Availableonlineat
ScienceDirect
www.sciencedirect.com
Original article
Evaluation of vibrational spectroscopic techniques for consolidants’
penetration depth determination
Polonca Ropret
a,b,∗, Lea Legan
a, Klara Retko
a, Tanja ˇSpec
a, Andreja Pondelak
c,d, Luka ˇSkrlep
c, Andrijana Sever ˇSkapin
caConservationCentre,InstitutefortheProtectionoftheCulturalHeritageofSlovenia,Poljanska40,1000Ljubljana,Slovenia
bMuseumConservationInstitute,SmithsonianInstitution,4210SilverHillRd.,Suitland,MD20746,UnitedStates
cSlovenianNationalBuildingandCivilEngineeringInstitute,Dimiˇceva12,1000Ljubljana,Slovenia
dUniversityofLjubljana,FacultyofChemistryandChemicalTechnology,Veˇcnapot113,Ljubljana,Slovenia
a r t i c l e i n f o
Articlehistory:
Received23November2015 Accepted14July2016 Availableonline12August2016
Keywords:
Penetrationdepth Consolidants Carbonate Silicate
RamanandFTIRspectroscopy
a b s t r a c t
Thepenetrationdepthofconsolidantsappliedtoculturalheritageobjectsplaysacrucialroleinasuc- cessfulconservationandprotectionofthem.IntheframeofHEROMATFP7projectnewconsolidants forcarbonateandsilicatebasedmaterialsweredeveloped.Amongmanyotherinvestigatedproperties, thepenetrationdepthwasdefinedbyRamanandFTIRspectroscopies,forwhichtheirabilitywasalso evaluated.Duetotheformationofcalciumcarbonateintheconsolidationprocessofcarbonateforming consolidants,theadditionofsodiumnitroprussideindicatorsupportedRamandifferentiationoftreated andnon-treatedareasinthecalciumcarbonatebasedsubstrate.Furthermore,thecombinationofthe indicatorreactionandRamanresultsgavemuchmoreprecisepenetrationdepthestimationthanthe visualassessmentalone.ForfollowingthepenetrationdepthofmodifiedTEOSbasedconsolidantsfor silicatebasedsubstrates,FTIRspectroscopyturnedouttobeverysuccessfulwithoutanyindicatorappli- cationorpre-treatmentofsamples.Furthermore,thepenetrationdepthrelatedtodifferentapplication methods,suchasbrush,cellulosepulp,airlesssprayandroller,wasalsostudied.Thedeepestpenetration wasachievedby8hofapplicationofconsolidantsincellulosepulp,whileincomparingoneapplication byroller,airlesssprayandbrushwithinthesamesubstrate,thedeepestpenetrationcanbeachievedby brush.
©2016ElsevierMassonSAS.Allrightsreserved.
1. Introduction
Sincethemiddleofthelastcenturydifferentsyntheticpoly- mershavebeenusedforconsolidationoflimestonesurfaces.Due totheiraestheticalalteration,changeinthepolymerssolubilityand degradation,whichcouldalterthephysico-chemicalproperties, suchascreaking,flakingandglossyeffect,theirpotentialapplica- tionishindered.Inthisrespect,theuseof“compatible”materials ispreferablesincethis waydurabilityand long-termstability is granted[1,2].Inthelastdecademuchoftheresearchhasbeenmade inthefieldofsynthesisofmacro-andnano-particlesofCa(OH)2in differentalcohols[1].DispersionsofCa(OH)2 nanoparticleshave beenproventobeeffectiveforconsolidanttreatmentduetotheir smalldimensionsandeaseofthepenetrationaswellasincreased
∗Correspondingauthorat:ConservationCentre,InstitutefortheProtectionofthe CulturalHeritageofSlovenia,Poljanska40,1000Ljubljana,Slovenia.
E-mailaddresses:[email protected](P.Ropret),[email protected] (L.Legan),[email protected](K.Retko),[email protected](T. ˇSpec), [email protected](A.Pondelak),[email protected](L. ˇSkrlep), [email protected](A.Sever ˇSkapin).
reactivitytowardsCO2[2,3].However,therestillexistimportant obstaclesfortheirusesuchasthevariableparticlesize,incomplete carbonization(duetotheneedofatmosphericCO2)andthelow concentrations(5–25g/L)[1,3].Infact,aconsequenceofthelow concentrationandvolatilityofsolventsusedinconsolidantsisthat multipleapplicationsareneeded[1,2].
Foreffectiveconsolidationof deeperlayersofdegradedsub- strates,useofsolublestartingmaterialsisdesirable.However,since thesolubilityofcalciumcarbonateislow,thepreparationofsucha materialisverydifficult[4].InthescopeofHEROMATFP7project anewsolutionofcalciumacetoacetateforconsolidatingcarbon- atebasedsubstrateswasdeveloped[5].Sincetheconsolidantis a solution,it canpenetrate deeperintothematerial,wherere- cohesionbetweenparticlescanbeestablished.Additionally,dueto higherconcentrations(from5–100g/L)thenumberofconsolidant applicationscanbestronglyreduced.
Ontheotherhand,forconsolidationofsilicatesubstratescon- solidantsbasedonalkoxylanesor tetraethoxysilane(TEOS)are used[6,7].Theycanhavea pooraffinitytomaterialswithlarge pores,forexamplesuchasfoundinsomesandstones.Namely,dur- ingthehardeningphaseorundermechanicalstressthickandbrittle http://dx.doi.org/10.1016/j.culher.2016.07.004
1296-2074/©2016ElsevierMassonSAS.Allrightsreserved.
silica-gelstructuresof consolidantsfilltheporeswithsilica-gel resultinginamaterialthatislesspermeabletothewatervapour [8,9].For thesilicate basedsubstratesmodified formulationsof commercialproductbasedonsilicateesterwasdevelopedinthe scopeofHEROMATFP7project.Duetoitsbalancedcombinationof polysilicate,dioxalane,mixtureofC11-C13alkanes(liquidparaffin) anddiethylethanolamine,theconsolidanthasalowdrymassand thereforedoesnotreducetheporosityofconsolidatedmaterial.
Furthermore,ithasagoodretainedwatervaporpermeability,effi- cientanduniformconsolidationthroughtheprofileofthesubstrate withoutskinforming.
