgjP01GCrQc2gj2NARvff2WB0YV0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0Vc yDzOBtu1QX+oea4gQy6Zc70o NBgXzKLgEsp6P3dgGL9mI+h5mDEFLi5mvynprmeGNNXWnwzpjH1ZUTDl3FQlXlnN6F7nKvKtXC/H9ChoNUPZYFZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVXQ QQXQXQQQXQY zj6A1ceKkTxUU1XPXMQvtElfVd+pKpxjCoJos6Jkfadxird2jBlwuMg9y7qofeQL+S6PUClsFFqxntN1vnB4328Xw5a+QH2SF7JCKHpE1HuyNQpE1HuyRn Dn8Fx8Dv48yQNavOa72Qhgs5/fj/QHw== . lt;latexit sha1_base64="ThBf6Fct1myVHSay2XFe4My8dic=">AAACunicdVFLbxMxEHaWVwmvFI5cLKJK5RLtFiQ4cKiokDgWqWkrZVcr25ndtWKvjT2LGpb9QfwarvTf4E2C1DQwkuXP33zz8Ay3SnqM4+tBdOfuvfsP9h4OHz1+8vTZ aP/5uTeNEzAVRhl3yZkHJWuYokQFl9YB01zBBV+c9P6Lb+C8NPUZLi1kmpW1LKRgGKh8dJJqhhXn7acu/0pTBQXOwmVKavMUK0BGD9eSor3q6A/69/G9e01TJ8sKs3w0jifxyuguSDZgTDZ2mu8P8nRuRKOhRqGY97Mkt pi1zKEUCrph2niwTCxYCbMAa6bBZ+3qtx09CMycFsaFUyNdsTcjWqa9X2oelH2v/ravJ//lmzVYvM9aWdsGoRbrQkWjKBraj47OpQOBahkAE06GXqmomGMCw4C3Mp0lWds316fZKs91NzygN5m+DYv6alvHVGlChUr/h5ZiN8B6 aMJUzTwMMKwkub2AXXB+NEneTI6+vB0ff9wsZ4+8JK/IIUnIO3JMPpNTMiWC/CS/yG9yHX2IeCSjxVoaDTYxL8iWRfgHlrzdbQ ==. lt;latexit sha1_base64="bSdQSp0iZL3ytr3Aon9aL1YVVZc=">AAAC0nicdVHLatwwFNW4r3T6mqTLbkSHQLLoYCeFdhkaAl2mMJMEbGNkjWyLSJYiXZdMVC9Ktv2pfka/oNv2DyrPTGEm014QHJ177oNzcy24hTD80Qvu3X/w8NH W4/6Tp8+evxhs75xZ1RjKJlQJZS5yYpngNZsAB8EutGFE5oKd55fHXf78MzOWq3oMM81SScqaF5wS8FQ2iN8kkkCV5+6kza5wIlgBcSJUiZPCEOqu8N5CULibFn/Bfz/X7X7rdJZAxYCsavZbnBheVpDibDAMR+E88Ca IlmCIlnGabfeyZKpoI1kNVBBr4yjUkDpigFPB2n7SWKYJvSQliz2siWQ2dXMXWrzrmSkulPGvBjxnVysckdbOZO6V3bb2bq4j/5WLGyjep47XugFW08WgohEYFO4sxVNuGAUx84BQw/2umFbEuwfe+LVO4yh13XJdm7XxuWz7u3iV6db QIK/XdUSUyk+o5H9oTjcLtGWNd1VNvYH+JNHdA2yCs4NRdDg6+PR2ePRheZwt9Aq9RnsoQu/QEfqITtEEUfQd/US/0O9gHNwEX4PbhTToLWteorUIvv0BDFnnlA==< /latexit>. lt;latexit sha1_base64="Min9X1kSrlMsgf0t/tlM/bkvIlw=">AAACo3icdVFNa9tAEF2rX4nTNk57zGWpMSRQjJQE2mNoL4Vc0mAnAUuI1WpkL9nVLrujYiP0J/prek3+Rf9NVo4hcdwOLDzevJl5O5MZKRyG4d9O8OLlq9dvtra 7O2/fvd/t7X24dLqyHMZcS22vM+ZAihLGKFDCtbHAVCbhKrv53uavfoF1QpcjXBhIFJuWohCcoafS3udYMZxlRT1vaOyEoiaNEeZoVZ0zZA09eBQcpr1+OAyXQTdBtAJ9sorzdK+TxrnmlYISuWTOTaLQYFIzi4JLaLpx5cAwfsOmMPGwZApcU i+/1dCBZ3JaaOtfiXTJPq2omXJuoTKvbD2657mW/FduUmHxNalFaSqEkj8MKipJUdN2RzQXFjjKhQeMW+G9Uj5jlnH0m1zrNIqSujXXtlkbn6mmO6BPmdaGQTVf1zE51X7CTP2HFnyzwDio/FZ17hfoTxI9P8AmuDwaRsfDo58 n/dNvq+NskX3yiRyQiHwhp+QHOSdjwslv8ofckrtgEJwFF8HoQRp0VjUfyVoEyT0JRtSg. a) Basic calculation graph for variational inference. We can consider ELBO as an example of a stochastic. z
Discussion
Frembringer wake-sleep-algoritmen gode tæthedsestimatorer?" I:Advances in neural information processing systems, s. Estimation of non-normalized statistic models by score matching. I: Journal of Machine Learning Research6.4.
Introduction
