• Tidak ada hasil yang ditemukan

Learned Feedback & Feedforward Perception & Control

N/A
N/A
Protected

Academic year: 2023

Membagikan "Learned Feedback & Feedforward Perception & Control"

Copied!
195
0
0

Teks penuh

Empirically, each successive iteration produces diminishing additional improvement. c)In the normalized space of 𝑦, the corresponding densities 𝑝(𝑦2|𝑦1) are identical. d) The marginal𝑝(𝑦2) is identical to the conditional, soI (𝑦1;𝑦2) =0. So in this case a conditional affine transformation removed the dependencies. a) An autoregressive flow preprocesses a data set x1:𝑇 to produce a new set y1:𝑇 with reduced temporal dependencies. Train and test negative log-likelihood histograms for (a)SLVM and (b)SLVM + 1-AF on KTH actions. c) The generalization gap for SLVM + 1-AF remains small for varying amounts of KTH training data, while it becomes worse in the low data regime for SLVM.

Cybernetics

At the lowest level, this thesis presents two core techniques for improving probabilistic modeling, applied to both state estimation, or perception, and action selection, or control. At a higher level, this thesis strengthens a bridge between neuroscience and machine learning through the theory of predictive coding.

Neuroscience and Machine Learning, Convergence and Divergence . 3

BeheerAAACh3icdVHJTgJBEG3GHTfUo5eOxMQTzqhRjy4Xj5oImMCE9DQFdOxl0l13DJBP3UKuxdxl1DJBP3UKoqvxdx1DJBP3Ukvxdxvxvxvxvxvxvxvxvxvxvxvxvxvxvk FXKVhaXlldW98ob25t7+xW9vYbzmSWQ50baexLwhxIoaGOAiW8pBaYSiQ0k9f7ot4cgnXC6GccpRAr1teiJzhDT3UqlTbCG1qV3xuN1shxp1INa+Ek6CKlZQBTOKWFWXWVN1shxp1INa+Ek6CKZZQIQWVWXWVXWVXWVXWVXWVXWVXWVXWVWXWG MC63Mwcp46+sDy0PNVPg4nwifUyPPdOlPWN9aqQT9udEzpRzI5X4TsVw4H7XCvKvWivD3nWcC51mCJpPD/UySdHQwgfaFRY4ypEHjFvxq9OG7NQVVYVYVYVVVVVVYVVYVVYVVYVVYVVYVYVVYVYVVYVVYVYVVYVYVYVVYVYVVYVYVVYVVYVYVVYVVYVVVVVVYVYVVVVVYVYVVVVVVYVYVVVVVVVYVYVVVVVVYVYVVVVVVYVVVVVVYVVVVVYVVVVVVYVVVVVVYVVVVVVYVVVVVVVYVVVVVVVVYVVVVVVVYVVVVYVQVQVVY mQKGSmqt/k+JvvGXxiof2jBFwdSB5l31XS9gf4l0e8HLILGWS06r509XVRv7mbPWSeH5IickIhckRvyQB5JnXAyJO/kg3wGG8FpcBlcT1uD0mcPNNg=laat Feedback &AAACi3icdVHLSgMxFE3Hd33Vx85NsCiuyowKirgoiuJSwarQDiWTuW2DyWRI7kjr0H9xq3/k35ipXVirFy4czn0dzo1SKSz6/mfJm5mdm19YXCovr6yurVc2Nh +szgyHBtdSm6eIWZAigQYKlPCUGmAqkvAYPV8W9ccXMFbo5B4HKYSKdRPREZyho9qV7RZCH43KrwHiiPFn2toftitVv+aPgk6DYAyqZBy37Y1SuxVrnilIkEtmbTPwUwxzZlBwCcNyK7OQuu2sC00HE6bAhvlI/pDuOSamHW1cJkh H7M+JnClrBypynYphz/6uFeRftWaGndMwF0maIST8+1AnkxQ1LbygsTDAUQ4cYNwIp5XyHjOMo3NsYtN9EOaFuGLNxPlIDct79CdTyEhR9Sf7mOxqd6Gn/qEFnx5ILWTOVR07A91Lgt8PmAYPh7XgqHZ4d1ytX4yfs 0h2yC45IAE5IXVyQ25Jg3DySt7IO/nwVr0j78w7/271SuOZLTIR3tUXgDrKHA==.

Figure 1.1: Conceptual Overview. The concepts put forth by cybernetics permeated the modern fields of theoretical neuroscience (left), machine learning (center), and control theory (right)
Figure 1.1: Conceptual Overview. The concepts put forth by cybernetics permeated the modern fields of theoretical neuroscience (left), machine learning (center), and control theory (right)

The Future of Feedback & Feedforward

LAAACgHicdVHLSsNAFJ3GV62vVpduBkuhq5qooLgqunHhokJfkIYymUzaoTOZMDMRS+hnuNXv8m+ctFk0rV64cDj3dTjXjxlV2rZ/St bO7t7+QfmwcnR8cnpWrZ33lUgkJj0smJBDHynCaER6mmpGhrEkiPuMDPzZc1YfvBOpqIi6eh4Tj6NJREOKkTaUO+JITzFi6etiXK3bLXsZcBs4OaiDPDrjWmk8CgROOIk0Zkgp17Fj7aVI aooZWVRGiSIxwjM0Ia6BEeJEeelS8wI2DBPAUEiTkYZLdn0iRVypOfdNZ6ZRbdYy8q+am+jwwUtpFCeaRHh1KEwY1AJmBsCASoI1mxuAsKRGK8RTJBHWxqbCpq7jpZm4bE3hvM8XlQZ cZzIZseYfxT7EJsJcmPJ/aIq3B2JFEuOqCIyB5iXO5gO2Qf+m5dy2bt7u6u2n/DllcAmuQBM44B60wQvogB7AQIBP8AW+LctqWteWs2q1SvnMBSiE9fgL6q/GbA==. FlowAAACgnicdVHLSgMxFE3Hd321unQTLIK4KDNW0IWLoiAuK1gV2qFk0ts2mEzG5I62DP0Ot/pZ/o2Ztgtr9cKFw7mvw7lRIoV F3/8qeEvLK6tr6xvFza3tnd1See/B6tRwaHIttXmKmAUpYmiiQAlPiQGmIgmP0fN1Xn98BWOFju9xlECoWD8WPcEZOipsIwzRqOxG6rdxp1Txq/4k6CIIZqBCZtHolAuddlfzVEGMXDJrW4GfYJ gxg4JLGBfbqYWE8WfWh5aDMVNgw2yiekyPHNOlPW1cxkgn7M+JjClrRypynYrhwP6u5eRftVaKvYswE3GSIsR8eqiXSoqa5hbQrjDAUY4cYNwIp5XyATOMozNqbtN9EGa5uHzN3PlIjY tH9CeTy0hQDef7mOxrd2Gg/qEFXxxILKTOVd11BrqXBL8fsAgeTqtBrXp6d1apX82es04OyCE5JgE5J3VySxqkSTh5Ie/kg3x6y96JF3i1aatXmM3sk7nwLr8BgEbHlg==.

Background

Introduction

Probabilistic Models

From this perspective, hierarchical latent variable models are an iterative application of the latent variable technique to generate increasingly complex empirical antecedents (Efron and Morris, 1973). We can also consider the inclusion of latent variables in sequential (autoregressive) probability models, which results in the creation of sequential models of latent variables.

