• Tidak ada hasil yang ditemukan

MORREY SPACES ARE EMBEDDED BETWEEN WEAK MORREY SPACES AND STUMMEL CLASSES

N/A
N/A
Nguyễn Gia Hào

Academic year: 2023

Membagikan "MORREY SPACES ARE EMBEDDED BETWEEN WEAK MORREY SPACES AND STUMMEL CLASSES"

Copied!
7
0
0

Teks penuh

(1)

J. Indones. Math. Soc.

Vol. 25, No. 3 (2019), pp. 203–209.

MORREY SPACES ARE EMBEDDED BETWEEN WEAK MORREY SPACES AND STUMMEL CLASSES

NICKY K. TUMALUN1 and HENDRA GUNAWAN2

Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia

1nickytumalun@yahoo.co.id,2hgunawan@math.itb.ac.id

Abstract. In this paper, we show that the Morrey spacesL1,

λ pn

p+n

(Rn) are embedded between weak Morrey spaceswLp,λ(Rn) and Stummel classesSα(Rn) under some conditions onp, λandα. More precisely, we prove thatwLp,λ(Rn) L1,

λ pn

p+n

(Rn)Sα(Rn) where 1< p <∞,0 < λ < n and n−λp < α < n.

We also show that these inclusion relations under the above conditions are proper.

Lastly, we present an inequality of Adams’ type [1].

Key words and phrases:Morrey spaces, Stummel classes, Adams’ type inequality.

Abstrak. Pada makalah ini, dibuktikan bahwa ruang MorreyL1,

λ pn

p+n

(Rn) tersisipkan di antara ruang Morrey lemah wLp,λ(Rn) dan kelas Stummel Sα(Rn) untuk p, λ dan α tertentu. Persisnya, dibuktikan bahwa wLp,λ(Rn) L1,

λ pnp+n

(Rn)Sα(Rn) dengan 1< p <∞,0< λ < n dan n−λp < α < n.

Akan dibuktikan pula bahwa hubungan inklusi ini merupakan inklusi sejati. Di akhir makalah, disajikan suatu ketaksamaan tipe Adams [1].

Kata kunci:Ruang Morrey, kelas Stummel, ketaksamaan tipe Adams.

1. INTRODUCTION

The notion of Stummel classes was defined in [5, 11]. For 0< α < n, the Stummel classSα(Rn) is defined to be the set

Sα(Rn) :=

f ∈L1loc(Rn) :ηαf(r)&0 for r&0 ,

2010 Mathematics Subject Classification: 46E30, 46B25, 42B35

Received: 8 November 2018, revised: 17 December 2018, accepted 19 December 2018.

203

(2)

N.K. TUMALUN AND H. GUNAWAN

where

ηαf(r) := sup

x∈Rn

Z

|x−y|<r

|f(y)|

|x−y|n−αdy.

Theηαis called theStummel modulusoff. Forα:= 2, the classS2is known as the Kato class or the Stummel-Kato class. The Stummel classes Sα(Rn) have an application in studying the regularity theory of partial differential equation. Such an application can be found in [2, 3, 4, 6, 9].

In [11], Ragusa and Zamboni studied the inclusion relation between Morrey spaces and Stummel classes. They proved the following result:

Lemma 1.1. [11] Let 0< α < n andn−α < γ < n. Iff ∈L1,γ(Rn), then ηαf(r)≤C(n, α, γ)rγ−n+αkfkL1,γ(Rn).

Therefore,L1,γ(Rn)⊆Sα(Rn).

Note here that, theMorrey spaceL1,γ(Rn) is the collection of all functions f ∈L1loc(Rn) for which

kfkL1,γ(Rn):= sup

x∈Rn,r>0

1 rγ

Z

|x−y|<r

|f(y)|dy <∞, 0< γ < n.

For the caseα:= 2, the Lemma 1.1 was proved by Di Fazio in [6]. There are also some studies between generalized Stummel classes and generalized Morrey spaces that can be found in [7, 8, 12].

