Institut Teknologi Nasional | 153 DAFTAR PUSTAKA
Abas, M. A. H., Ismail, N., Yassin, A. I. M., & Taib, M. N. (2018). VGG16 for plant image classification with transfer learning and data augmentation.
International Journal of Engineering and Technology(UAE), 7(4), 90–94.
https://doi.org/10.14419/ijet.v7i4.11.20781
Arrofiqoh, E. N., & Harintaka, H. (2018). Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi.
Geomatika, 24(2), 61. https://doi.org/10.24895/jig.2018.24-2.810 Arya, S., & Singh, R. (2019). A Comparative Study of CNN and AlexNet for
Detection of Disease in Potato and Mango leaf. IEEE International
Conference on Issues and Challenges in Intelligent Computing Techniques, ICICT 2019, (Dl). https://doi.org/10.1109/ICICT46931.2019.8977648 Basha, S. H. S., Dubey, S. R., Pulabaigari, V., & Mukherjee, S. (2019). Impact of
fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing, 378, 112–119.
https://doi.org/10.1016/j.neucom.2019.10.008
Bernico, M., Li, Y., & Zhang, D. (2019). Investigating the impact of data volume and domain similarity on transfer learning applications. Advances in
Intelligent Systems and Computing, 881, 53–62. https://doi.org/10.1007/978- 3-030-02683-7_5
Chollet, F. (2018). Deep Learning with Python. In 2018 21st International Conference on Information Fusion, FUSION 2018.
https://doi.org/10.23919/ICIF.2018.8455530
Dimyati, A. (2003). Research priorities for potato in Indonesia. Proceedings of the CIP-Indonesia Research Review Workshop, Held in Bogor, Indonesia, 15–
19.
Efros, M. H. P. A. A. A. (2016). What makes ImageNet good for transfer learning? 1–15. Retrieved from http://arxiv.org/abs/1608.08614
Elgendy, M. (2019). Deep Learning for Vision Systems. 475.
Fadilah, R., Pardede, J., & Amelia, I. (2019). Implementasi Object Detection Untuk Mengidentifikasi Penyakit Malaria Berdasarkan Citra Preparat Sediaan Darah Pasien. Computer Sciecne, 4(1), 75–84.
https://doi.org/.1037//0033-2909.I26.1.78
Fang, Y., Zhao, J., Hu, L., Ying, X., Pan, Y., & Wang, X. (2019). Image
classification toward breast cancer using deeply-learned quality. Journal of Visual Communication and Image Representation, 64, 102609.
https://doi.org/10.1016/j.jvcir.2019.102609
Gangwar, N., Tiwari, D., Sharma, A., Ashish, M., Mittal, A., & Vishwavidyalaya,
Institut Teknologi Nasional | 154 G. K. (2020). Grape Leaf Diseases Classification using Transfer Learning.
3171–3177.
Geetharamani, G., & J., A. P. (2019). Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Computers and Electrical Engineering, 76, 323–338.
https://doi.org/10.1016/j.compeleceng.2019.04.011
Goncharov, P., Ososkov, G., Nechaevskiy, A., Uzhinskiy, A., & Nestsiarenia, I.
(2019). Disease Detection on the Plant Leaves by Deep Learning (Vol. 1).
https://doi.org/10.1007/978-3-030-01328-8
Gunadi, N., Karjadi, A. K., & Sirajuddin, S. (2014). Pertumbuhan dan Hasil Beberapa Klon Kentang Unggul Asal International Potato Center di Dataran Tinggi Malino, Sulawesi Selatan. Jurnal Hortikultura, 24(2), 102.
https://doi.org/10.21082/jhort.v24n2.2014.p102-113
Habibzadeh Motlagh, M., Jannesari, M., Rezaei, Z., Totonchi, M., & Baharvand, H. (2018). Automatic white blood cell classification using pre-trained deep learning models: ResNet and Inception. (April), 105.
https://doi.org/10.1117/12.2311282
Hahn, P. (2019). Artificial intelligence and machine learning. Handchirurgie Mikrochirurgie Plastische Chirurgie, 51(1), 62–67.
https://doi.org/10.1055/a-0826-4789
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 770–778.
https://doi.org/10.1109/CVPR.2016.90
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 2261–
2269. https://doi.org/10.1109/CVPR.2017.243
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. 32nd International Conference on Machine Learning, ICML 2015, 1, 448–456.
Kaur, T., & Gandhi, T. K. (2019). Automated brain image classification based on VGG-16 and transfer learning. Proceedings - 2019 International Conference on Information Technology, ICIT 2019, 94–98.
https://doi.org/10.1109/ICIT48102.2019.00023
Krishna, S. T., & Kalluri, H. K. (2019). Deep learning and transfer learning approaches for image classification. International Journal of Recent Technology and Engineering, 7(5), 427–432.
Krizhevsky, A., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. 1–9.
Institut Teknologi Nasional | 155 LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–
2323. https://doi.org/10.1109/5.726791
Lin, M., Chen, Q., & Yan, S. (2014). Network in network. 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings, 1–10.
Liu, Z., Tian, Y., & B, Z. W. (2017). Analysis on the Dropout Effect in ConvolutionalNeural Networks. 1(March 2017), 368–383.
https://doi.org/10.1007/978-3-319-54184-6
Mitchell, T. M. (1997). Machine Learning. In Intelligent Systems Reference Library (Vol. 17). https://doi.org/10.1007/978-3-642-21004-4_10
Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for image-based plant disease detection. Frontiers in Plant Science,
7(September), 1–10. https://doi.org/10.3389/fpls.2016.01419
Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation Functions: Comparison of trends in Practice and Research for Deep Learning. 1–20. Retrieved from http://arxiv.org/abs/1811.03378
Pan, S. J., & Fellow, Q. Y. (2010). A Survey on Transfer Learning. 1–15.
Rakhmawati, P. U., Pranoto, Y. M., & Setyati, E. (2018). Klasifikasi Penyakit Daun Kentang Berdasarkan Fitur Tekstur Dan Fitur Warna Menggunakan Support Vector Machine. Seminar Nasional Teknologi Dan Rekayasa (SENTRA) 2018, 1–8.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, 234–241. https://doi.org/10.1007/978-3-319- 24574-4_28
Ruder, S. (2017). An overview of gradient descent optimization algorithms. 1–14.
Retrieved from http://arxiv.org/abs/1609.04747
Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
Shu, M. (2019). Deep learning for image classification on very small datasets using transfer learning.
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–14.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15, 1929–1958.
Institut Teknologi Nasional | 156 Suh, H. K., IJsselmuiden, J., Hofstee, J. W., & van Henten, E. J. (2018). Transfer
learning for the classification of sugar beet and volunteer potato under field conditions. Biosystems Engineering, 174, 50–65.
https://doi.org/10.1016/j.biosystemseng.2018.06.017
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., …
Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June, 1–9. https://doi.org/10.1109/CVPR.2015.7298594 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking
the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015-Decem, 2818–2826. https://doi.org/10.1109/CVPR.2016.308
Tammina, S. (2019). Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. International Journal of Scientific and Research Publications (IJSRP), 9(10), p9420.
https://doi.org/10.29322/ijsrp.9.10.2019.p9420
Too, E. C., Yujian, L., Njuki, S., & Yingchun, L. (2019). A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 161(October 2017), 272–279.
https://doi.org/10.1016/j.compag.2018.03.032
Wulandari, P., Matematika, P. S., Sains, F., Teknologi, D. A. N., Islam, U., &
Sunan, N. (2019). Klasifikasi tingkat keganasan kanker serviks menggunakan metode deep residual network (resnet).