Figure 2.1: Maximum Likelihood Estimation. A data distribution, 𝑝 data , produces samples, x, of a random variable 𝑋
Figure 2.1: Maximum Likelihood Estimation. A data distribution, 𝑝 data , produces samples, x, of a random variable 𝑋

Variational Inference

The second term quantifies the agreement with the prediction: samplingzfrom𝑞 we want to have high. lt;latexit sha1_base64="IEFcZ6TdJDNiYnM2MXVVhnD1rxA=">AAACjHicdVHLSiNBFK20j3HiKzrMyk1hEHQTulUYQQRxQFwqGBWSpqmu3E6KVHUVVbfqF2CGId3E6KVHUVvbfQF20CZG19BfVcVzVZQVZQVZQVZQVZQVZ QVZQVZQVZQVZQVZQVZQVZQVZQVZQVZQVQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQJ b/asHC4tLyj5Wf9dW19Y3Nxtb2ndOF5dDmWmr7kDIHUuTQRoESHowFplIJ9+nwb1W/fwTrhM5vcWQgVqyfi0xwhp 5KGr9N0sUBIKP7XcVwOTTDg+j8WiVgV28WiVgV2VVVVVVQVVVVVQVVVVVVVVVVVVVVVVVVVVVVQV JAjl8y5ThQajEtmUXAJ43q3cGAYH7I+dDzMmQIXlxP9Y7rnmR7NtPWZI52wHydKppwbqdR3Vhrd51pFflXrFJidxKXITYGQ8/ dDWSEpalq5QXvxn qNTPnUzWu79GPTCXDoHqa7WOyr/2FgfqGFnx+wDgovKu65w30L4k+P2Ae3B22oqPW4c1x8/xi+pwVskN2yT6JyB9yTq7INWkTTkryQl7JWlwixHaenCwbdcf5000000000 01 >. lt;latexit sha1_base64="GKYv3YBzSW+vcCnXm4SsDmmxo+c=">AAACknicdVHLTgIxFC3jG1+g7tg0EhLckBk00bhC3bhwoQkgCUxIp3SgoZ2ObceA4SEFc9aGnF5Of9aGnKy/Nh600000000000000N pt218Za2V1bX1jcyu7vbO7t5/LHzSViCQmDSyYkC0PKcJoQBqaakZaoSSIe4w8esObNP/4TKSiIqjrcUhcjvoB9SlG2lDdXOEJljsc6YHnxy8fnC6YHnxy8fnC6YHnxy8fnC6YHnxy1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 d/OZbqcncMRJoDFDSrUdO9RujKSmmJEk24kUCREeoj5pGxggTpQbT36RwJJhetAX0pxAwwk72xEjrtSYe6Yy1agWcyn5V64daf/CjWkQRpoE+GeQHz0KHQBQZQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ jtunIpLn5kb7/EkW4KzTCoj1Hw0X4dYX5gJA/4PTfFyQ6hIZFwVPWOgWYmzuIBl0KxWnNNK9eGsWLueLmcTFMAxKAMHnIMauAX3oAEweAPv4AN8WkfWpXVyGfy+lCuGfy+lCuGfy+lCuGfy+lCuGy lt;latexit sha1_base64=" 60DGexcpR/Fv1prZWkg4K8IbvkM=">AAACmnicdVFNTxsxEHW2LdC0fLXH9mARIdFLtBuQ4BjBhaoXkBJASlaR15lNLOyGVARAI/NLOy1ZVARA+iThGZ1Zc/NLOy1ZVara+i +kxgpHIbhv1rw4eOnldW1z/UvX9c3Nre2v10 4nVsOXa6ltlcJcyBFBl0UKOHKWGAqkXCZXJ9U+csbsE7orINTA7Fio0ykgjP01GCrQc2gj2NARvff2WB0YV0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0V0Vc yDzOBtu1QX+oea4gQy6Zc70o NBgXzKLgEsp6P3dgGL9mI+h5mDEFLi5mvynprmeGNNXWnwzpjH1ZUTDl3FQlXlnN6F7nKvKtXC/H9ChoNUPZYFZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVXQ QQXQXQQQXQY zj6A1ceKkTxUU1XPXMQvtElfVd+pKpxjCoJos6Jkfadxird2jBlwuMg9y7qofeQL+S6PUClsFFqxntN1vnB4328Xw5a+QH2SF7JCKHpE1HuyNQpE1HuyRn Dn8Fx8Dv48yQNavOa72Qhgs5/fj/QHw== . lt;latexit sha1_base64="ThBf6Fct1myVHSay2XFe4My8dic=">AAACunicdVFLbxMxEHaWVwmvFI5cLKJK5RLtFiQ4cKiokDgWqWkrZVcr25ndtWKvjT2LGpb9QfwarvTf4E2C1DQwkuXP33zz8Ay3SnqM4+tBdOfuvfsP9h4OHz1+8vTZ aP/5uTeNEzAVRhl3yZkHJWuYokQFl9YB01zBBV+c9P6Lb+C8NPUZLi1kmpW1LKRgGKh8dJJqhhXn7acu/0pTBQXOwmVKavMUK0BGD9eSor3q6A/69/G9e01TJ8sKs3w0jifxyuguSDZgTDZ2mu8P8nRuRKOhRqGY97Mkt pi1zKEUCrph2niwTCxYCbMAa6bBZ+3qtx09CMycFsaFUyNdsTcjWqa9X2oelH2v/ravJ//lmzVYvM9aWdsGoRbrQkWjKBraj47OpQOBahkAE06GXqmomGMCw4C3Mp0lWds316fZKs91NzygN5m+DYv6alvHVGlChUr/h5ZiN8B6 aMJUzTwMMKwkub2AXXB+NEneTI6+vB0ff9wsZ4+8JK/IIUnIO3JMPpNTMiWC/CS/yG9yHX2IeCSjxVoaDTYxL8iWRfgHlrzdbQ ==. lt;latexit sha1_base64="bSdQSp0iZL3ytr3Aon9aL1YVVZc=">AAAC0nicdVHLatwwFNW4r3T6mqTLbkSHQLLoYCeFdhkaAl2mMJMEbGNkjWyLSJYiXZdMVC9Ktv2pfka/oNv2DyrPTGEm014QHJ177oNzcy24hTD80Qvu3X/w8NH W4/6Tp8+evxhs75xZ1RjKJlQJZS5yYpngNZsAB8EutGFE5oKd55fHXf78MzOWq3oMM81SScqaF5wS8FQ2iN8kkkCV5+6kza5wIlgBcSJUiZPCEOqu8N5CULibFn/Bfz/X7X7rdJZAxYCsavZbnBheVpDibDAMR+E88Ca IlmCIlnGabfeyZKpoI1kNVBBr4yjUkDpigFPB2n7SWKYJvSQliz2siWQ2dXMXWrzrmSkulPGvBjxnVysckdbOZO6V3bb2bq4j/5WLGyjep47XugFW08WgohEYFO4sxVNuGAUx84BQw/2umFbEuwfe+LVO4yh13XJdm7XxuWz7u3iV6db QIK/XdUSUyk+o5H9oTjcLtGWNd1VNvYH+JNHdA2yCs4NRdDg6+PR2ePRheZwt9Aq9RnsoQu/QEfqITtEEUfQd/US/0O9gHNwEX4PbhTToLWteorUIvv0BDFnnlA==< /latexit>. lt;latexit sha1_base64="Min9X1kSrlMsgf0t/tlM/bkvIlw=">AAACo3icdVFNa9tAEF2rX4nTNk57zGWpMSRQjJQE2mNoL4Vc0mAnAUuI1WpkL9nVLrujYiP0J/prek3+Rf9NVo4hcdwOLDzevJl5O5MZKRyG4d9O8OLlq9dvtra 7O2/fvd/t7X24dLqyHMZcS22vM+ZAihLGKFDCtbHAVCbhKrv53uavfoF1QpcjXBhIFJuWohCcoafS3udYMZxlRT1vaOyEoiaNEeZoVZ0zZA09eBQcpr1+OAyXQTdBtAJ9sorzdK+TxrnmlYISuWTOTaLQYFIzi4JLaLpx5cAwfsOmMPGwZApcU