We need to write down the definition of weak Morrey spaces since this article deals with them. For 1≤p <∞ and 0≤λ≤n, we definewLp,λ(Rn) theweak Morrey spaceto be the set of all functionsf ∈wLploc(Rn) for which

kfkwLp,λ(Rn):= sup

x∈Rn,r>0

r−λ/pkfkwLp(B(x,r))<∞,

where

kfkwLp(B(x,r)):= sup

t>0

t(µ({y∈B(x, r) :|f(y)|> t}))1p,

withµbeing the Lebesgue measure onRn andB(x, r) :={y∈Rn :|x−y|< r}.

In this paper, we show that there are Morrey spaces ‘between’ some weak Morrey spaces and Stummel classes, in the sense of proper inclusions. Since the Morrey spaces and Stummel classes are applied in studying regularity properties of some partial differential equation (see [1, 3, 10]), the inclusion properties of these spaces (classes) are useful to study. We also present an inequality of Adams’ type [1] as our last result.

2. THE INCLUSION OF WEAK MORREY SPACES, MORREY SPACCES, AND STUMMEL CLASSES

The first proposition is about the inclusion relation between weak Morrey spaces and Morrey spaces.

(3)

Proposition 2.1. Let 1< p <∞and0< λ < n. Iff ∈wLp,λ(Rn), then kfk

L1,(λpnp+n)(

Rn)≤C(n, λ, p)kfkpwLp,λ(Rn). Therefore,wLp,λ(Rn)⊆L1,(λpnp+n) (Rn).

Proof. Take anyf ∈wLp,λ(Rn),x∈Rn, andr >0. For everyσ∈R, we have Z

0

µ({y∈B(x, r) :|f(y)|> t})dt≤

Z (µ(B(x,r)))σ 0

µ(B(x, r))dt

+kfkpwLp,λ(Rn)

Z (µ(B(x,r)))σ

rλ tp dt

= (µ(B(x, r)))σ+1

+C(p)kfkpwLp,λ(Rn)(µ(B(x, r)))σ(1−p) rλ. (1) Letσ:= npλ1p andβ := 1p(λ−n) +n. Then n(σ+ 1) =nσ(1−p) +λ=β. By (1), we obtain

1 r(λpnp+n)

Z

|x−y|<r

|f(y)|dy= 1 rβ

Z

|x−y|<r

|f(y)|dy

= 1 rβ

Z 0

µ({y∈B(x, r) :|f(y)|> t})dt

≤C(n, λ, p)kfkpwLp,λ(

Rn) (2)

for every x∈Rn andr >0. From (2), the conclusion follows.

From the Proposition 2.1 and Lemma 1.1, we have the following corollary.

Corollary 2.2. Let 1< p <∞,0< λ < n, and n−λp < α < n. Iff ∈wLp,λ(Rn), then

kfk

L1,(λpn p+n)(

Rn)

≤C(n, λ, p)kfkpwLp,λ(

Rn). If f ∈L1,(λpnp+n)(Rn), then

ηαf(r)≤C(n, α, λ, p)r1p(λ−n)+αkfk

L1,(λpn p+n)(

Rn)

.

Therefore,wLp,λ(Rn)⊆L1,(λpnp+n)(Rn)⊆Sα(Rn).

In the next example, we show that the inclusion relation which was shown in Lemma 1.1 is proper. Thus, the later inclusion in Corollary 2.2 above is also proper.

Example 2.3. Let 0 < α < n and n−α < γ < n. Define f : Rn → R by the formula

f(y) := χB(y)

|y|α|ln(|y|)|2, B:=B(0, δ), y∈Rn, whereδ:=e−2α. Then f ∈Sα(Rn)\L1,γ(Rn).

(4)

N.K. TUMALUN AND H. GUNAWAN

To verify the example, we first show thatf ∈Sα(Rn). Since the function f is radial and non-increasing, the Stummel modulus of f is attained at the origin.