Although amortization has dramatically improved the efficiency of variational inference, the direct inference models (or “encoders”) typically used raise their own issues (see Section 3.2). In this way, inference again becomes an iterative optimization algorithm, using negative feedback to minimize errors or gradient sizes, but now with the efficiency of amortization.
Issues with Direct Inference Models
Iterative Amortized Inference
Feedback
Iterative Inference in Latent Gaussian Models
Iterative inference models based on approximate posterior gradients naturally account for both bottom-up and top-down influences (Figure 3.4). Since iterative inference models already learn to perform approximate posterior updates, it is natural to ask whether errors provide a sufficient signal to optimize inference more quickly.
Experiments
ELBO for direct and iterative inference models on binarized MNIST for (a) additional inference iterations during training and (b) additional samples. To verify this, we train direct and iterative inference models on binarized MNIST using 1,5,10, and 20 estimated posterior samples.
Discussion
Q
Amortized Variational Filtering
Introduction
In this chapter, we extend damped iterative inference to perform filtering on deep sequential latent variable models, providing a general-purpose algorithm for performing approximate Bayesian filtering. We then describe an example of this algorithm, implementing inference optimization at each step with iterative damped inference.
Background
To scale this algorithm, stochastic gradients can be used for inference (Ranganath, Gerrish, & Blei, 2014) and learning (Hoffman et al., 2013). Finally, several recent works have used particle filtering in conjunction with damped inference to provide a tighter log-likelihood bound for sequential models (Maddison et al., 2017; Naesseth et al., 2018; Le et al., 2018).
Variational Filtering
Sampling from the approximate posterior (blue) produces a conditional probability (green), 𝑝𝜃(x𝑡|x<𝑡,z≤𝑡), which is evaluated at the observation (grey),x𝑡, to calculate the prediction error. However, the filtering setting dictates that the optimization of the approximate posterior can be conditioned only on the past and present variables at each step, i.e. steps from 1 to 𝑡.
Experiments
4.11, where the estimated posterior parameters and their gradients are encoded at each inference iteration at each step. This aspect differs from many baseline filtering methods, which directly produce the estimated posterior result at each step.
Discussion
Appendix: Filtering ELBO Derivation
Model
Improving Sequential Latent Variable Models with Autoregressive
Introduction
This chapter explores an additional technique that integrates predictions directly at the data level, via conditional probability, thus bypassing inference entirely. Feedforward processing can be thought of as learning a frame of reference to help model the data by preprocessing the input at each time step.