i+/1dCBZ3JaaOtfiXTJPq2omXJuoTKvbD2657mW/FduUmHxNalFaSqEkj8MKipJUdN2RzQXFjjKhQeMW+G9Uj5jlnH0m1zrNIqSujXXtlkbn6mmO6BPmdaGQTVf1zE51X7CTP2HFnyzwDio/FZ17hfoTxI9P8AmuDwaRsfDo58 n/dNvq+NskX3yiRyQiHwhp+QHOSdjwslv8ofckrtgEJwFF8HoQRp0VjUfyVoEyT0JRtSg. a) Basic calculation graph for variational inference. We can consider ELBO as an example of a stochastic. zAAACf3icdVHLTgIxFC3jC/EFunTTSIiuyIyaqDuiG5eY8IowIZ1OBxr6mLQdI074C7f6X/6NHWD3N30000000000000000000000001 3ifung8Oj4pFw57WiZKEzaWDKpegHShFFB2oYaRnqxIogHjHSDyVOW774RpakULTONic/RSNCIYmQs9TrgyIyDKP2YDctVt+7OA24CbwmqYBnNYaUwHIQSJFTnSuAuzFgxfg5wfgfg5wfgxgfg m 3xZkOsSWK3KkO7QHsSb/0 Am6BzXfdu6tcvt9XG4/I4RXAOLsAV8MAdaIBn0ARtgIEAn+ALfDsF59KpO+6i1Ckse85ALpyHX0lCxig=. lt; latexit sha1_base64 = "hlspur9h0rx2bbfn6ekhfq3scbs ="> aaacgxicdvhlsgmxfe2npmp9tbp0eywf3zszkii4kbpxwaev6awlk0nb0gqskoxyhv6gw/0T uydzq8monq77u3cke/shh6wj8vHj6dl5pxrr0yjrmhsxyeinqqjozhpgmoyguhfea8z6yezl6z ffydkuxf3zfysgknjtmcui2mp3w956jmrj9bivkm5dxdzcbd4ooiaTmcui2mp3w956jmrj9bivkm5dxdzcbd4ooiaaaTMiNQJ Mqgm6t10holcvkkdmwmlmp+oleeiymzghhjdjrqbo0vyB1y0rwljr9syfldn0irvzroq+tkimz1du9jpyrn0zm dfiaswtq2k8wjrogdqczgnaicqcdztbglci1iveu6qqq2k866666666666666666666666666666666666666666666666666666666666666666666666666 666666666666666666666666666666666666666666666662 vntahffguw3umsyen/9juityRdSou/0ntvdsgnulsqikyAdqTensh2aw9ZSO7AZTF7MUT5/W4JXAFRSEN8MADAIFX0AZDGIEEN+ALFDTF59ZXNEZK6HTYMUUWUC7TL+F PXTW = . lt; latexit sha1_base64 = "dq+caEIKIBQ9J0JY0SKHK1KMXAS ="> AAACJHICDVFDS8MWFM3Q15W6P+KTL8EX8GM0U1AQYSiiiiT Wjglbbtn4k1tb2zu1fclx0chpwpkyenxsusiukhcyzkp0ckmbqrjqaakx4sceibi71g8pt3e+9ekiqitp7gxonofnehxug byq+cu0ym4jufugfpxwaeicOyv1k16/as4czwfqaKfqakexwtxTxwdxw+ cbjpzjbsa8eotzciqslmjcu5isixwhm0igmdi8sj8tkz/wzwdbpcozdmrrro2gvfirhsux6ysy70wk33cvkv3idrwzsvpvgcablh+ajhwqawma8dhlqsrnnuAiqlnv4 0n5 d/s7i+4fmpbpez3eas+cfqhgijytam+t80xzucwjhepcpce6a5ibn+ge3qbdsd63rj9abaffwcpwguwcw4ag64bu3walqgazbiwsf4at9w2bqx7q2h+ahvwgjowep79gzits >. lt;latexit sha1_base64="Nkk3T+niU2cCEWunvav3KuI5f5w=">AAACdnicdVHLSgMxFE3HV62vVpeCBEtRXJSZKuiy6MZlC31BO5RMetuGJpMhyYhl6Be41Y+abvonSZq7ucFnSZq70cvnZQ7cvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv f2D7KHuaPjk9OzfOG8pWWsKDSp5FJ1AqKBsxCahhkOnUgBEQGHdjB5SfPtN1CaybBhphH4goxCNmSUGEvV7/r5olt254G3gbcERbSMWr+Q6fcMQ5EbrCQI tTAkArSfzJ3OcMkyAzyUyr7Q4Dm72pEQofVUBLZSEDPWm7mU/C vXjc3wyU9YGMUGQroQGsYcG4nTb+MBU0ANn1pAqGLWK6Zjogg1djlrkxqen6Tm0j0jFr8lcRpUlToJDJFr8lcRpNdVLtYa8UrzUrpUnDXVL arcmAXaE/ibR5gG7QqZe++XKk/FKvPy+Nk0SW6RrfIQ4+oil5RDTURRYA+0Cf6yvw4 V07JuVmUOpllzwVaC8f9BZZ5wrc=. zAAACf3icdVHLTgIxFC3jC/EFunTTSIiuyIyaqDuiG5eY8IowIZ1OBxr6mLQdI074C7f6X/6NHWD3N30000000000000000000000001 3ifung8Oj4pFw57WiZKEzaWDKpegHShFFB2oYaRnqxIogHjHSDyVOW774RpakULTONic/RSNCIYmQs9TrgyIyDKP2YDctVt+7OA24CbwmqYBnNYaUwHIQSJFTnSuAuzFgxfg5wfgfg5wfgxgfg m 3xZkOsSWK3KkO7QHsSb/0 Am6BzXfdu6tcvt9XG4/I4RXAOLsAV8MAdaIBn0ARtgIEAn+ALfDsF59KpO+6i1Ckse85ALpyHX0lCxig=. lt;latexit sha1_base64="mlLz5PRn6k/2I/uXqfF1v+kMzi4=">AAACgnicdVFNS0JBFB1fVmZfWss2QyJEC3kvg1q0kNq0NMgK9CHzxqsOzVcz8yJ5+Dva1s/q3zRPXWTWhQuHc78O5yaaM+vC8KsQrBXXNzZLW +Xtnd29/Ur14MGq1FDoUMWVeUqIBc4kdBxzHJ60ASISDo/J801ef3wFY5mS926iIRZkJNmQUeI8FfcSkfVAW8aVnPYrtbARzgKvgmgBamgR7X610O8NFE0FSEc5sbYbhdrFGTGOUQ7Tci+1oAl9JiPoeiiJABtnM9VTXPf MAA+V8SkdnrE/JzIirJ2IxHcK4sb2dy0n/6p1Uze8jDMmdepA0vmhYcqxUzi3AA+YAer4xANCDfNaMR0TQ6jzRi1tuo/iLBeXr1k6n4hpuY5/MrkM7cTbch/hI+UvjMU/NKOrA9pC6l1VA2+ gf0n0 +wGr4OGsETUbZ3fntdb14jkldISO0QmK0AVqoVvURh1E0Qt6Rx/oMygGp0EUNOetQWExc4iWIrj6Bk+fx38= NACscf gXicdVHLSgMxFE2nPmp9tbp0EywF3ZSZKii4KbpxWa Ev6Awlk0nb0GQSkoxYhv6GW/0t/8ZMO4s+9ELgcO65uYdzQ8moNq77U3CKe/sHHXHSJEQLQJ0QJYQJQJQJQJQJYDQJQJQJYDQJYDQJQJQY zHpGmoYGUhFEA8Z6Yezl6zffydKUxF3zFySgKNJTMcUI2Mp3w956jMrj9BiVKm5DXd ZcBd4OaiBvNqjamHkRwInnMQGM6T10HOlCVKkKkDMWMIYjRQJ0YmZRQE000000000000001 sYFLdn0iRVzrOQ+tkiMz1du9jPyrN0zM+DFIaSwTQ2K8WjROGDQCZgnAiCqCDZtbgLCi1iveEU6QQNjanjZ86XpBm5r JvNtaHfFGuw3UmsyEN/9jNUqNTiVNdsVNtsVntsNvntsNvnts20000000dss sO7azTf7mut5/w4JXAFrsEN8MADaIFX0AZdgIEEn+ALfDtF59ZxneZK6hTymUuwUc7TL+fPxtw=.