Chemicaland/or physical response of the substrate(i.e. cal- careous and silicate materials) varies strongly due to their heterogeneousproperties(e.g.differentporosity, distributionof components).Therefore,tovalidatetheconservationtreatmentof thematerialscomposingculturalheritageobjects,acarefulselec- tionoftheapplicationmethodoftheconsolidantandtheanalytical techniquefor monitoringand assessingtheperformance ofthe consolidationshouldbemade.Thenon-destructivemethods,in which a sample is left intact,such as Environmental Scanning ElectronMicroscopy(ESEM-EDS),spectrophotometry,ultrasound velocity,NuclearMagneticResonance(imagingandrelaxometry) andOpticalSurfaceRoughnessanalysiscouldofferaplatformto determinenotonlythechemicalcharacteristics,butalsothemor- phological, physical and the hydricproperties of thematerials beforeandafterconsolidation[10].Oneoftheparametersbesides thecompatibility,durability,effectonappearance[11]etc.,which shouldbetakenunderconsideration,whenevaluatingnewcon- solidantformulationsisalsothedepthofconsolidantpenetration.
Regardingcompatibilityoftheconsolidantwiththematerialbeing consolidated,theinsitucarbonationusingthesolutionsofcalcium hydroxideisgainingmuchattention,ashasbeenpreviouslymen- tioned.Despitethefactthattheformedcarbonatecouldexistin differentgrainsizeanddifferentcrystal-aggregatetexture[11],itis difficulttodifferentiatethemfromtheoriginaloneconstitutingthe culturalheritageobject.Withtheassumptionthatthemagnesium hydroxideparticleshavethesamecapabilityasthecalciumhydrox- idefor thepenetration, Dei andSalvadori [12] showedthat by usingthemagnesiumhydroxideasthemarker,SEM-EDXanalysis andsuperficialareaanalysis(BET)couldbeusedforfollowingthe depthofpenetrationoftheconsolidantinadditiontowaterabsorp- tioncapillaritymeasurementsforevaluationofwater-interaction properties.PintoandRodriguez[13]quantifiedtheconsolidation effectandtheroleoftreatmentprocedures(i.e.bycapillaryabsorp- tion,byimmersion andbybrushing)foron-sitebuildingstones (monuments)incomplementationtolaboratorystudiesofdifferent carbonatesampleswithdifferentintrinsicpropertiesbyweighing, microdrillingresistance(DRMS),ultrasonicvelocityandflexural strength.Inaccordance,alsothepenetrationdepthcouldbecon- sequentiallycorrelated withthose results. Moreover,Pinto and Rodriguez[14]showed,thatDRMSmethodologyisoneofthemost promisingfortheassessmentoftheconsolidationrateinthesoft stones,whilethedepthofthestrengtheningactioncouldbefurther successfullydeterminedbyothertechniquessuchasbythecollec- tionoflongitudinalultrasoundvelocityprofiles.Forevaluationof penetrationdepthofthepolymerconsolidantwithinporousstone substrates,severaldirectanalyticalmethodssuchasstainingtest usingforexampleiodinevapor[15]orfluorescentdyesforvisu- alizingthelocationoftheconsolidant,Fouriertransforminfrared spectroscopy(FTIR),SEM-EDXand XPS,andalsoindirect,which includesmeasurementsofcontactangle,bendingstrength,mod- ulusofelasticityetc.couldresultingainingvaluableinformation oftheinteractionbetweentheconsolidantandthesubstrate[16].
Raman mapping proved to be an effective tool for assessing thepenetrationdepthofconsolidantproductsbasedonoxalate formation.Consolidationwithammoniumoxalate(oxammite)in
differentplastersmadeoflimeandcarbonateaggregatewasstud- iedbyConti etal.[17].Itwasshown thatduringconsolidation process,oxammiteinducesthetransformationofcalciumcarbon- atetocalciumoxalate(whewellite),whichgivesabetterresistance todecayphenomena.Strongandcharacteristicbandsat1462cm−1 (whewellite)andat1085cm−1(calcite)havebeenconsideredfor following thepenetration depthby Ramanmapping. Further- more,neutronradiographyandtomographyallowthevisualization ofpolymerizedaswellasnon-polymerizedconservationmaterials insidetheporousmaterials.WiththesemethodsCnuddeetal.[18], Diericketal.[19]andMasschaeleetal.[20]successfullydefinedthe impregnationdepthofsilicate-basedmaterialsinsidethenatural buildingstonesandresultingeffectsontheuptakewater.Alter- nativetechniquefortheinvestigationofdepthprofile,whichalso allowsthevisualizationofthepresenceanddistributionofdiffer- enthydrophobicproductinstonematerial,ismagneticresonance imaging (MRI) [10,21].The structure of naturalbuilding stones aswellas thevisualizationof consolidantsand/orwater repel- lentswithinthestonescouldbeinvestigatedusingnon-destructive X-ray radiography computed with micro-tomography [22]. As theresolution ofmicro-tomography dependsontheamountof treatmentmaterialsinsidetheinvestigatedsample,theaddition of contrast agent (e.g. 3-bromopropyltrimethoxysilane) is often needed[22].Anothernon-destructivemethodforobservationof penetrationdepthisthetabletophigh-resolutionX-rayradiogra- phy,whichbecameusefulaftertheintegrationofpixeldetectorsof Medipixtype.Thistechniquehasprovedtobeanoptimaltoolfor observationofpenetrationdepthoforganosiliconconsolidantsin theOpukastone[23].
WhenusingRamanandFTIRspectroscopy,whichareusually available inconservation laboratories, thedifficultiesmayarise duetotheoverlappingofmodesofconsolidantsandthematrix.
For that reason our study was focused on exploring theabili- tiesofvibrationalspectroscopictechniquesforpenetrationdepth evaluation,wherethesamecompositionisformedintheconsoli- dationprocessasitispresentinthematrixofthematerialthatis consolidated.
2. Researchaims
Inthiswork,intheframeworkofHEROMATFP7project,spectro- scopictechniques,RamanandFTIR,wereevaluatedforfollowing thepenetrationdepthofdevelopedcarbonateandsilicateform- ingconsolidantsforcarbonateandsilicatesubstrates,respectively.
This,however,wasspecificallychallengingsincethesamecompo- sitionisformedintheconsolidationprocessasitispresentinthe matrixofthematerialthatisconsolidatedthatcanresultinover- lappingofspecificvibrationalmodes.Toovercomethedifficulties, inthecaseofcarbonateconsolidantsanindicatorsodiumnitro- prussideisproposed,whileinthecaseofthesilicateconsolidant, thenewformulationitself,consistingalsoparaffin,offersthesolu- tion.Furthermore,differentapplicationmethods,usuallyapplied inrestorationorinbuildingsrefurbishmentweretested.Thework wasdoneonpreparedmodelsubstratesthatmimicthecompo- sitionofoutsidematerialsatDornavaManor,oneoftheselected testsitesoftheHEROMATproject,inordertoprovideresultsrele- vantforlateron-siteapplicationof,withintheproject,developed consolidants.
