• Tidak ada hasil yang ditemukan

PDF DAFTAR PUSTAKA - Itenas

N/A
N/A
Protected

Academic year: 2023

Membagikan "PDF DAFTAR PUSTAKA - Itenas"

Copied!
4
0
0

Teks penuh

(1)

Institut Teknologi Nasional | 153 DAFTAR PUSTAKA

Abas, M. A. H., Ismail, N., Yassin, A. I. M., & Taib, M. N. (2018). VGG16 for plant image classification with transfer learning and data augmentation.

International Journal of Engineering and Technology(UAE), 7(4), 90–94.

https://doi.org/10.14419/ijet.v7i4.11.20781

Arrofiqoh, E. N., & Harintaka, H. (2018). Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi.

Geomatika, 24(2), 61. https://doi.org/10.24895/jig.2018.24-2.810 Arya, S., & Singh, R. (2019). A Comparative Study of CNN and AlexNet for

Detection of Disease in Potato and Mango leaf. IEEE International

Conference on Issues and Challenges in Intelligent Computing Techniques, ICICT 2019, (Dl). https://doi.org/10.1109/ICICT46931.2019.8977648 Basha, S. H. S., Dubey, S. R., Pulabaigari, V., & Mukherjee, S. (2019). Impact of

fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing, 378, 112–119.

https://doi.org/10.1016/j.neucom.2019.10.008

Bernico, M., Li, Y., & Zhang, D. (2019). Investigating the impact of data volume and domain similarity on transfer learning applications. Advances in

Intelligent Systems and Computing, 881, 53–62. https://doi.org/10.1007/978- 3-030-02683-7_5

Chollet, F. (2018). Deep Learning with Python. In 2018 21st International Conference on Information Fusion, FUSION 2018.

https://doi.org/10.23919/ICIF.2018.8455530

Dimyati, A. (2003). Research priorities for potato in Indonesia. Proceedings of the CIP-Indonesia Research Review Workshop, Held in Bogor, Indonesia, 15–

19.

Efros, M. H. P. A. A. A. (2016). What makes ImageNet good for transfer learning? 1–15. Retrieved from http://arxiv.org/abs/1608.08614

Elgendy, M. (2019). Deep Learning for Vision Systems. 475.

Fadilah, R., Pardede, J., & Amelia, I. (2019). Implementasi Object Detection Untuk Mengidentifikasi Penyakit Malaria Berdasarkan Citra Preparat Sediaan Darah Pasien. Computer Sciecne, 4(1), 75–84.

https://doi.org/.1037//0033-2909.I26.1.78

Fang, Y., Zhao, J., Hu, L., Ying, X., Pan, Y., & Wang, X. (2019). Image

classification toward breast cancer using deeply-learned quality. Journal of Visual Communication and Image Representation, 64, 102609.

https://doi.org/10.1016/j.jvcir.2019.102609

Gangwar, N., Tiwari, D., Sharma, A., Ashish, M., Mittal, A., & Vishwavidyalaya,

(2)

Institut Teknologi Nasional | 154 G. K. (2020). Grape Leaf Diseases Classification using Transfer Learning.

3171–3177.

Geetharamani, G., & J., A. P. (2019). Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Computers and Electrical Engineering, 76, 323–338.

https://doi.org/10.1016/j.compeleceng.2019.04.011

Goncharov, P., Ososkov, G., Nechaevskiy, A., Uzhinskiy, A., & Nestsiarenia, I.

(2019). Disease Detection on the Plant Leaves by Deep Learning (Vol. 1).

https://doi.org/10.1007/978-3-030-01328-8

Gunadi, N., Karjadi, A. K., & Sirajuddin, S. (2014). Pertumbuhan dan Hasil Beberapa Klon Kentang Unggul Asal International Potato Center di Dataran Tinggi Malino, Sulawesi Selatan. Jurnal Hortikultura, 24(2), 102.

https://doi.org/10.21082/jhort.v24n2.2014.p102-113

Habibzadeh Motlagh, M., Jannesari, M., Rezaei, Z., Totonchi, M., & Baharvand, H. (2018). Automatic white blood cell classification using pre-trained deep learning models: ResNet and Inception. (April), 105.

https://doi.org/10.1117/12.2311282

Hahn, P. (2019). Artificial intelligence and machine learning. Handchirurgie Mikrochirurgie Plastische Chirurgie, 51(1), 62–67.

https://doi.org/10.1055/a-0826-4789

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 770–778.

https://doi.org/10.1109/CVPR.2016.90

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 2261–

2269. https://doi.org/10.1109/CVPR.2017.243

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. 32nd International Conference on Machine Learning, ICML 2015, 1, 448–456.