Figure 2.4: ELBO Computation Graphs. (a) Basic computation graph for varia- varia-tional inference
Figure 2.4: ELBO Computation Graphs. (a) Basic computation graph for varia- varia-tional inference

Discussion

Frembringer wake-sleep-algoritmen gode tæthedsestimatorer?" I:Advances in neural information processing systems, s. Estimation of non-normalized statistic models by score matching. I: Journal of Machine Learning Research6.4.

Introduction

Although amortization has dramatically improved the efficiency of variational inference, the direct inference models (or “encoders”) typically used raise their own issues (see Section 3.2). In this way, inference again becomes an iterative optimization algorithm, using negative feedback to minimize errors or gradient sizes, but now with the efficiency of amortization.

Issues with Direct Inference Models

Iterative Amortized Inference

FeedbackAACiHicdVHLSgMxFE3Hd321unQTLIKrMqNCdScK4lLBPqAdSiZz2waTyZDcUcUcv3WSqTv3 PT9r5K3srq2vrG5Vd7e2d3br1QPWlZnhkOTa6lNJ2IWpEigi QIldFIDTEUS2tHzbVFvv4CxQidPOE4hVGyYiIHgDB3Vr1R7CG9oVH6HEE+dUEF000VH6H6L000+dUE0 ZpnChLkklnbDfwUw5wZFFzCpNzLLKRuNRtC18GEKbBhPtU+oSeOielAG5cJ0in7eyJnytqxilynYjiyi7WC/KvW zXBwGeYiSTOEhP8cGmSSjGjKFUdsQ5GjKFUDQ5GjKFUDQ5GjKFTQ5 XrJk7H6lJ+YT+ZgoZQaq3+T4mh9pdGKl/aMGXB1ILmXNVx85A95Jg8QHLoHVWD87rZ48Xteub2XM2yRE5JqckIA1yTe7JA2kSTl7JOXM8T74kVr 7/kgV6LVD/kgv2001 =. Predictive CodingAAACkXicdVHLSiNBFK30jBrjKxl3zqYwCK5CtzOg7oJuhNlkwCRC0oTqN6WWFUph0B5TqN6WFU30B5GW1W30B5 5z7Or XOTTAqHYfhWCz593treqe829vYPDo+arS8DZ3LLoc+NNPYhYQ6k0NBHgRIeMgtMJRKGyeNtmR8+gXXC6HtcZBArNtNiKjhDT02aJq2OEBQEB02AJq6PlBF002aJq6PfWl7 IKpAm1TRm7Rqk3FqeK5AI5fMuVEUZ hgXzKLgEpaNce4gY/yRzWDkoWYKXFysPrGkZ55J6dRY/zTSFfu+o2DKuYVKfKViOHcfcyX5r9wox+lVWxOMFJaid M4s4+h9W5t0H8VFuVw5Zk0+UcvGGX3PlGtkqJ7X65icGa8wV/+hBd9syBzk3lWTegP9Sa KPB9gEg4tO9K1z8fN7u3tTHadOvpJTkSwOkY0JU0JUGS9SwOk4 UGtarnmKxF8OMPhtLNNA==.

Iterative Inference in Latent Gaussian Models

Iterative inference models based on approximate posterior gradients naturally account for both bottom-up and top-down influences (Figure 3.4). Since iterative inference models already learn to perform approximate posterior updates, it is natural to ask whether errors provide a sufficient signal to optimize inference more quickly.

Figure 3.4: Automatic Top-Down Inference. Bottom-up direct amortized infer- infer-ence cannot account for conditional priors, whereas iterative amortized inferinfer-ence automatically accounts for these priors through gradients or errors.
Figure 3.4: Automatic Top-Down Inference. Bottom-up direct amortized infer- infer-ence cannot account for conditional priors, whereas iterative amortized inferinfer-ence automatically accounts for these priors through gradients or errors.

Experiments

ELBO for direct and iterative inference models on binarized MNIST for (a) additional inference iterations during training and (b) additional samples. To verify this, we train direct and iterative inference models on binarized MNIST using 1,5,10, and 20 estimated posterior samples.

Figure 3.6: Amortized vs. Gradient-Based Optimization. Average ELBO over MNIST validation set during inference optimization as a function of (a) inference iterations and (b) inference wall-clock time
Figure 3.6: Amortized vs. Gradient-Based Optimization. Average ELBO over MNIST validation set during inference optimization as a function of (a) inference iterations and (b) inference wall-clock time

Discussion

QAAACmXicdVHLSgMxFE3Hd31VXboJLYKClBkVdOljI65atFVohyGTZtpgMgnJHbvEMVYwTrBnbs 34/kfJm5tfWFxaXimvrq1vbFa2tttWZYayFlVCmYeYWCZ4ylrAQbAHbRiRsWD38eNVEb9/YsZyld7BULNQkn7KE04JOCqqVJtRV3OGS23IqqVJtRV3OGS23IQAQVJtRV3OGS23Iqa40000+10000000v00004E8000000000000000000000000000000000000000000000000v48B GKNaKsUdXuKZpKlQAWxthP4GsKcGOBUsFG5m1mmCX0kfdZxMCWS2TAff2aE9xzTw4ky7qWAx+zPipxIa4cydpnFlvZ3rCD/inUySM7CnKc6A5JXwGwS DKDj9pjrdBWFeLFe0mRofy1F5D/9kijU0yOfpPCL6yk0YyH9oTmcLtGWZU1X1nIDuJMHvA8yC9lE9OK4fNU9q55eT4yyjXVRF+yhApPCL6yk0YyH9oTmcLtGWZU1X1nIDuJMHvA8yC9lE9OK4fNU9q55eT4yyjXVRF+yhApGrek+VP1X3 mlSs4OmzLv9BH4Tz7E= ⇡(st,at). Kompensuesi-AAACjHicdVFdSxtBFJ1sW03jR2OLT30ZDIIvDbtWUBAhGCg+ppCokCxhdnKTDMF4XvXv2KTDMF4XvXv3KTDMF4XvXv3 4N7NSeIzj50r04eOnre3q59rO7t7+l/rB11tvcsehx4007j5jHqTQ0EOBEu6tA6YyCXfZQ7us3z2C88LoLs4tpIpNtBgLzjBQGTh/rhV4Agxy sojM8qAwHI8NzBRq5ZN73k9hiWjCHgktY1Aa5B8v4A5tAP0DNFPi0WOpf0OPAjOjYuJAa6ZJ9O1Ew5f1cZaFTMZz697WS/Fetn+P4Ii5HPzHBhmC Z8yxzgGy9Y2dZO0KMWVa9bOZ2pRO6ZvmVKGRTVb72NyYsKFqfoPLfjmgPWQB1fNKBgYXpK8f8AmuD1tJj+bp7/PGq3r1XOq5Ds5RJwIckIckIh5/PGq3r1XOq5Ds5RJwIckIk6oq5Ds5RJwIckIk6/UgQQ5IckIckIh5Ds5RJwIckIh5 X1qiymvlG1iL69QLmWMs3.

Amortized Variational Filtering

Introduction

In this chapter, we extend damped iterative inference to perform filtering on deep sequential latent variable models, providing a general-purpose algorithm for performing approximate Bayesian filtering. We then describe an example of this algorithm, implementing inference optimization at each step with iterative damped inference.

Background

To scale this algorithm, stochastic gradients can be used for inference (Ranganath, Gerrish, & Blei, 2014) and learning (Hoffman et al., 2013). Finally, several recent works have used particle filtering in conjunction with damped inference to provide a tighter log-likelihood bound for sequential models (Maddison et al., 2017; Naesseth et al., 2018; Le et al., 2018).