3. Experimental
3.1. Consolidants
Forcarbonatesubstratesnewconsolidantformulations,thor- oughlydescribedinthepatentPCT/SI2014/000028[5]andbasedon solublecalciumcompoundcalciumacetoacetateCa(OAcAc)2were
developedinthreedifferentsolvents:methanol(CF1),mixtureof ethanolandmethanol(CF2)andwater(CFW).Additionallycatalyst (0.05wt.%ethylenediamine,99+%,AcrosChemicals)wasaddedinto consolidantbeforetheapplication.
For silicate substrates new consolidant formulation HERO- MAT CF4 was prepared by mixing ethyl polysilicate (WACKER TES40WN,WackerSilicones),solvent(1,3-dioxolan–DOX,99%, SigmaAldrich),catalyst(diethylethanolamine–DEEA,99.5%,Sigma Aldrich)and the mixtureof C11-C13 alkanes(paraffin, Samson Kamnik, CAS: 64742-48-9). Catalysts were always mixed into ethanol and added last to the rest of the mixture. Mixture of C11–C13alkanes(liquidparaffine)wereusedtoreducethesolubil- ityofcatalystandvarioushydrolysedspeciesofethylpolysilicate aftertheevaporationof1,3-dioxolane.Thiswouldpreventforma- tionofthegelinthewholevolumeofthepore.MixtureofC11–C13 alkanes(liquidparaffine)haslowvolatility,butwillevaporatefrom thesubstrate.
3.2. Samples
3.2.1. Carbonatesubstratesamples
Onthebasisofpetrographicanalysisofasampletakenfromthe outsidecarbonatesurfaceofthegardenfenceatDornavaManor themostappropriatequarryforaggregateswasselected,andchar- acteristicsoflimeandcementwere defined.Thesilicate gravel fraction0/4mmfromHoˇcequarry wasacquiredandsieved out togetsimilargradingcurveastheaggregatefromtheanalyzed carbonatesample.Forbindercleanpucolancementwasused.In ordertoweakenmechanicalproperties,apartofthecementwas replacedwithaspecial pucolanadditive.Alsotraditionallypre- paredslakedlimefromlocalproducerswasused.Thesubstrates werepreparedcombiningcoarseandfinecarbonatetoachievethe appropriatethickness.Onapproximately3.5cmthickcoarselayer 3–4mmthicklayerof finecarbonatewasapplied.Steelmoulds of16cm×4cm×4cmand15cm×15cm×4cmdimensionswere usedfor modelspreparation. The modelswerethen cut outto therequireddimensionsfortesting.Wettingandcuringwasdone foraminimumof14daysbeforethecuttingwasperformed.The porosityofthecarbonatemodelsubstratewas39.34%,measured byHg-porosimetry.
3.2.2. Silicatesubstratesamples
AbulksampleofsilicateknownasPtujskaGorasandstoneor VunduˇseksandstonewastakenfromtheJelovicequarry,whichis locatednearthetownofMajˇsperk,intheeasternpartofSlovenia.
ThissilicatebelongstotheMiddleMiocenegeologicalperiod.It isacoarsegrained,moderatelywellsortedsandstone,comprising quartz,dolomite,feldspar,muscoviteandunusualmineralssuch aszirconand apatite.It alsocontainsafinegrained porefilling matrix/cement of a high Fe content, of uncertain mineralogy.
Secondaryinterstitialcalcitecementisalsopresent.Theporosity ofthesilicatewas14.20%,measuredbyHg-porosimetry.
3.2.3. Preparationofsamplesforpenetrationdepthinvestigation For investigationof the depthof consolidation in carbonate substrates three different consolidants (CF1, CF2, CFW), devel- opedwithinHEROMATproject,wereapplieddirectlyontheupper surfaceofthecarbonatemodelsubstrates.Forthesilicatemodel substrateasilicateformingHEROMATCF4consolidantwasused.
Themodelsubstrateswerethencut acrossthedepthprofilein ordertoprovideasuitablesurfaceforthepenetrationinvestigation.
Table1gathersthedescriptionofinvestigatedsamplesrelatedto differentdevelopedconsolidants.Thepenetrationdepthsofconsol- idantsweretestedonthecarbonateandsilicatesubstrates.Inthe caseofcarbonateformingconsolidantsindicatorsodiumnitroprus- side,Na2[Fe(CN)5(NO)]·2H2O(5%watersolution;SigmaAldrich)
Table1
Investigatedsamplesrelatedtodifferentdevelopedconsolidants.
Sample Consolidant Consolidantcomposition
Carbonate CF1 9.6wt.%Ca-acetoacetateinmethanol Carbonate CF2 8.4wt.%Ca-acetoacetatein
ethanol/methanol(9:1) Carbonate CFW 9.6wt.%Ca-acetoacetateinwater Silicate CF4 Diethylethanolamine(DEEA)5wt.%,
1,3-dioxolan(DOX)20wt.%,alkanes C11–C13(P)25wt.%,ethylpolysilicate 50wt.%
wasappliedoverselectedareaofthepenetrationdepthprofileof eachsubstrateaftercuringperiod(threedaysatRT).Intheperiod offewminutestheredcolourappeared.AllRamanmeasurements ofpenetrationdepthwereperformedwithin1h(theredcolour wasvisiblemorethan1h).Thechemicalidentificationofthemate- rialcomponentswasperformedonthepenetrationdepthprofileof thecarbonatesubstratesusingmicro-Ramanspectroscopy.Inthe caseofsilicateformingconsolidantFTIRmicroscopywasusedon thepenetrationdepthprofileofthesilicatesubstrateswithoutany indicatorapplication.
3.3. Applicationmethods
Oneofthedevelopedcarbonateformingconsolidants(CF1)was applieddirectlyontheuppersurfaceofthecarbonatemodelsub- strate,and silicateformingconsolidantCF4 wasappliedonthe silicatemodelsubstrate,usingdifferenttechniques:roller,airless spray,brushandcellulosepulp.