Givenr >0, let:= min{r, δ}. We have, ηαf(r) =

Z

|y|<r

χB(y)

|y|n|ln(|y|)|2dy= Z

|y|<

1

|y|n|ln(|y|)|2dy.

By switching to polar coordinate, we obtain Z

|y|<

1

|y|n|ln(|y|)|2dy= C(n)

−ln(). Therefore,

ηαf(r) = C(n)

−ln(). By the definition of, for every 0< r < δ, we have

ηαf(r) =C(n) 1

−ln(r)

&0 for r&0.

Thus,f ∈Sα(Rn).

Next, using the fact that 1/tα|ln(t)|2is decreasing on (0, δ) and the condition n−α < γ, one may observe thatf /∈L1,γ(Rn).

3. AN ADAMS’ TYPE INEQUALITY In his paper [1], D. Adams proved the following inequality:

Z

Rn

|u(x)|qV(x)dx 1q

≤C(p, γ, n)kVkL1,γ(Rn)k∇ukLp(Rn) (3)

∀u∈C0(Rn), q:= pγ

n−p, 1< p < n,

whereV is a non-negative function in the Morrey spaceL1,γ(Rn) andγ > n−p.

Our purpose in this section is to establish an inequality similar to (3). To do so, we need to recall theSα,ϕclass that was introduced in [11].

Let 1 < α < n and ϕ : (0,∞) → (0,∞) be a nondecreasing continuous function such that lim

t→0ϕ(t) = 0. We say thatV :Rn→Rbelongs to the classSα,ϕ

if there exists a non decreasing functionξV : (0,∞)→(0,∞) with lim

r→0ξV(r) = 0 such that

sup

x∈Rn

Z

|x−y|<r

|V(y)|

|x−y|n−αϕ(|x−y|)dy≤ξV(r).

The following lemma was proved in [11]. It gives a sufficient condition for a function inSα(Rn) to belong to an appropriateSα,ϕ class.

Lemma 3.1 ([11]). Let V ∈Sα and suppose that there existsϑ∈(0,1) such that Z 1

0

αV(t)]1−ϑ

t dt <∞.

ThenV ∈Sα,[η

αV]ϑ.

(5)

The next theorem is an Adams’ type inequality that we obtain.

Theorem 3.2. Let 1< α < nand suppose that

Z 1 0

[ϕ(t)]α

0 α

t dt <∞,

where α1 +α10 = 1. IfV ∈Sα,ϕ, then Z

Rn

|u(x)|α|V(x)|dx α1

≤C(n, α, ϕ, r0) [ξV(2r0)]1αk∇ukLα

for every u∈C0(Rn)withsupp(u)⊆B(x0, r0).

Proof. Letx∈B(x0, r0). SinceR1 0 [ϕ(t)]α

0

α t−1dt <∞, we have

Z

B(x0,r0)

[ϕ(|x−y|)]α

0 α

|x−y|n dy <∞,

and the value is independent ofx. By H¨older’s inequality, we obtain

Z

B(x0,r0)

|∇u(y)|

|x−y|n−1dy≤



 Z

B(x0,r0)

|∇u(y)|α

|x−y|n−αϕ(|x−y|)dy





1 α



 Z

B(x0,r0)

[ϕ(|x−y|)]α

0 α

|x−y|n dy





1 α0

=C



 Z

B(x0,r0)

|∇u(y)|α

|x−y|n−αϕ(|x−y|)dy





1 α

,

whereC:=C(n, α, ϕ, r0). We now employ the following inequality

|u(x)| ≤C(n) Z

B(x0,r0)

|∇u(y)|

|x−y|n−1dy, to get

|u(x)|α≤C(n, α)



 Z

B(x0,r0)

|∇u(y)|

|x−y|n−1dy





α

≤C(n, α, ϕ, r0) Z

B(x0,r0)

|∇u(y)|α

|x−y|n−αϕ(|x−y|)dy.