Variational Filtering

Sampling from the approximate posterior (blue) produces a conditional probability (green), 𝑝𝜃(x𝑡|x<𝑡,z≤𝑡), which is evaluated at the observation (grey),x𝑡, to calculate the prediction error. However, the filtering setting dictates that the optimization of the approximate posterior can be conditioned only on the past and present variables at each step, i.e. steps from 1 to 𝑡.

Figure 4.1: Variational Filtering Inference. The diagram shows filtering inference within a sequential latent variable model, as outlined in Algorithm 2
Figure 4.1: Variational Filtering Inference. The diagram shows filtering inference within a sequential latent variable model, as outlined in Algorithm 2

Experiments

4.11, where the estimated posterior parameters and their gradients are encoded at each inference iteration at each step. This aspect differs from many baseline filtering methods, which directly produce the estimated posterior result at each step.

Figure 4.3: Prediction-Update Visualization. Test data (top), output predictions (middle), and updated reconstructions (bottom) for TIMIT using SRNN with AVF.
Figure 4.3: Prediction-Update Visualization. Test data (top), output predictions (middle), and updated reconstructions (bottom) for TIMIT using SRNN with AVF.

Discussion

Appendix: Filtering ELBO Derivation

ModelAAACg3icdVHLSgMxFE3HV61vXboJFkEQykwt6EYQ3bgRKthWaMeSSW/bYDIZkjtiGeY/3Opf+TdmahfW6oULh3Nfh3uiRAqLvv9Z8 paWV1bXyuuVjc2t7Z3dvf221anh0OJaavMYMQtSxNBCgRIeEwNMRRI60fNNUe+8gLFCxw84SSBUbBSLoeAMHfXUQ3hFo7I7PQCZ93erfs2fBl0EwQxUySya/b1SvzfQPFUQI5fM2m7gJxhm zKDgEvJKL7WQMP7MRtB1MGYKbJhNZef02DEDOtTGZYx0yv6cyJiydqIi16kYju3vWkH+VeumOLwIMxEnKULMvw8NU0lR0+IHdCAMcJQTBxg3wmmlfMwM4+g+NbfpIQizQlyxZu58pPLKMf3JFDISV K/zfUyOtLswVv/Qgi8OJBZS91VnSV5xlgS/DVgE7XotOKvV7xvVq+uZOWVySI7ICQnIObkit6RJWoQTQ97IO/nwVrxTr+41vlu90mzmgMyFd/kFY4rH+Q==. IzhodAAAChnicdVHLTgIxFC3jC/EB6NJNIzFxRWZ8RJdEN+7ERNQEJqRTLtDYTiftrZFM+BK3+lH+jR1kIaI3aXJy7uv03CSTwmIYf paCldW19Y3yZmVre2e3WqvvPVjtDIcO11Kbp4RZkCKFDgqU8JQZYCqR8Jg8Xxf5xxcwVuj0HicZxIqNUjEUnKGn+rVqD+EVjcpvHWYOp/1aI2yGs6DLIJqDBplHu18v9XsDzZ2C FLlk1najMMM4ZwYFlzCt9JyFjPFnNoKuhylTYON8pnxKjzwzoENt/EuRztifHTlT1k5U4isVw7H9nSvIv3Jdh8PLOBep/xOk/HvR0EmKmhY20IEwwFFOPGDcCK+V8jEzjKM3a2HSfRTnhbhizML6RE 0rR/QnU8jIUL0u1jE50n7DWP1DC77ckFlw3lU98Ab6k0S/D7AMHk6a0Wnz5O6s0bqaH6dMDsghOSYRuSAtckPapEM4ceSNvJOPoBw0g/Pg4rs0KM179slCBK0vY9jI1A==.

Improving Sequential Latent Variable Models with Autoregressive

Introduction

This chapter explores an additional technique that integrates predictions directly at the data level, via conditional probability, thus bypassing inference entirely. Feedforward processing can be thought of as learning a frame of reference to help model the data by preprocessing the input at each time step.

Method

Sequential: b9tgMhmTO2IZ+iGzuuDua41D S8srq2vrG8XNre2d3dLeftPq1HBocC21eY6YBSliaKBACc+JAaYiCU/Ry01ef3oDY4WO6zhMIFSsH4ue4Awd1SkdtBHe0ajsEV5TiFEwOeqUyn7MEQ7Mw3EqUyn7UqMq6 E8wzJh BwSWMiu3UQsL4C+tDy8GYKbBhNlY/oseO6dKeNi5jpGN2eiJjytqhilynYjiw87Wc/KvWSrF3EWYiTlKEmP8e6qWSoqa5FbQcZVA5HCUD 6lR8ZhOM7mMBNX7bB+Tfe0uDNQ/tOCLA4mF1Lmqu85A95Jg/gGLo FmtBKeV6sNZuXY9ec46OSRH5IQE5JzUyB25Jw3CyZB8kE/y5SWTmYQE50Ve/y5SW15Ve it >. Lt; Latexit sha1_base64 = "gapf9UF0MVCTWQE3SPAHUH/6PLE ="> AAAACJ3ICDVHBSINBINEO2MU65MXU3WI+CL2SB4CJPUGP4KUBCFMFJIH1HQ6SWDSXIGC33D6SWDDXX00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 +VD VFWRJNPKYXJ+RQQBNZ5VFTNARN7D+BA7V6T/73QBOYE7WMRR7HPUQUQUQLCHLVEZK2ASLE+SH99L/U6PDF7Z9BanMyfm1Uugkqukqu/yfligyehu/yfligyehu/yfligehui/yfligeh. PPDK3JDBYQG73TMGFCGEMLQG1N3UZGXISEWRTMFZL8Z4etFDPRPPRAKS98QCJDET01CLQZW4T/NSVKJXC/H0VL6UZGXISEWRTMFIHXFZL8Z4etFDPRCKSHZ ZW4T/NSVKJXC/H0VL6uzgxiasew 7CRFBBBBWOT1GCveuv7ZZGZ+YWFWIV2XKNTI0JT1omeWjkzmf2GL1GWZLZM5AODKIJKIK+ADDA9AUY /myc3vxqti+VxttghWY+8GOWSBjbry+VxttghY+8GOWSBjcLd7Nj X7bCWCq39tJMxL. Conclusion)AAACi3icdVHLihNBFK20OsbMK6Pu3BSGwLgJ3ZkBRVwMI4LuRpg8IGma6srtpMwoZB2m4=">AAACi3icdVHLihNBFK20OsbMK6Pu3BSGwLgJ3ZkBRVwMI4LuRpg8IGma6srtpMwoZB2m4 6srtpMwoZB2m4 575OnZvmUjgMwz+N4MnTZwfPmy9ah0fHJ6fts5dDZwrLYcCNNHacMgdSaBigQAnj3AJTqYRRuvxc5Uc/wDph9C2ucogVm2uRCc7QU0n79RThDZwrLYcCNNHacMgdSaBigQAnj3AJTqYRRuvxc5Uc/wDph9C2ucogVm2uRCc7QU0n79 m2uRCc7QU0n79RThDZwrLYcCNNHacMgdSaBigQAnj3AJTqYRRuvxc5Uc/wDph9C2ucogVm2uRCc7QU0n79RThDW0Dq0 6rhJzhrJdGZ4oUAjl8y5SRTmGJfMouAS1q1p4SBnfMnmMPFQMwUuLjfy17TrmRnNjPVPI92wDztK ppxbqdRXKoYL9zhXkf/KTQrMPsSl0HPeHVUFSl0HQVKFMsSl0HKVQuFKh DKO3rGdSbdRXFbiqjE761O1bnXpQ6aSkaO6261jcm78hoX6Dy34fkPuoPCumpk30J8kenyAfTDs96KLXv/7Zefquj5Ok7whb8k5ich7ckJkWcdHa Jg00XI 8hOBF/+AvWqylU=. lt; latexit sha1_base64 = "a+nwkxfly8dexho4lc/y2rbra7y ="> aaach3icdvhlssnafj3gz+sr6tlnybhcwjmq2qwpjusfq0ibwmq6aqdnmmmmhmrlpc/pn/pn Kbsdzvmro0vlk6tp6vbgxubw94+7uprmvacq6vamlxyjimoaj6wihwv5szyimbhuoxm/l+vmb04ar5bemkqskgsks ksapulx7uscoyjox0wyw8l8lzebpnr+vnay8cfw6aab73444w4w4w4w4w4w4w4w4w4w4w4uxeJoJoJox0wyw8l8lzebnr Apitm/3ughyooftwypgpzmsjfsvdfnpworizoj8kr3ar5yz4fhpmwngkftziifmiifMmBgcp1pyulerftv4gcsfiez jmwbi6oxrnaopcpq94wdwJicywekq51yrptKtKtKtKunB3KPrLeTor phxfdzcyp5d83p4kbqwgzdvqnroh2j // sbi+cp3flpwu2h8+bvzfw56+gahajj5knldixu0d3qiore0dv6qj9o3tl1lpzornwpzwf2uswc629l3mi+.