Table2gathersthedescriptionofinvestigatedsamplesrelated todifferentapplicationmethodused.Theapplicationofthecon- solidantinthecellulosepulpwasdonebythefollowingprocedure:
8.6gofcellulosepulpwasmixedwith43gofconsolidant(previ- ouslymixedwithcatalyst)andlaidoverthesubstratewhichwas coveredwithJapanesepaper.Thicknessofthepulpcontainingthe consolidantwasapproximately1cm.Toinvestigatethetimeofthe applicationinfluenceonthedepthofpenetration,thepulphadbeen appliedoverthesubstratefor1and8h,andthenremoved.Sam- pleswerethenlefttodryforthreedays.Inthecaseofthecarbonate modelsubstratealsodifferentnumbersofapplicationsbythesame methodweretested.
3.4. Instrumentation 3.4.1. Ramanspectroscopy
Raman analysis of consolidated carbonate model substrates was performed using 633 and 785nm laser excitation lines witha Horiba Jobin YvonLabRAM HR800Raman spectrometer
Table2
Descriptionofinvestigatedsamplesrelatedtodifferentapplicationmethodused.
Sample description
Application technique
Numberof applications/time ofapplication
Consolidant
CarbonateR1 Roller 1 CF1
CarbonateR2 Roller 2 CF1
CarbonateR3 Roller 3 CF1
CarbonateA1 Airlessspray 1 CF1
CarbonateA2 Airlessspray 2 CF1
SilicateA3 Airlessspray 1 CF4
CarbonateB1 Brush 1 CF1
SilicateB2 Brush 1 CF4
CarbonateP1 Cellulosepulp 1h CF1
CarbonateP2 Cellulosepulp 8h CF1
SilicateP3 Cellulosepulp 1h CF4
SilicateP4 Cellulosepulp 8h CF4
coupledtoanOlympusBXFMopticalmicroscope.Thespectrawere recordedusing×50lwd(longworkdistance) objectivelensand 600grooves/mm grating,which gave thespectral resolution of 1.3cm−1/pixeland0.83cm−1/pixel,respectively.Thepoweratthe sampleswassetbetween0.1and35.8mWusingneutraldensity filters.Amulti-channel, aircooledCCDdetectorwasused,with integrationtimesbetween5and20s,andthespectralrangewasset between50and4000cm−1.Thewavenumbercalibrationwasper- formedusingasiliconwafer.Spectraobtainedonsamplestreated withCF1andCF2aretranslateduponverticalaxisforeaseofcom- parison,andthespectraobtainedonsubstratestreatedwithCFW arebaselinecorrected(LabSpec,polynom8degrees)andtranslated uponverticalaxisforeaseofcomparison.
3.4.2. FTIRspectroscopy
FTIRanalysisofconsolidatedsilicatemodelsubstrateswascar- riedoutwithaPerkinElmerSpectrum100FTIRspectrophotometer coupledtoaSpotlightFTIRmicroscopeequipped withnitrogen cooledMCTdetector.Spectrawererecordedin reflectionmode overa4100–500cm−1wavenumberrangeat4cm−1spectralreso- lutionover64scans.Thespatialresolutionwasabout50m2.After applyingtheCF4consolidantFTIRanalyseswereperformedonthe penetrationdepthprofilesofsilicatesubstrates.
4. Resultsanddiscussion
4.1. EvaluationoftheusefulnessofRamanspectroscopyin carbonatesubstrates
Theprincipleofconsolidationwithnewconsolidantisthespon- taneouslydecarboxylationofcalciumacetoacetateinthepresence of water what leadsto calcium carbonate, carbon dioxide and acetone [5]. Decarboxylation of calcium acetoacetate is greatly influencedbythetreatmentconditions,suchastemperatureand
relativehumidity.Ontheotherhandbyvaryingtreatmentcondi- tions,arangeofdifferentcrystallinepolymorphscanbeobtained.
Xuetal.[24]reportedthatamorphousCaCO3hasbeenstablemore thanthreemonthsunderroomtemperatureanddryconditions, whileSpanosetal.[25]mentionedalongtime(severalmonths) solid-state vaterite transformationinto furtherpolymorphs. For thisreason,weassumedthatinpresentedexperiments,allthree developedconsolidantvariations,designatedasCF1,CF2andCFW, formunstableamorphous CaCO3,which transformintovaterite form.
Anotherpolymorphofcalciumcarbonate,calcite,isthemost commonformpresentinculturalheritageobjects,andisacon- stituentofthepreparedmodelsubstrates.VateriteexhibitsRaman bandsat305,671,1078,1089cm−1 [26],whilecalcitebandscan befoundat156,283,713,1087cm−1[27].
The strongest bands assigned to non-degenerate symmetric stretchingvibrationsofvateritecarbonateion(1)whichappear at1078andat1089cm−1couldpotentiallybeselectedtofollow thepenetrationdepthofconsolidants.Theotherbandstypicalfor vateritehaveweakintensityusingthechosenexcitationlineandin additioncouldbehinderedbythefluorescenceemissionand/orby theinterferingsignalbelongingtoothercomponentsofthehet- erogeneoussubstrate.Moreover,thenon-degeneratesymmetric stretchofcalcitecarbonateion(1)at1086cm−1 causesdifficul- tiesintheinterpretationduetothepossibleoverlappingwiththe signalofvaterite.
It is worth toemphasize that transformation of amorphous CaCO3 tovateritephase isslowandtransformation maynot be uniformthroughthedepthof thesubstrate,thereforefollowing thevibrationsofvateritecarbonateiontodeterminepenetration depthisquestionable.Theevaluation ofpenetrationdepthonly throughthevateriteRamananalysissuffersofalimitation,notonly forthevaterite/calcitebandsoverlapping,butalsobecausewecan- notexcludeacalcitecrystallizationinducedbythereaction,which
Fig.1. Penetrationdepthofcarbonateconsolidantappliedincellulosepulpfor1and8h:(a)Ramanspectraafterconsolidantandindicatorapplicationrelatedtodifferent penetrationdepth;(b)crosssectionofthetreatedcarbonatemodelsubstrate(8hofconsolidantincellulosepulp)aftertheindicatorapplication(0=633nm).Obtained bluecolourisaresultofreactionbetweenindicator,calciumacetoacetateandcalciumhydroxideduetonotfullycarbonizedsubstrate.
