• Tidak ada hasil yang ditemukan

MODULE HANDBOOK

N/A
N/A
Nguyễn Gia Hào

Academic year: 2023

Membagikan "MODULE HANDBOOK"

Copied!
2
0
0

Teks penuh

(1)

MODULE HANDBOOK Module name Practicum of Time Series Analysis Module level, if applicable 3rd year

Code, if applicable SST-508 Semester(s) in which the

module is taught 5th (fifth) Person responsible for the

module Arum Handini Primandari, S.Pd.Si., M.Sc.

Lecturer

Arum Handini Primandari, S.Pd.Si., M.Sc.

Mujiati Dwi Kartikasari, S.Si., M.Sc.

Dina Tri Utari, S.Si., M.Sc.

Language Bahasa Indonesia

Relation to curriculum Compulsory course in the third year (5th semester) Bachelor Degree Types of

teaching and learning

Class size Attendance time (hours per week per semester)

Form of active participation

Workload

(hours per semester)

Lab work 25-30 0.83 Problem

solving

Face to face teaching 13.33 Structured activities 27

Exam 5

Total workload 45.33 hours

Credit points 1 CU / 1.7 ECTS

Requirements according to the examination regulations

Minimum attendance at lectures is 75%. Final score is evaluated based on pre-test, assignment, and practicum final exam.

Recommended prerequisites Students have taken or are currently taking Time Series Analysis course (SST-505)

Related course Statistical Consulting (SST-603)

Module objectives/intended learning outcomes

After completing this course, the students have ability to:

CO 1. master basic strategies for transferring methods in the case of time series data

CO 2. utilize the R software in time series data analysis applications CO 3. make scientific reports as a scientific study of time series models

Content

Moving average Exponential smoothing Decomposition

ARIMA SARIMA

Fuzzy Time Series

Study and examination requirements and forms of examination

The final mark will be weighted as follows:

No Assessment components

Assessment types Weight (percentage) 1 CO 1 Pre-test, assignment,

practicum final exam

25%

2 CO 2 Pre-test, assignment, practicum final exam

25%

3 CO 3 Pre-test, assignment, practicum final exam

50%

Media employed Google Classroom, relevant websites, slides (power points), video, interactive media, white-board, laptop, LCD projector

Reading list Practicum of Time Series Analysis Handbook

(2)

Mapping CO, PLO, and ASIIN’s SSC

ASIIN PLO

E N T H U S I A S T I C

Knowledge a b c d Ability e f

Competency g

h CO1

CO3 i

j

k CO2

CO3 l

Referensi

Dokumen terkait

menyatakan dengan sesungguhnya bahwa karya ilmiah berupa skripsi yang berjudul: Akurasi Metode Exponential Smoothing dan Metode Autoregressive Integrated Moving

Bentuk peramalan menggunakan Metode Holt/double exponential smoothing ada yang di modifikasi seperti double exponential dan fuzzy time series (Hadinagara &

Data garis kemiskinan diramalkan menggunakan metode double moving average dan double exponential smoothing yang diolah menggunakan Zaitun Time Series, dengan

Berdasarkan latar belakang, dari masing-masing metode Fuzzy Time Series Cheng dan Single Exponential Smoothing keduanya memiliki kelebihan dalam melakukan pembobotan, hal

Pada penelitian ini digunakan metode peramalan Autoregressive Integrated Moving Average (ARIMA) dan Double Exponential Smoothing untuk meramalkan harga saham tiga

Robiatul Mardhiyah : Perbandingan Metode Double Exponential Smoothing dan Fuzzy Time Series pada Peramalan Penjualan, Skripsi, Teknik Informatika, Fakultas Teknik

make scientific reports as scientific studies of various multivariate method Content Descriptive of Multivariate Data Normal Distribution Multivariate Multivariate Analysis Anova

make scientific reports as scientific studies of various multivariate method Content Descriptive of Multivariate Data Normal Distribution Multivariate Multivariate Analysis Anova