Figure 5.1: Redundancy Reduction. (a) Conditional densities for 𝑝 ( 𝑥 2 | 𝑥 1 ). (b) The marginal, 𝑝 ( 𝑥 2 ) differs from the conditional densities, thus, I ( 𝑥 1 ; 𝑥 2 ) > 0
Figure 5.1: Redundancy Reduction. (a) Conditional densities for 𝑝 ( 𝑥 2 | 𝑥 1 ). (b) The marginal, 𝑝 ( 𝑥 2 ) differs from the conditional densities, thus, I ( 𝑥 1 ; 𝑥 2 ) > 0

Experiments

Visualization In Figure 5.3, we visualize the preprocessing procedure for SLVM + 1-AF in BAIR Robot Pushing. In Figure 5.4 and the Appendix, we present visualizations on complete sequences, where we see that different models remove different scales of temporal structure.

Figure 5.3: Sequence Modeling with Autoregressive Flows. Top: Pixel values (solid) for a particular pixel location in a video sequence
Figure 5.3: Sequence Modeling with Autoregressive Flows. Top: Pixel values (solid) for a particular pixel location in a video sequence

Discussion

Appendix: ELBO Derivation

WAAACi3icdVHJSgNBEO2MW4xbXG5eGoPgKcyooIgHUQSPEbJBMoaeTk3S2MvQ3SPGIf/iVf/Iv7En5mASLSh4vNoer6KEM2N9/6vgLS2vrK 4 V10sbm1vbO + ZE W0Y5jEvd1EBC6DMZQMdBSQSYMJvIH+Njx/RxrLRLafGE/T2REWHMSESuMxdr5ms5+Vetk9r4MsyYTFILkv4cilOOrcK5F7jPNFDLRw4QqpnTiumQaEKdDbOb6kGY5eLyNTPnIzEuHePfTC4jseJ1to/w g . Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects.” In:Natural neuroscience2.1.

  • Introduction
  • Background
  • Iterative Amortized Policy Optimization
  • Experiments
  • Discussion

Sequential Autoregressive Flow-Based Policies

Introduction

In this chapter, we complete the table outlined in Chapter 1 by applying learned feedback processing to control. In formulating learned supply control policies, we again consider sequential autoregressive flows, as introduced in Chapter 5.

Autoregressive Flow-Based Policies

The affine transformation (above) acts as a feedback policy, purely conditioned on previous actions, while the basis distribution (below) acts as a feedback policy. Conversely, given a sequence,a1:𝑇, the affine transformation provides a mechanism for removing temporal dependencies, i.e. I (u1:𝑇) ≤ I (a1:𝑇), as seen in Chapter 5, thereby simplifying estimation in the space of u1. :𝑇.

Figure 7.1: Autoregressive Flow-Based Policy. An autoregressive flow-based policy converts samples from a base distribution, 𝜋 𝜙 ( u 𝑡 | s 𝑡 ), using an affine transform with parameters β 𝜃 (a <𝑡 ) and δ 𝜃 (a <𝑡 ), into actions, a 𝑡
Figure 7.1: Autoregressive Flow-Based Policy. An autoregressive flow-based policy converts samples from a base distribution, 𝜋 𝜙 ( u 𝑡 | s 𝑡 ), using an affine transform with parameters β 𝜃 (a <𝑡 ) and δ 𝜃 (a <𝑡 ), into actions, a 𝑡

Experiments

In Figure 7.3, we present the performance results in these latter environments with different autoregressive window sizes. On the left side of Figure 7.5, we plot the base distribution,𝜋(u|s), as well as the affine autoregressive transform,δ𝜃±β𝜃, and the operations (before applying the tanh transform).

Figure 7.2: Performance Comparison, 2 × 256 (Default) Policy Network. Com- Com-parison between SAC and ARSAC with an action window of 5 time steps across dm_control suite environments
Figure 7.2: Performance Comparison, 2 × 256 (Default) Policy Network. Com- Com-parison between SAC and ARSAC with an action window of 5 time steps across dm_control suite environments

Discussion

Comparing the left and right columns, we see that the feedforward policies are generally more consistent, which is due to the limited temporal window of the affine flow. The autoregressive nature of the policy thus provides an inductive bias, resulting in policies with a more regular rhythmic structure.

Introduction

Predictive Coding

In the natural image domain, both of these whitening schemes generally result in center-surround spatial filters, extracting edges from the input. lt;latexit sha1_base64="YlEnZegu6BMRciM97uIB7y4yLos=">AAACdnicdVHLTgIxFC3jC/EFujQxjYToRjKDJrokunEJCa8EJqRTLtDQTidtx0gmfDKUDB000JNF W/M87O7t7+QfYwd3R8cnqWL5y3tIwVhSaVXKpOQDRwFkLTMM OhEykgIuDQDiYvab79BkozGTbMNAJfkFHIhowSY6n6XT9fdMvuPPA28JagiWhAhlnCaGaGagiWHlAzA MMs14s1RIROyAi6FoZEgPaTudMZLllmgIdS2RcaPGdXOxIitJ6KwFYKYsZ6M5eSf+W6sRk++QkLo9hASBdCw5hjI3H6bTxgC qjhUwsRcaPGdXOxIitJ6KwFYKYsZ6M5eSf+W6sRk++QkLo9hASBdCw5hjI3H6bTxgCqjhUwsRcaPGdXOxIitJ6KwFYKYsZ6M5eSf+W6sRk++QkLo9hASBdCw5hjI3H6bTxgCqjhUwsRMFKHcGmXL mvMqmNyI j39TrCR9IqjMU/NKPbDZGG2G5VDuwC7Um8zQNsg1al7N2XK/WHYvV5eZwsukTX6BZ56BFV0SuqoSaiCNAH+kRfmR/nyik5Psug. lt;latexit sha1_base64="2DLctlRnln8rUGvY6ScommwatuM=">AAACe3icdVHLSgMxFE3HV62vVpdugqUgRcpMVXRZdOOyQl/QDiWTpm00mYQkI5Zkf9000mYQkI5Zkf92GsGhs rvudc7a2d3b3 8vuFg8Oj45Ni6bSjRaQwaWPBhOoFSBNGQ9I21DDSk4ogHjDSDV4f03z3jShNRdgyM0l8jiYhHVOMjKU6g4DH1WRYLLs1dZjKz5MjxE3Nj yFDOSFAaRJhLhVzQhfQtDxIn247ndBFYsM4JjoewLDZyx0x4lrPeGA rOTJTvZ5Lyb9y/ciM7/2YhjIyJMQLoXHEoBEw/TscUUWwYTMLEFiZyzyx0x4lrPeGArOTJTvZ5Lyb9y/ciM7/2YhjIyJMQLoXHEoBEw/TscUUWwYTMLEFiZyzyx0x4mVS hjT8fbUOsYmwClP+D03xZoPUJLJbFSO7QHsSb /0Am6BTr3nXtfrzTbnxkB0nD87BBbgEHrgDDfAEmqANMHgBH+ATfOV+nLJTda4WkDKQit+HumzgDKx06/6U. lt; latexit sha1_base64 = "a+nwkxfly8dexho4lc/y2rbra7y ="> aaach3icdvhlssnafj3gz+sr6tlnybhcwjmq2qwpjusfq0ibwmq6aqdnmmmmhmrlpc/pn/pn Kbsdzvmro0vlk6tp6vbgxubw94+7uprmvacq6vamlxyjimoaj6wihwv5szyimbhuoxm/l+vmb04 ar5bemkqskgsksksapulx7uscoyjox0wyw8l8lzebpnr+vnay8cfw6aab73444w4w4w4w4w4w4w4w4w4w4w4uxeJoJoJox0wyw8l8lzebnr Apitm/3ughyooftwypgpzmsjfsvdfnpworizoj8kr3ar5yz4fhpmwngkftziifmiifMmBgcp1 pyulerftv4gcsfiezjmwbi6oxrnaopcpq94wdwJicywekq51yrptKtKtKtKunB3KPrLeTor phxfdzcyp5d83p4kbqwgzdvqnroh2j // sbi+cp3flpwu2h8+bvzfw56+gahajj5knldixu0d3qiore0dv6qj9o3tl1lpzornwpzwf2uswc629l3mi+. Similar analyzes suggest that the retina also uses predictive temporal coding (Srinivasan, Laughlin, & Dubs, 1982; Palmer et al., 2015).