Method
Sequential: b9tgMhmTO2IZ+iGzuuDua41D S8srq2vrG8XNre2d3dLeftPq1HBocC21eY6YBSliaKBACc+JAaYiCU/Ry01ef3oDY4WO6zhMIFSsH4ue4Awd1SkdtBHe0ajsEV5TiFEwOeqUyn7MEQ7Mw3EqUyn7UqMq6 E8wzJh BwSWMiu3UQsL4C+tDy8GYKbBhNlY/oseO6dKeNi5jpGN2eiJjytqhilynYjiw87Wc/KvWSrF3EWYiTlKEmP8e6qWSoqa5FbQcZVA5HCUD 6lR8ZhOM7mMBNX7bB+Tfe0uDNQ/tOCLA4mF1Lmqu85A95Jg/gGLo FmtBKeV6sNZuXY9ec46OSRH5IQE5JzUyB25Jw3CyZB8kE/y5SWTmYQE50Ve/y5SW15Ve it >. Lt; Latexit sha1_base64 = "gapf9UF0MVCTWQE3SPAHUH/6PLE ="> AAAACJ3ICDVHBSINBINEO2MU65MXU3WI+CL2SB4CJPUGP4KUBCFMFJIH1HQ6SWDSXIGC33D6SWDDXX00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 +VD VFWRJNPKYXJ+RQQBNZ5VFTNARN7D+BA7V6T/73QBOYE7WMRR7HPUQUQUQLCHLVEZK2ASLE+SH99L/U6PDF7Z9BanMyfm1Uugkqukqu/yfligyehu/yfligyehu/yfligehui/yfligeh. PPDK3JDBYQG73TMGFCGEMLQG1N3UZGXISEWRTMFZL8Z4etFDPRPPRAKS98QCJDET01CLQZW4T/NSVKJXC/H0VL6UZGXISEWRTMFIHXFZL8Z4etFDPRCKSHZ ZW4T/NSVKJXC/H0VL6uzgxiasew 7CRFBBBBWOT1GCveuv7ZZGZ+YWFWIV2XKNTI0JT1omeWjkzmf2GL1GWZLZM5AODKIJKIK+ADDA9AUY /myc3vxqti+VxttghWY+8GOWSBjbry+VxttghY+8GOWSBjcLd7Nj X7bCWCq39tJMxL. Conclusion)
Experiments
Visualization In Figure 5.3, we visualize the preprocessing procedure for SLVM + 1-AF in BAIR Robot Pushing. In Figure 5.4 and the Appendix, we present visualizations on complete sequences, where we see that different models remove different scales of temporal structure.
Discussion
Appendix: ELBO Derivation
W
- Introduction
 - Background
 - Iterative Amortized Policy Optimization
 - Experiments
 - Discussion
 
Sequential Autoregressive Flow-Based Policies
Introduction
In this chapter, we complete the table outlined in Chapter 1 by applying learned feedback processing to control. In formulating learned supply control policies, we again consider sequential autoregressive flows, as introduced in Chapter 5.
Autoregressive Flow-Based Policies
The affine transformation (above) acts as a feedback policy, purely conditioned on previous actions, while the basis distribution (below) acts as a feedback policy. Conversely, given a sequence,a1:𝑇, the affine transformation provides a mechanism for removing temporal dependencies, i.e. I (u1:𝑇) ≤ I (a1:𝑇), as seen in Chapter 5, thereby simplifying estimation in the space of u1. :𝑇.
Experiments
In Figure 7.3, we present the performance results in these latter environments with different autoregressive window sizes. On the left side of Figure 7.5, we plot the base distribution,𝜋(u|s), as well as the affine autoregressive transform,δ𝜃±β𝜃, and the operations (before applying the tanh transform).
Discussion
Comparing the left and right columns, we see that the feedforward policies are generally more consistent, which is due to the limited temporal window of the affine flow. The autoregressive nature of the policy thus provides an inductive bias, resulting in policies with a more regular rhythmic structure.