(6)

N.K. TUMALUN AND H. GUNAWAN SinceB(x0, r0)⊇supp(u), by Tonneli’s theorem we obtain

Z

Rn

|u(x)|α|V(x)|dx= Z

B(x0,r0)

|u(x)|α|V(x)|dx

≤C Z

B(x0,r0)

Z

B(x0,r0)

|∇u(y)|α

|x−y|n−αϕ(|x−y|)dy

!

|V(x)|dx

=C Z

B(x0,r0)

|∇u(y)|α Z

B(x0,r0)

|V(x)|

|x−y|n−αϕ(|x−y|)dx

! dy

≤C Z

B(x0,r0)

|∇u(y)|α Z

B(y,2r0)

|V(x)|

|x−y|n−αϕ(|x−y|)dx

! dy

=C ξV(2r0) Z

Rn

| 5u(y)|αdy,

withC:=C(n, α, ϕ, r0).

By combining Lemma 3.1 and Theorem 3.2, we have the following corollary.

Corollary 3.3. Let V ∈Sα, 1α+α10 = 1, andϑ:= α01

α+1 such that Z 1

0

αV(t)]1−ϑ

t dt <∞.

Then

Z

Rn

|u(x)|α|V(x)|dx α1

≤C(n, α, ηαV, r0)k∇ukLα

for every u∈C0(Rn)withsupp(u)⊆B(x0, r0).

Acknowledgement. This research is supported by ITB Research & Innovation Program 2018.

REFERENCES

[1] D. Adams, “Traces of potentials arising from translation invariant operator”,Ann. Scuola Norm. Sup. Pisa25(1971), 203–217.

[2] M. Aizenman and B. Simon, “Brownian motion and Harnack’s inequality for Schr¨odinger operator”,Comm. Pure. Appl. Math.35(1982), 209–273.

[3] R. E. Castillo, J. C. Ramos-Fernandes, and E. M. Rojas, “Properties of scales of Kato classes, Bessel potentials, Morrey spaces, and weak Harnack inequality for nonnegative solution of elliptic equations”,J. Diff. Equat.92(2017), 1–17.

[4] F. Chiarenza, E. Fabes, and N. Garofalo, “Harnack’s inequality for Schr¨odinger operators and the continuity of solutions”,Proc. Amer. Math. Soc.98(1986), 415–425.

[5] E. B. Davis and A. Hinz, “Kato class potentials for higher order elliptic operators”,J. London Math. Soc.58(1998), 669–678.

[6] G. Di Fazio, “H¨older continuity of solutions for some Schr¨odinger equations”,Rend. Sem.

Mat. Univ. Padova79(1988), 173–183.

(7)

[7] Eridani and H. Gunawan, “Stummel classes and Morrey spaces”,Southeast Asian Bull. Math.

29(2005), 1053–1056.

[8] H. Gunawan, E. Nakai, Y. Sawano, and H. Tanaka, “Generalized Stummel class and Morrey spaces”,Publ. Inst. Math.(New Series)92(106) (2012), 127–138.

[9] A. Mohamed, “Weak Harnack’s inequality for nonnegative solutions of elliptic equations with potential”,Proc. Amer. Math. Soc.129(2001), 2617–2621.

[10] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”,Trans.

Amer. Math. Soc.43(1938), 126–166.

[11] M. A. Ragusa and P. Zamboni, “A potential theoretic inequality”,Czech. Mat. J.51(2001), 55–56.

[12] S. Samko, “Morrey spaces are closely embedded between vanishing Stummel class”, Math.

Ineq. Appl.17(2014), 627–639.

Referensi

Dokumen terkait

Kahfiati Kahdar (Research Group of Craft and Tradition, Faculty of Art and Design, Institut Teknologi Bandung, Indonesia)2. Ruly Darmawan (Research Group of Design Science and Visual

1. All nutmeg seed and mace samples evaluated were fulfill SNI criteria except for aflatoxin content. Based on interview result with farmers, collectors, and