Figure 8.1: Spatiotemporal Predictive Coding. (a) Spatial predictive coding models and removes spatial dependencies
Figure 8.1: Spatiotemporal Predictive Coding. (a) Spatial predictive coding models and removes spatial dependencies

Connections

As we have seen, a simplified version of sequential autoregressive flows, which uses the prior variable as an affine shift, extracts an approximation of the time derivatives (Section 5.2). Thus, given a sufficiently short time step, Δ𝑡 =𝑡1−𝑡0, sequential autoregressive flows provide a technique for automatically learning the generalized coordinate approximation.

Correspondences

It may rely on computational mechanisms within individual neurons as well as spatiotemporal interactions between neurons. lt;latexit sha1_base64="y9Nz2T+fmSMi/3DG5f53pxwGB6k=">AAACe3icdVHLSgMxFE3HV61vXboJFkFEyowPdCm6cVnBPqAdSia9baPJZEjuiGXoP7jVP/NjBDO1iz70QuBw7uOc3BslUlj0/a+Ct7S8srpWXC9tbG5 t7+zu7detTg2HGtdSm2bELEgRQw0FSmgmBpiKJDSil/s833gFY4WOn3CYQKhYPxY9wRk6qt7GASDr7Jb9ij8OugiCCSiTSVQ7e4VOu6t5qiBGLpm1rcBPMMyYQcEljErt1ELC+AvrQ8vBmCmwYTa2O6LHjunSnjbuxUjH7HRHxpS 1QxW5SsVwYOdzOflXrpVi7ybMRJykCDH/FeqlkqKm+d9pVxjgKIcOMG6E80r5gBnG0W1oZtJTEGa5uXzMjHykRqVjOs3kNhJUb7N1TPa1Uxiof2jBFxsSC6nbqu66BbqTBPMHWAT180pwUTl/vCzf3k2OUy SH5IickIBck1vyQKqkRjh5Ju/kg3wWvr2yd+qd/ZZ6hUnPAZkJ7+oHEUPFMQ==. lt; latexit sha1_base64 = "gch/jfsva5f3xm1dlnxjdscugye ="> aaaci3icdvhjsgnbeo2mw4xbxg5egopgkcyooighuqtxpjcyqdkgnk5n0tjl0n0jxih/4lx/yl+xj8nbjfppppppppppppvs fg+v53wvtyxfpeka6w1 X OU2UOQKAASKNXRQCP7FHRRRRLLMOW1E4NJIS+KB60HJREGAlMZKFWHPNRMF8DKU5QWJ9JFEXKRXGXE5DPZSWA2LPN/1VQPJC/DJMKKTSDP+FCCCMWVZR3AXAABWJ5WJ5WGGGGGS6myy3qlwiwxl6 +zoh+jyekq/2zygykvb9n9hpeuu9ax/9cmzg8kbllnquo6a91lgtkhzion42pwuj1+pk1cxu+EU0T76AADOQCDOST0HX5QHVH0JJ7QJ/ ryNrwT78K7HLd6hcnMLpoK7/YHgrrKmQ==. lt;latexit sha1_base64="y9Nz2T+fmSMi/3DG5f53pxwGB6k=">AAACe3icdVHLSgMxFE3HV61vXboJFkFEyowPdCm6cVnBPqAdSia9baPJZEjuiGXoP7jVP/NjBDO1iz70QuBw7uOc3BslUlj0/a+Ct7S8srpWXC9tbG5 t7+zu7detTg2HGtdSm2bELEgRQw0FSmgmBpiKJDSil/s833gFY4WOn3CYQKhYPxY9wRk6qt7GASDr7Jb9ij8OugiCCSiTSVQ7e4VOu6t5qiBGLpm1rcBPMMyYQcEljErt1ELC+AvrQ8vBmCmwYTa2O6LHjunSnjbuxUjH7HRHxpS 1QxW5SsVwYOdzOflXrpVi7ybMRJykCDH/FeqlkqKm+d9pVxjgKIcOMG6E80r5gBnG0W1oZtJTEGa5uXzMjHykRqVjOs3kNhJUb7N1TPa1Uxiof2jBFxsSC6nbqu66BbqTBPMHWAT180pwUTl/vCzf3k2OUy SH5IickIBck1vyQKqkRjh5Ju/kg3wWvr2yd+qd/ZZ6hUnPAZkJ7+oHEUPFMQ==. lt; latexit sha1_base64 = "lxiql3jcvajff+6ozsbqr8bbbmtc ="> aaacexicdvhltgixfc3jc/efunrtjstebzkbe10s3bjehfcce9iphwlop03bmzijv+bwf81vcwmhwdcn2gn2gn2cd3vnlo3f3b4ld8unjyenv8us5ddl wkfsqcljlq/qjowgpgooyarvlqe8ycrxjb7tvo9n6i0fvhbzcxxozpgdeixmik1lcedfctuzv0g3axegptbolqjum40hcxcxizzzdwa8+Vxk+qmhqz40hcxcxzzzzdwa8+Vxk Vltbolqjum40hsigmyjdwa8+Vxk Vltbolqjum40hsigmyj9pol Kwjm0jqmli8sj9pol 2qwswgymj0lzfxm4zdc7ess1nvpavnjkqr2ds8m/copytb79heyynitck6fjzkarmp05hfnfsgfzcxbw1hqfoeqkywp3k5nu9vwwknzoychffgowy0mtSf3k5nu9vwwknzoYthffgowy 7zzitwk7vtg2c7qn8bypsau69zrxqnvf78vnp/vx8uaa3 iiiq8madaiix0aidyeipsan+mr9oddo1blbltq5dc8vyitt+aujg8ri . lt;latexit sha1_base64="y9Nz2T+fmSMi/3DG5f53pxwGB6k=">AAACe3icdVHLSgMxFE3HV61vXboJFkFEyowPdCm6cVnBPqAdSia9baPJZEjuiGXoP7jVP/NjBDO1iz70QuBw7uOc3BslUlj0/a+Ct7S8srpWXC9tbG5 t7+zu7detTg2HGtdSm2bELEgRQw0FSmgmBpiKJDSil/s833gFY4WOn3CYQKhYPxY9wRk6qt7GASDr7Jb9ij8OugiCCSiTSVQ7e4VOu6t5qiBGLpm1rcBPMMyYQcEljErt1ELC+AvrQ8vBmCmwYTa2O6LHjunSnjbuxUjH7HRHxpS 1QxW5SsVwYOdzOflXrpVi7ybMRJykCDH/FeqlkqKm+d9pVxjgKIcOMG6E80r5gBnG0W1oZtJTEGa5uXzMjHykRqVjOs3kNhJUb7N1TPa1Uxiof2jBFxsSC6nbqu66BbqTBPMHWAT180pwUTl/vCzf3k2OUy SH5IickIBck1vyQKqkRjh5Ju/kg3wWvr2yd+qd/ZZ6hUnPAZkJ7+oHEUPFMQ==. lt; latexit sha1_base64 = "lxiql3jcvajff+6ozsbqr8bbbmtc ="> aaacexicdvhltgixfc3jc/efunrtjstebzkbe10s3bjehfcce9iphwlop03bmzijv+bwf81vcwmhwdcn2gn2gn2cd3vnlo3f3b4ld8unjyenv8us5ddl wkfsqcljlq/qjowgpgooyarvlqe8ycrxjb7tvo9n6i0fvhbzcxxozpgdeixmik1lcedfctuzv0g3axegptbolqjum40hcxcxizzzdwa8+Vxk+qmhqz40hcxcxzzzzdwa8+Vxk Vltbolqjum40hsigmyjdwa8+Vxk Vltbolqjum40hsigmyj9pol Kwjm0jqmli8sj9pol 2qwswgymj0lzfxm4zdc7ess1nvpavnjkqr2ds8m/copytb79heyynitck6fjzkarmp05hfnfsgfzcxbw1hqfoeqkywp3k5nu9vwwknzoychffgowy0mtSf3k5nu9vwwknzoYthffgowy 7zzitwk7vtg2c7qn8bypsau69zrxqnvf78vnp/vx8uaa3 iiiq8madaiix0aidyeipsan+mr9oddo1blbltq5dc8vyitt+aujg8ri . J| . AAACi3icdVHJSgNBEO2MW4xbXG5eGoPgKcyooIgHUQTxpJCYQDKGnk5N0tjL0N0jxiH/4lJQ8n/y wVtYXFpeKa6W1tY3NrfK2ztPRqWaQp0qrnQzIgY4k1C3z HJoJhqIiDg0opebvN54BW2YkjU7SCAUpCdZzCixjuqU99qC2H4UZ/fDuzaTFjQFQF0N54BW2YkjU9 AaSknxrQCP7FhRrRllMOw1E4NJIS+kB60HJREgAmzkfwhPnRMF8dKu5QWj9jfExkRxgxE5DpzsWa2lpN/1 Vqpjc/DjMkktSDp+FCccmwVzr3AXaaBDNQLQVZR3AXaaBDNQLQVWLQWLQWLQVWLQWLQWLQWLQWL 6+ZOh+JYekQ/2ZyGYkVb9N9hPeUu9AX/9CMzg8kBlLnquo6A91LgtkHzIOn42pwUj1+PK1cXU+eU0T76AAdoQCdoSt0hx5QHVH0 jj7Q67/rycnHLdpo /YHgrrKmQ==.