Introduction
Predictive Coding
In the natural image domain, both of these whitening schemes generally result in center-surround spatial filters, extracting edges from the input. lt;latexit sha1_base64="YlEnZegu6BMRciM97uIB7y4yLos=">AAACdnicdVHLTgIxFC3jC/EFujQxjYToRjKDJrokunEJCa8EJqRTLtDQTidtx0gmfDKUDB000JNF W/M87O7t7+QfYwd3R8cnqWL5y3tIwVhSaVXKpOQDRwFkLTMM OhEykgIuDQDiYvab79BkozGTbMNAJfkFHIhowSY6n6XT9fdMvuPPA28JagiWhAhlnCaGaGagiWHlAzA MMs14s1RIROyAi6FoZEgPaTudMZLllmgIdS2RcaPGdXOxIitJ6KwFYKYsZ6M5eSf+W6sRk++QkLo9hASBdCw5hjI3H6bTxgC qjhUwsRcaPGdXOxIitJ6KwFYKYsZ6M5eSf+W6sRk++QkLo9hASBdCw5hjI3H6bTxgCqjhUwsRcaPGdXOxIitJ6KwFYKYsZ6M5eSf+W6sRk++QkLo9hASBdCw5hjI3H6bTxgCqjhUwsRMFKHcGmXL mvMqmNyI j39TrCR9IqjMU/NKPbDZGG2G5VDuwC7Um8zQNsg1al7N2XK/WHYvV5eZwsukTX6BZ56BFV0SuqoSaiCNAH+kRfmR/nyik5Psug. lt;latexit sha1_base64="2DLctlRnln8rUGvY6ScommwatuM=">AAACe3icdVHLSgMxFE3HV62vVpdugqUgRcpMVXRZdOOyQl/QDiWTpm00mYQkI5Zkf9000mYQkI5Zkf92GsGhs rvudc7a2d3b3 8vuFg8Oj45Ni6bSjRaQwaWPBhOoFSBNGQ9I21DDSk4ogHjDSDV4f03z3jShNRdgyM0l8jiYhHVOMjKU6g4DH1WRYLLs1dZjKz5MjxE3Nj yFDOSFAaRJhLhVzQhfQtDxIn247ndBFYsM4JjoewLDZyx0x4lrPeGA rOTJTvZ5Lyb9y/ciM7/2YhjIyJMQLoXHEoBEw/TscUUWwYTMLEFiZyzyx0x4lrPeGArOTJTvZ5Lyb9y/ciM7/2YhjIyJMQLoXHEoBEw/TscUUWwYTMLEFiZyzyx0x4mVS hjT8fbUOsYmwClP+D03xZoPUJLJbFSO7QHsSb /0Am6BTr3nXtfrzTbnxkB0nD87BBbgEHrgDDfAEmqANMHgBH+ATfOV+nLJTda4WkDKQit+HumzgDKx06/6U. lt; latexit sha1_base64 = "a+nwkxfly8dexho4lc/y2rbra7y ="> aaach3icdvhlssnafj3gz+sr6tlnybhcwjmq2qwpjusfq0ibwmq6aqdnmmmmhmrlpc/pn/pn Kbsdzvmro0vlk6tp6vbgxubw94+7uprmvacq6vamlxyjimoaj6wihwv5szyimbhuoxm/l+vmb04 ar5bemkqskgsksksapulx7uscoyjox0wyw8l8lzebpnr+vnay8cfw6aab73444w4w4w4w4w4w4w4w4w4w4w4uxeJoJoJox0wyw8l8lzebnr Apitm/3ughyooftwypgpzmsjfsvdfnpworizoj8kr3ar5yz4fhpmwngkftziifmiifMmBgcp1 pyulerftv4gcsfiezjmwbi6oxrnaopcpq94wdwJicywekq51yrptKtKtKtKunB3KPrLeTor phxfdzcyp5d83p4kbqwgzdvqnroh2j // sbi+cp3flpwu2h8+bvzfw56+gahajj5knldixu0d3qiore0dv6qj9o3tl1lpzornwpzwf2uswc629l3mi+. Similar analyzes suggest that the retina also uses predictive temporal coding (Srinivasan, Laughlin, & Dubs, 1982; Palmer et al., 2015).
Connections
As we have seen, a simplified version of sequential autoregressive flows, which uses the prior variable as an affine shift, extracts an approximation of the time derivatives (Section 5.2). Thus, given a sufficiently short time step, Δ𝑡 =𝑡1−𝑡0, sequential autoregressive flows provide a technique for automatically learning the generalized coordinate approximation.