cannotbedistinguishedfromthecalciteofthesubstrate.Forthis reason,followingthepenetrationdepthwithtracingcalciumace- toacetateseemsabettersolution.Itturnsoutthatsufficientamount ofcalciumacetoacetateisunreactedunderusedconditions.Forfast andsimpleidentificationofpenetrationdepthofconsolidantsCF1, CF2andCFWweintroducethecombinationofindicatormethod andRamanmappingofacetoacetate.BeforeRamananalysisindi- catorsodiumnitroprussidewasappliedonconsolidatedsample.In theconsolidationprocess,calciumacetoacetatedecomposesinto calciumcarbonate,carbondioxideandacetone.Itisknownfrom theliterature,thatthesodiumnitroprussidecouldbeusedasthe analyticalreagentforthedetectionofmethylketonesanditcan alsodetectacetoacetate[28].Actuallysodiumnitroprussidemainly reactswithacetoacetateionandispracticallynotreactivetoace- tone,iflatteritisinlowconcentrations[29].Itiscommunicatedby Swinehart[30]thatduringthereactionofacetoacetatewithnitro- prussideredcolourationtakesplace.Consequently,asthesolution oftheindicatorgivesdifferentcolourreactionsonlywithground carbonatethanwithgroundcarbonatemixedwiththeconsolidant, itcanbeappliedtodetectthecalciumacetoacetateinthesubstrate.
Thereforeitcanbeusedforthedeterminationofthepenetration depthoftheconsolidantwithinthecarbonatesubstrate.Theresults indicatethattheconsolidatedcarbonatesubstratesimpregnated withsodiumnitroprussidemostlygiveredcolourorsometimes bluecolour(asitisvisibleinFig.1b)inthecaseofcalciumhydroxide presenceinthesubstrate.Ontheotherhand,theimpregnationof not-consolidatedcarbonatesubstrateswithsodiumnitroprusside hasusuallynoeffectoncolouroronlyinthecaseofthepresenceof calciumhydroxideslightlyyellowhuecanbeobserved.Thecom- binationtechniqueofvisualdeterminationtogetherwithRaman spectroscopywasestablishedasthemethodwhichcanofferamore preciseevaluationofthepenetration.Fig.2showsRamanspectra ofgroundcarbonatemixedwithindicator,withandwithoutcon- solidant,andFig.3showsthechangeoftheindicatorcolourfrom yellowtored-violetinthepresenceofconsolidant.
Intheabsenceofconsolidant,thestrongestbands,typicalof theindicatorsodiumnitroprussideappearat2096and2122cm−1 (Fig.2b).Whenaddingtheconsolidant,theCNstretch[31]ofthe indicatorshiftsto2101and2178cm−1,andbandsat563,647,901, 996,1465and1569cm−1appear(Fig.2a).ThecharacteristicRaman modesat2178,2101,1569,1465and996cm−1 canthereforebe usedforfollowingthepenetrationdepthofcarbonateformingcon- solidants.
Fig.4showsthecomparisonofthedevelopedconsolidantsand theirpenetrationdepthinthesamesubstrate.AsevidentinFig.4,
Fig.2. Ramanspectraof(a)groundcarbonatesubstratewithconsolidantandindi- catorand(b)groundcarbonatesubstrateandindicator.0=633nm.
CF2showedthehighestpenetrationof2.8mmintothecarbon- atemodelsubstrate,whilethelowestpenetrationof0.8mmwas identifiedfortheCF1consolidant.
4.2. EvaluationoftheusefulnessofFTIRinsilicatesubstrates Several FTIR techniques (e.g. ATR, diamond cell, etc.) were tested for monitoringthepenetration depthof silicateforming consolidantCF4.Thebestresultswereachievedwiththemicro- reflectionFTIR spectroscopy. Indeed, thespectraobtained with thistechnique,intheparticularspectralarea(3000–2800cm−1) mostclearlyrevealed characteristicCHstretching bandsofsili- cateformingconsolidantCF4amongallotherFTIRtechniques.The penetrationdepthforHEROMATpromisingimprovedTEOS-based formulation,CF4,maybethereforeevaluatedonCHgroups’vibra- tionbandsfromboth,TEOSandparaffin.
Fig.5showsFTIRspectraofsilicateconsolidantmixedtosilicate substrate(Fig.5a),pureconsolidant(Fig.5b),andsilicatesubstrate (Fig.5c).Immediately,aftermixingtheconsolidanttothesilicate substrateonlythebandsoftheTEOSarevisibleintheCHstretch- ingregionat2978,2930,2894cm−1(Fig.5aandb).However,the hydrolysisreactionis veryfastafterapplicationandthesignals fromparaffinat2959,2925and2855cm−1becomemorevisible andmaybecomemoreintensethatthoseofTEOSaftertheveryfirst days.Paraffinhaslowvolatilityandthereforegraduallyevaporates
Fig.3. Left:groundcarbonatesubstratemixedwithconsolidantCF1andindicatorgivingred–violetcolour.Right:groundcarbonatesubstratemixedwithindicatorgiving yellowcolour.
Fig.4. RamanspectraofCF1(0=633nm),CF2(0=633nm)andCFW(0=785nm)consolidantsafterindicatorapplication,appliedtocarbonatemodelsubstraterelated todifferentpenetrationdepth.
fromthesurface.Thestrongestsignalat2925cm−1fromparaffin overlapsthediagnosticTEOS-assignedbandat2930cm−1.Never- theless,thisdoesnotleadtoproblemssincebothsignalsarerelated toconsolidantitselfandmaybeusedasdiagnosticbandsfordeter- miningthepenetrationdepth.Thefingerprintregioninthespectra inFig.5revealsalsoothercharacteristicbandsofsilicateforming consolidant,CF4,aswellasbandsbelongingtosilicatesubstrate.
Spectrum ofpureconsolidant(Fig.5b)shows strongandsharp signalsintheregionbetween1500–1300cm−1[32].Thesecharac- teristicbandsareassignedtoTEOSbendingvibrationofCHgroup andarepresent alsointhespectrumofmixtureofsilicatesub- strateandconsolidant(Fig.5a).AdditionalbroadenedTEOSsignals intheregionbelow1200cm−1correspondtodifferentcombina- tionbandsofstretchingvibrationsofSi–O–Si,Si–OH,Si–O−aswell
Fig.5.FTIRspectraof(a)silicateconsolidantmixedtosilicatesubstrate,(b)pureconsolidant,and(c)silicatesubstrate.
asbendingvibrationofCHgroup(Fig.5b)[32].Mentionedstrips areinlesserextentvisiblealsointhespectrumofmixtureofsilicate consolidantandsilicatesubstrate(Fig.5a).