Figure 8.5: Pyramidal Neurons & Deep Networks. Connecting deep latent variable models with predictive coding places deep networks (bottom) in correspondence with the dendrites of pyramidal neurons (top)
Figure 8.5: Pyramidal Neurons & Deep Networks. Connecting deep latent variable models with predictive coding places deep networks (bottom) in correspondence with the dendrites of pyramidal neurons (top)

Discussion

What does the free energy principle tell us about the brain?" In:arXiv preprint arXiv:1901.07945. Can the "whitening" theory explain the central surround properties of retinal ganglion cell receptive fields? In: Vision Research 46.18, p.

Conclusion

Iterative Estimation

Combining Generative Perception & Control

Controlling Perception

InputAAACg3icdVHLSgMxFE3Hd33r0k2wCIJQZmpBN0LRje4U+hDasWTS2zaYTIbkjrQM/Q+3+lf+jZnahW31QuBw7uvk3CiRwqLvfxW8ld W 19Y3NreL2zu7e/sHhUdPq1HBocC21eY6YBSliaKBACc+JAaYiCa3o9S7Pt97AWKHjOo4TCBUbxKIvOENHvXQQRmhU9hAnKU66ByW/7E+DLoNgBkpkFo/dw0K309M8VRAjl8zaduAnGGbMoOA SJs VOaiFh/JUNoO1gzBTYMJvKntAzx/RoXxv3YqRT9ndHxpS1YxW5SsVwaBdzOflXrp1i/zrMRP4niPnPon4qKWqae0B7wgBHOXaAcSOcVsqHzDCOzqm5SfUgzHJx+Zi59ZGaFM/obya dcxOdB uw1D9Qwu+3JBYSJ2ruucMdCcJFg+wDJqVcnBZrjxVS7Xb2XE2yQk5JeckIFekRu7JI2kQTgx5Jx/k01vzLryKV /0p9QqznmMyF97NN6PsyBg= . Broadly speaking, we can identify the input reference signal as the mean of a Gaussian desired state distribution (𝑠∗), the compensator effector function as a kind of iterative inference model, and the feedback start function as the environment (or model).

Figure 9.3: State Distributions & Rewards. A quadratic reward function, 𝑟 ( 𝑆 ), can be equivalently expressed as a Gaussian desired state distribution, 𝑝 𝑑 ( 𝑆 ).
Figure 9.3: State Distributions & Rewards. A quadratic reward function, 𝑟 ( 𝑆 ), can be equivalently expressed as a Gaussian desired state distribution, 𝑝 𝑑 ( 𝑆 ).

Bridging Neuroscience and Machine Learning

This shows that a limited set of computational operations, suitably combined, is able to adapt to the specific tasks of perception and control of the environment. Similarly, default neural circuit architectures, particularly in the cortex, are capable of adapting to the specific perceptual and control tasks an organism encounters during its lifetime.

Gambar

Figure 1.1: Conceptual Overview. The concepts put forth by cybernetics permeated the modern fields of theoretical neuroscience (left), machine learning (center), and control theory (right)
Figure 2.2: Dependency Structures. Circles denote random variables, with gray denoting observed variables and white denoting latent variables
Figure 2.3: Model Parameterization &amp; Computation Graph. The diagram depicts a simplified computation graph for a deep autoregressive Gaussian model
Figure 2.4: ELBO Computation Graphs. (a) Basic computation graph for varia- varia-tional inference
+7

Referensi

Dokumen terkait

• IAKMI Bali Bersama PSKM Unud dan Dinkes Prov Bali kembali melakukan audiensi dengan Pimpinan/Dirut BTDC untuk menyuarakan penolakan masyarakat Bali Berdasarkan surat

[r]

I : Nah sekarang di lihat dari segi penerima feedback, menurutmu mana yang lebih membantu kamu, peer feedback atau teacher feedback dalam meningkatkan kemampuan anda

Peer feedback encourages students to work cooperatively with their peers in giving comments on each other’s draft of writing instead only depending on teacher’s feedback.. Hence,

Untuk itu telah dikemukakan suatu alternatif estimasi langsung yang dapat digunakan untuk menyelesaikan masalah estimasi model dari masing-masing komponen atau

Therefore, based on the explanation above, this study aimed at describing the type of Written Corrective Feedback by the lecturer and the students’ perception of lecturer WCF in

Untuk itu telah dikemukakan suatu alternatif estimasi langsung yang dapat digunakan untuk menyelesaikan masalah estimasi model dari masing-masing komponen atau

Keywords: Cascaded control, feedforward compensation, pneumatic muscle actuator © Universiti Tun Hussein Onn Malaysia Publisher’s Office IJIE