Correspondences
It may rely on computational mechanisms within individual neurons as well as spatiotemporal interactions between neurons. lt;latexit sha1_base64="y9Nz2T+fmSMi/3DG5f53pxwGB6k=">AAACe3icdVHLSgMxFE3HV61vXboJFkFEyowPdCm6cVnBPqAdSia9baPJZEjuiGXoP7jVP/NjBDO1iz70QuBw7uOc3BslUlj0/a+Ct7S8srpWXC9tbG5 t7+zu7detTg2HGtdSm2bELEgRQw0FSmgmBpiKJDSil/s833gFY4WOn3CYQKhYPxY9wRk6qt7GASDr7Jb9ij8OugiCCSiTSVQ7e4VOu6t5qiBGLpm1rcBPMMyYQcEljErt1ELC+AvrQ8vBmCmwYTa2O6LHjunSnjbuxUjH7HRHxpS 1QxW5SsVwYOdzOflXrpVi7ybMRJykCDH/FeqlkqKm+d9pVxjgKIcOMG6E80r5gBnG0W1oZtJTEGa5uXzMjHykRqVjOs3kNhJUb7N1TPa1Uxiof2jBFxsSC6nbqu66BbqTBPMHWAT180pwUTl/vCzf3k2OUy SH5IickIBck1vyQKqkRjh5Ju/kg3wWvr2yd+qd/ZZ6hUnPAZkJ7+oHEUPFMQ==. lt; latexit sha1_base64 = "gch/jfsva5f3xm1dlnxjdscugye ="> aaaci3icdvhjsgnbeo2mw4xbxg5egopgkcyooighuqtxpjcyqdkgnk5n0tjl0n0jxih/4lx/yl+xj8nbjfppppppppppppvs fg+v53wvtyxfpeka6w1 X OU2UOQKAASKNXRQCP7FHRRRRLLMOW1E4NJIS+KB60HJREGAlMZKFWHPNRMF8DKU5QWJ9JFEXKRXGXE5DPZSWA2LPN/1VQPJC/DJMKKTSDP+FCCCMWVZR3AXAABWJ5WJ5WGGGGGS6myy3qlwiwxl6 +zoh+jyekq/2zygykvb9n9hpeuu9ax/9cmzg8kbllnquo6a91lgtkhzion42pwuj1+pk1cxu+EU0T76AADOQCDOST0HX5QHVH0JJ7QJ/ ryNrwT78K7HLd6hcnMLpoK7/YHgrrKmQ==. lt;latexit sha1_base64="y9Nz2T+fmSMi/3DG5f53pxwGB6k=">AAACe3icdVHLSgMxFE3HV61vXboJFkFEyowPdCm6cVnBPqAdSia9baPJZEjuiGXoP7jVP/NjBDO1iz70QuBw7uOc3BslUlj0/a+Ct7S8srpWXC9tbG5 t7+zu7detTg2HGtdSm2bELEgRQw0FSmgmBpiKJDSil/s833gFY4WOn3CYQKhYPxY9wRk6qt7GASDr7Jb9ij8OugiCCSiTSVQ7e4VOu6t5qiBGLpm1rcBPMMyYQcEljErt1ELC+AvrQ8vBmCmwYTa2O6LHjunSnjbuxUjH7HRHxpS 1QxW5SsVwYOdzOflXrpVi7ybMRJykCDH/FeqlkqKm+d9pVxjgKIcOMG6E80r5gBnG0W1oZtJTEGa5uXzMjHykRqVjOs3kNhJUb7N1TPa1Uxiof2jBFxsSC6nbqu66BbqTBPMHWAT180pwUTl/vCzf3k2OUy SH5IickIBck1vyQKqkRjh5Ju/kg3wWvr2yd+qd/ZZ6hUnPAZkJ7+oHEUPFMQ==. lt; latexit sha1_base64 = "lxiql3jcvajff+6ozsbqr8bbbmtc ="> aaacexicdvhltgixfc3jc/efunrtjstebzkbe10s3bjehfcce9iphwlop03bmzijv+bwf81vcwmhwdcn2gn2gn2cd3vnlo3f3b4ld8unjyenv8us5ddl wkfsqcljlq/qjowgpgooyarvlqe8ycrxjb7tvo9n6i0fvhbzcxxozpgdeixmik1lcedfctuzv0g3axegptbolqjum40hcxcxizzzdwa8+Vxk+qmhqz40hcxcxzzzzdwa8+Vxk Vltbolqjum40hsigmyjdwa8+Vxk Vltbolqjum40hsigmyj9pol Kwjm0jqmli8sj9pol 