Silicatesubstrateismostlycomprisedofclayminerals.Accord- ingly,astrongandbroadenbandintheregionof1150–900cm−1 correspondsto Si–O stretchingvibration [33]. Anotherbroaden bandofasymmetricstretchingvibrationofcarbonateion(3)inthe rangebetween1500and1400cm−1canbeascribedtocalciumcar- bonate.Spectralfeaturesintheregionfrom2600to1700cm−1are correlatedtoovertoneandcombinationbandsofcarbonateandsil- icatebasedcompounds[34,35].Anothermineralogicalcompound foundinthesilicatesubstrateiscalciumhydroxide(Ca(OH)2).Its characteristicsharpsignalintheOHstretchingregionissitedat 3645cm−1(Fig.5aandc)[36].
4.3. Penetrationdepthofconsolidantsappliedbydifferent methods
Differentmethodsofapplicationofconsolidantsareusedinthe conservationpractice,dependingonthenatureofobjectstreated, andthescopeoftreatment.Thereforeseveraltechniques,indiffer- entcombinationsofapplication“runs”weretestedinthiswork,to ascertainthepenetrationdepthofthesaidcombinations.Results onpenetrationdepthofCF1andCF4consolidants,relatedtodiffer- entapplicationmethodaregatheredinTable3.InthecaseofCF1 penetrationintothecarbonatemodelsubstrate0,0.4and0.5mm depthwasachievedfor1,2and3applicationsbyroller,respec- tively.Oneortwoapplicationsbyairlesssprayshowedthesame penetrationof 0.1mm, while oneapplication by brushshowed 0.2mm penetration. In the case of CF1 consolidant application incellulose pulp for1 and 8h0.3mmand 4.4mm penetration depthwasachieved,respectively. Fig.1a shows Ramanspectra ofCF1consolidantappliedbycellulosepulptechniqueatdiffer- entpenetration depths into the carbonatesubstrate. Following
Table3
PenetrationdepthofCF1andCF4consolidantsappliedbydifferentmethodsonthe surfaceofcarbonateandsilicatemodelsubstrates,respectively.
Sample description
Application technique
Numberof applications/time ofapplication
Depthof penetration/
mm
CarbonateR1 Roller 1 0
CarbonateR2 Roller 2 0.40
CarbonateR3 Roller 3 0.50
CarbonateA1 Airlessspray 1 0.10
CarbonateA2 Airlessspray 2 0.10
SilicateA3 Airlessspray 1 3.65
CarbonateB1 Brush 1 0.20
SilicateB2 Brush 1 4.35
CarbonateP1 Cellulosepulp 1h 0.30
CarbonateP2 Cellulosepulp 8h 4.40
SilicateP3 Cellulosepulp 1h 19.10
SilicateP4 Cellulosepulp 8h Bottom-through
theabove-mentionedRamanmodes at 2178,2101,1569,1465 and996cm−1afterthereactionofconsolidantwithsodiumnitro- prusside(Fig.1a)thepenetrationdepthwasdefined.Interestingly, whencomparingtheredcolouroftheindicatorspreadoverthe depthprofileofthetreatedcarbonatemodel substrate(Fig.1b) withtheRamanresultsitwasevidentthatthepositiveidentifica- tionoftheconsolidantwaspossibleevenonthebluishareasbelow.
Therefore,thevisualpenetrationdepthassessmentonthebasisof theredcolourwassupportedbyRamanresults,whichgaveeven moreprecisepenetrationestimation.
Fig.6showsFTIRspectrainCHstretchingregion(between3250 and2750cm−1)wherebandsofboth,paraffinandTEOSarevisible, forCF4appliedbydifferentapplicationmethods,relatedtodiffer- entpenetrationdepth. AsevidentinFig.6,CF4wasdetectedat 3.65and4.35mmdepthwhenappliedinoneapplicationbyspray andbrush,respectively.Theapplicationincellulosepulpfor1h
Fig.6. FTIRspectrainthespectralrangebetween3250and2750cm−1ofCF4consolidantappliedtosilicatemodelsubstratebyspray,brushandcellulosepulp(1and8h) techniques,relatedtodifferentpenetrationdepth.
gave19.1mmpenetration,whilein8htheconsolidantpenetrated throughthewholesilicatemodelsubstrate.
5. Conclusions
Vibrationalspectroscopictechniquesturnedouttobeuseful inthedeterminationofpenetrationdepthofconsolidants,which compositionissimilartothesubstratematrix.Ramanmicroscopy incombinationwithindicatorapplication,suchassodiumnitro- prusside,canbeusedtofollowthepenetrationdepthofcalcium carbonate formingconsolidant within calciumcarbonate based substrates.The three, slightly different, developed consolidants alsoshowedsome differencesrelated to thepenetration depth withinthesamesubstrate.
Furthermore, different application methods were tested for oneoftheselectedconsolidant.Itwasshownthatincreasingthe numberofconsolidantapplications,adeeperpenetrationcanbe achievedbyrollertechnique.Inthecaseofapplicationbyairless spraythenumberofapplicationsdoesnotseemtoinfluencethe depthofpenetration.
Thedepthofpenetrationalsogreatlydependsontheselected methodofapplication.Comparingoneapplicationbyroller,air- lesssprayandbrushtechniques,thedeepestpenetrationcanbe achievedbybrush(ofabout200m).Furthermore,itwasshown thatby8hofapplicationofcarbonateconsolidantincellulosepulp thedepthof4.4mmcanbeachieved,thehighestdetermineddepth ofcarbonateformingconsolidanttotheselectedcarbonatesub- strateinthisinvestigation.However,thesetrialsarenotenough tomakethefinaldecisionofwhichapplicationisthebestwithout amoredetailedstudy,whichwouldincludeahighernumberof differentsubstrates,differentconsolidantstobetestedandstatis- ticallyhighenoughnumberofapplicationsbydifferentmethods.
Inthecase ofsilicate formingconsolidantFTIRspectroscopy turnedout tobe very useful. Again,a deeperpenetration was achievedby brush technique when comparingto airlessspray, while 1h of consolidant application in cellulose pulp already showed19.1mmofpenetration,and8hwerealreadyenoughfor consolidanttopenetratethroughthewholeselectedsilicatesub- strate.