2qwswgymj0lzfxm4zdc7ess1nvpavnjkqr2ds8m/copytb79heyynitck6fjzkarmp05hfnfsgfzcxbw1hqfoeqkywp3k5nu9vwwknzoychffgowy0mtSf3k5nu9vwwknzoYthffgowy 7zzitwk7vtg2c7qn8bypsau69zrxqnvf78vnp/vx8uaa3 iiiq8madaiix0aidyeipsan+mr9oddo1blbltq5dc8vyitt+aujg8ri . lt;latexit sha1_base64="y9Nz2T+fmSMi/3DG5f53pxwGB6k=">AAACe3icdVHLSgMxFE3HV61vXboJFkFEyowPdCm6cVnBPqAdSia9baPJZEjuiGXoP7jVP/NjBDO1iz70QuBw7uOc3BslUlj0/a+Ct7S8srpWXC9tbG5 t7+zu7detTg2HGtdSm2bELEgRQw0FSmgmBpiKJDSil/s833gFY4WOn3CYQKhYPxY9wRk6qt7GASDr7Jb9ij8OugiCCSiTSVQ7e4VOu6t5qiBGLpm1rcBPMMyYQcEljErt1ELC+AvrQ8vBmCmwYTa2O6LHjunSnjbuxUjH7HRHxpS 1QxW5SsVwYOdzOflXrpVi7ybMRJykCDH/FeqlkqKm+d9pVxjgKIcOMG6E80r5gBnG0W1oZtJTEGa5uXzMjHykRqVjOs3kNhJUb7N1TPa1Uxiof2jBFxsSC6nbqu66BbqTBPMHWAT180pwUTl/vCzf3k2OUy SH5IickIBck1vyQKqkRjh5Ju/kg3wWvr2yd+qd/ZZ6hUnPAZkJ7+oHEUPFMQ==. lt; latexit sha1_base64 = "lxiql3jcvajff+6ozsbqr8bbbmtc ="> aaacexicdvhltgixfc3jc/efunrtjstebzkbe10s3bjehfcce9iphwlop03bmzijv+bwf81vcwmhwdcn2gn2gn2cd3vnlo3f3b4ld8unjyenv8us5ddl wkfsqcljlq/qjowgpgooyarvlqe8ycrxjb7tvo9n6i0fvhbzcxxozpgdeixmik1lcedfctuzv0g3axegptbolqjum40hcxcxizzzdwa8+Vxk+qmhqz40hcxcxzzzzdwa8+Vxk Vltbolqjum40hsigmyjdwa8+Vxk Vltbolqjum40hsigmyj9pol Kwjm0jqmli8sj9pol 2qwswgymj0lzfxm4zdc7ess1nvpavnjkqr2ds8m/copytb79heyynitck6fjzkarmp05hfnfsgfzcxbw1hqfoeqkywp3k5nu9vwwknzoychffgowy0mtSf3k5nu9vwwknzoYthffgowy 7zzitwk7vtg2c7qn8bypsau69zrxqnvf78vnp/vx8uaa3 iiiq8madaiix0aidyeipsan+mr9oddo1blbltq5dc8vyitt+aujg8ri . J| . 
Discussion
What does the free energy principle tell us about the brain?" In:arXiv preprint arXiv:1901.07945. Can the "whitening" theory explain the central surround properties of retinal ganglion cell receptive fields? In: Vision Research 46.18, p.
Conclusion
Iterative Estimation
Combining Generative Perception & Control
Controlling Perception
Input
Bridging Neuroscience and Machine Learning
This shows that a limited set of computational operations, suitably combined, is able to adapt to the specific tasks of perception and control of the environment. Similarly, default neural circuit architectures, particularly in the cortex, are capable of adapting to the specific perceptual and control tasks an organism encounters during its lifetime.