Thispreliminarystudyshowedthatthepenetrationdepthusing cellulosepulpcanbecontrolledbythetimeoftheapplication,while forotherapplicationtechniquesthedepthofpenetrationcanbe controlledbythenumberofapplications.Controllingthedepthof penetrationbythetimeorthenumberofapplicationsgivesthe opportunitytoadjusttheapplicationmethodforawiderangeof substratesofversatilecompositionand/orphysicalproperties,and canbeadjustedaccordingtothedamageoftheobject.Successive applicationsarenotalwaysfavourable.Inthecaseofsurfacedam- ageonly,acarefulapplicationof consolidantbybrushcouldbe sufficient,whileinthecaseadeeperpenetrationisneeded,several successiveapplicationsbyrollercanbeusedorlongertimeusing thecellulosepulp.Therefore,accordingtothedamageofanobject, acarefuldecisionofconservatorsneedstobemade.
Acknowledgements
Theresearchleadingtotheseresultshasreceivedfundingfrom theEuropeanUnionSeventhFrameworkProgramme(FP7/2007- 2013) under Grant Agreement N◦ 282992; project acronym:
HEROMAT; projecttitle: Protection of culturalheritage objects withmultifunctionaladvancedmaterials;coordinator:Facultyof Technology, University of Novi Sad, Novi Sad, Serbia; research area:ENV-NMP.2011.3.2.1-1Developmentofadvancedcompatible materials and techniques and their application for the protec- tion, conservation and restoration of cultural heritage assets;
type of funding scheme: SME targeted Collaborative Project;
http://www.heromat.com/. The presented research was also in partsupportedbytheSlovenianResearchAgency(GrantL1-5453 andProgrammeP2-0273).A.PondelakisgratefultotheSlovenian ResearchAgencyforherPh.D.grant.
TheauthorsareespeciallygratefultoDr.CostanzaMilianifrom IstitutoCNR di ScienzeeTecnologie Molecolari(CNR-ISTM)for thefruitfuldiscussiononthedevelopmentofpenetrationdepth methodologyusingRamanandFTIRspectroscopies.
References
[1]P.Baglioni,D.Chelazzi,R.Giorgi,NanotechnologiesintheConservationofCul- turalHeritage.ACompediumofMaterialsandTechniques,1sted.,Springer, Netherlands,2015,http://dx.doi.org/10.1007/s13398-014-0173-7.2.
[2]P.Baglioni,D.Chelazzi,R.Giorgi,E.Carretti,N.Toccafondi,Y.Jaidar,Commercial Ca(OH)2nanoparticlesfortheconsolidationofimmovableworksofart,Appl.
Phys.A114(2013)723–732,http://dx.doi.org/10.1007/s00339-013-7942-6.
[3]C.Rodriguez-Navarro,A.Suzuki,E.Ruiz-Agudo,Alcoholdispersionsofcal- ciumhydroxidenanoparticlesforstoneconservation,Langmuir29(2013) 11457–11470,http://dx.doi.org/10.1021/la4017728.
[4]V.Daniele,G.Taglieri,R.Quaresima,ThenanolimesinCulturalHeritagecon- servation:characterisationandanalysisofthecarbonatationprocess,J.Cult.
Herit.9(2008)294–301,http://dx.doi.org/10.1016/j.culher.2007.10.007.
[5]L. ˇSkrlep,A.Pondelak,A.S. ˇSkapin,MethodforReinforcingPorousConstruction MaterialsandUseCalciumAcetoacetateSolutiontothisAim:International ApplicationNo. PCT/SI2014/000028. [S. l.]: EuropeanPatent Office (EPO) (ISA/EP),2014.
[6]C.A.Price,StoneConservation:AnOverviewofCurrentResearch,1sted.,The GettyConservationInstitute,SantaMonica,CA,USA,1996.
[7]G.Wheeler,AlkoxysilanesandtheConsolidationofStone,TheGettyConserva- tionInstitute,LosAngeles,USA,2005.
[8]P.Maravelaki-Kalaitzaki, N. Kallithrakas-Kontos,Z. Agioutantis, S.Mauri- giannakis,D.Korakaki,Acomparativestudyofporouslimestonestreated withsilicon-basedstrengtheningagents,Prog.Org.Coat.62(2008)49–60, http://dx.doi.org/10.1016/j.porgcoat.2007.09.020.
[9]A.Mauko,A.Mladenoviˇc,J. ˇCretnik,Characterizationofporosityofimpregnated stonebymeansHGporosimetryandgasadsorption,in:K.S.W.Sing,K.K.Unger (Eds.),Porotec–14.Work.ÜberDieCharacterisierungvonFeinteiligenUnd PorösenFestkörpen,BadSoden,Germany,2008,pp.71–72.
[10]P.López-Arce,L.S.Gomez-Villalba,L.Pinho,M.E.Fernández-Valle,M.Á.de Buergo,R.Fort,Influenceofporosityandrelativehumidityonconsolidation ofdolostone with calcium hydroxidenanoparticles:effectiveness assess- mentwithnon-destructivetechniques,Mater.Charact.61(2010)168–184, http://dx.doi.org/10.1016/j.matchar.2009.11.007.
[11]E.Hansen, E. Doehne,J. Fidler, J. Larson, B. Martin,M. Matteini, et al., Areviewofselectedinorganicconsolidantsandprotectivetreatmentsfor porouscalcareousmaterials,Rev.Conserv.4(2003)13–25,http://dx.doi.org/
10.1179/sic.2003.48.Supplement-1.13.
[12]L.Dei,B.Salvadori,Nanotechnologyinculturalheritageconservation:nano- metricslakedlimesavesarchitectonicandartisticsurfacesfromdecay,J.Cult.
Herit.7(2006)110–115,http://dx.doi.org/10.1016/j.culher.2006.02.001.
[13]A.P.F. Pinto, J.D. Rodrigues, Stone consolidation: the role of treatment procedures, J. Cult. Herit. 9 (2008) 38–53, http://dx.doi.org/10.1016/
j.culher.2007.06.004.
[14]A.P.FerreiraPinto,J.DelgadoRodrigues,Consolidationofcarbonatestones:
influence of treatment procedures on the strengthening action of con- solidants, J. Cult. Herit. 13 (2012) 154–166, http://dx.doi.org/10.1016/
j.culher.2011.07.003.
[15]R.Kumar,W.S.Ginell,Anewtechniquefordeterminingthedepthofpenetra- tionofconsolidantsintolimestoneusingiodinevapor,J.Am.Inst.Conserv.36 (1997)143–150,http://dx.doi.org/10.2307/3179828.
[16]F.Casadio,L.Toniolo,Polymertreatmentsforstoneconservation:methodsfor evaluatingpenetrationdepth,J.Am.Inst.Conserv.43(2004)3–21.
[17]C. Conti, C. Colombo, D. Dellasega, M. Matteini, M. Realini, G. Zerbi, Ammonium oxalate treatment: evaluation by -Raman mapping of the penetrationdepthindifferentplasters, J.Cult.Herit.12(2011) 372–379, http://dx.doi.org/10.1016/j.culher.2011.03.004.
[18]V.Cnudde,M.Dierick,J.Vlassenbroeck,B.Masschaele,E.Lehmann,P.Jacobs, etal.,Determinationoftheimpregnationdepthofsiloxanesandethylsilicates inporousmaterialbyneutronradiography,J.Cult.Herit.8(2007)331–338, http://dx.doi.org/10.1016/j.culher.2007.08.001.
[19]M.Dierick,J.Vlassenbroeck,B.Masschaele,V.Cnudde,L.VanHoorebeke,A.Hil- lenbach,High-speedneutrontomographyofdynamicprocesses,Nucl.Instrum.
MethodsPhys.Res.Sect.A:Accel.Spectrom.Detect.Assoc.Equip.542(2005) 296–301,http://dx.doi.org/10.1016/j.nima.2005.01.152.
[20]B. Masschaele, M. Dierick, V. Cnudde, L.V. Hoorebeke, S. Delputte, A.
Gildemeister,etal.,High-speedthermalneutrontomographyforthevisu- alizationofwaterrepellents,consolidantsandwateruptakeinsandand lime stones, Radiat. Phys. Chem. 71 (2004) 807–808, http://dx.doi.org/
10.1016/j.radphyschem.2004.04.102.
[21]G.C.Borgia,M.Camaiti,F. Cerri,P.Fantazzini,F.Piacenti,Studyofwater penetration in rock materials by nuclear magnetic resonance tomogra- phy: hydrophobic treatment effects, J. Cult. Herit. 1 (2000) 127–132, http://dx.doi.org/10.1016/S1296-2074(00)00156-4.
[22]V.Cnudde,P.Dubruel,K.DeWinne,I.DeWitte,B.Masschaele,P.Jacobs, etal.,TheuseofX-raytomographyinthestudyofwaterrepellentsand consolidants,Eng.Geol.103(2009)84–92,http://dx.doi.org/10.1016/j.enggeo.
2008.06.013.
[23]M.Slavíková,F.Krejˇcí,J. ˇZemliˇcka,M.Pech,P.Kotlík,J.Jak ˚ubek,X-rayradio- graphyandtomographyformonitoringthepenetrationdepthofconsolidants inOpuka–thebuildingstoneofPraguemonuments,J.Cult.Herit.13(2012) 357–364,http://dx.doi.org/10.1016/j.culher.2012.01.010.
[24]X.Xu,J.T.Han,D.H.Kim,K.Cho,Twomodesoftransformationofamor- phouscalciumcarbonatefilmsinair,J.Phys.Chem.B110(2006)2764–2770, http://dx.doi.org/10.1021/jp055712w.
[25]N. Spanos, P.G. Koutsoukos, The transformation of vaterite to calcite:
effect of the conditions of the solutions in contact with the mineral phase, J. Cryst. Growth 191 (1998) 783–790, http://dx.doi.org/10.1016/
S0022-0248(98)00385-6.
[26]U. Wehrmeister,A.L. Soldati,D.E.Jacob,T. Häger,W.Hofmeister,Raman spectroscopyofsynthetic,geologicalandbiologicalvaterite:aRamanspec- troscopicstudy,J.RamanSpectrosc.41(2010)193–201,http://dx.doi.org/
10.1002/jrs.2438.
[27]L.Burgio,R.J.Clark,LibraryofFT-Ramanspectraofpigments,minerals,pigment mediaandvarnishes,andsupplementtoexistinglibraryofRamanspectraof pigmentswithvisibleexcitation,Spectrochim.ActaA:Mol.Biomol.Spectrosc.
57(2001)1491–1521,http://dx.doi.org/10.1016/S1386-1425(00)00495-9.
[28]J.P.Comstock,A.J.Garber,Ketonuria,Clin.MethodsHist.Phys.Lab.Exam.(1990) 658–661.
[29]H.M.Free,R.R.Smeby,M.H.Cook,A.H.Free,Acomparativestudyofqualitative testsforketonesinurineandserum,Clin.Chem.4(1958)323–330.
[30]J.H.Swinehart,Thenitroprussideion,Coord.Chem.Rev.2(1967)385–402.
[31]M.M. Barsan,I.S. Butler, J. Fitzpatrick, D.F.R. Gilson, High-pressure stud- iesofthemicro-Raman spectraofironcyanidecomplexes:prussianblue (Fe4[Fe(CN)6]3),potassiumferricyanide(K3[Fe(CN)6]),andsodiumnitroprus- side(Na2[Fe(CN)5(NO)]·2H2O),J. RamanSpectrosc.42(2011) 1820–1824, http://dx.doi.org/10.1002/jrs.2438.
[32]F. Rubio,J.Rubio,J.L.Oteo,AFT-IRstudy ofthehydrolysis oftetraethy- lorthosilicate(TEOS),Spectrosc.Lett.31(1998)199–219,http://dx.doi.org/
10.1080/00387019808006772.
[33]M.R.Sheikh,A.GohainBarua,X-raydiffractionandFouriertransforminfrared spectraofthebricksoftheKamakhyatemple,IndianJ.PureAppl.Phys.51 (2013)745–748.
[34]T.Nguyen,L.Janik,M.Raupach,DiffusereflectanceinfraredFouriertrans- form (DRIFT)spectroscopyinsoilstudies,Aust.J.SoilRes.29(1991)49, http://dx.doi.org/10.1071/SR9910049.
[35]D. Buti, D. Domenici, C. Miliani, C. García Sáiz, T. Gómez Espinoza, F.
JímenezVillalba,etal.,Non-invasiveinvestigationofapre-HispanicMaya screenfoldbook: theMadrid Codex,J. Archaeol.Sci. 42(2014) 166–178, http://dx.doi.org/10.1016/j.jas.2013.08.008.
[36]A.M.Kalinkin,E.V.Kalinkina,O.A.Zalkind,T.I.Makarova,Chemicalinterac- tionofcalciumoxideandcalciumhydroxidewithCO2duringmechanical activation, Inorg. Mater.41 (2005) 1073–1079, http://dx.doi.org/10.1007/
s10789-005-0263-1.