Kaur, T., & Gandhi, T. K. (2019). Automated brain image classification based on VGG-16 and transfer learning. Proceedings - 2019 International Conference on Information Technology, ICIT 2019, 94–98.

https://doi.org/10.1109/ICIT48102.2019.00023

Krishna, S. T., & Kalluri, H. K. (2019). Deep learning and transfer learning approaches for image classification. International Journal of Recent Technology and Engineering, 7(5), 427–432.

Krizhevsky, A., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. 1–9.

(3)

Institut Teknologi Nasional | 155 LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278–

2323. https://doi.org/10.1109/5.726791

Lin, M., Chen, Q., & Yan, S. (2014). Network in network. 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings, 1–10.

Liu, Z., Tian, Y., & B, Z. W. (2017). Analysis on the Dropout Effect in ConvolutionalNeural Networks. 1(March 2017), 368–383.

https://doi.org/10.1007/978-3-319-54184-6

Mitchell, T. M. (1997). Machine Learning. In Intelligent Systems Reference Library (Vol. 17). https://doi.org/10.1007/978-3-642-21004-4_10

Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for image-based plant disease detection. Frontiers in Plant Science,

7(September), 1–10. https://doi.org/10.3389/fpls.2016.01419

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation Functions: Comparison of trends in Practice and Research for Deep Learning. 1–20. Retrieved from http://arxiv.org/abs/1811.03378

Pan, S. J., & Fellow, Q. Y. (2010). A Survey on Transfer Learning. 1–15.

Rakhmawati, P. U., Pranoto, Y. M., & Setyati, E. (2018). Klasifikasi Penyakit Daun Kentang Berdasarkan Fitur Tekstur Dan Fitur Warna Menggunakan Support Vector Machine. Seminar Nasional Teknologi Dan Rekayasa (SENTRA) 2018, 1–8.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, 234–241. https://doi.org/10.1007/978-3-319- 24574-4_28

Ruder, S. (2017). An overview of gradient descent optimization algorithms. 1–14.

Retrieved from http://arxiv.org/abs/1609.04747

Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

Shu, M. (2019). Deep learning for image classification on very small datasets using transfer learning.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–14.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

(2014). Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15, 1929–1958.

(4)

Institut Teknologi Nasional | 156 Suh, H. K., IJsselmuiden, J., Hofstee, J. W., & van Henten, E. J. (2018). Transfer

learning for the classification of sugar beet and volunteer potato under field conditions. Biosystems Engineering, 174, 50–65.

https://doi.org/10.1016/j.biosystemseng.2018.06.017

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., …

Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June, 1–9. https://doi.org/10.1109/CVPR.2015.7298594 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking

the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015-Decem, 2818–2826. https://doi.org/10.1109/CVPR.2016.308

Tammina, S. (2019). Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. International Journal of Scientific and Research Publications (IJSRP), 9(10), p9420.

https://doi.org/10.29322/ijsrp.9.10.2019.p9420

Too, E. C., Yujian, L., Njuki, S., & Yingchun, L. (2019). A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 161(October 2017), 272–279.

https://doi.org/10.1016/j.compag.2018.03.032

Wulandari, P., Matematika, P. S., Sains, F., Teknologi, D. A. N., Islam, U., &

Sunan, N. (2019). Klasifikasi tingkat keganasan kanker serviks menggunakan metode deep residual network (resnet).

Referensi

Dokumen terkait

This study aims to determine students' perceptions toward Cambridge curriculum used in learning English at Senior High School Sumsel, because students are the subject of implementing

February 27, 2015 Venue: Ascot Hall, B2F South Wing, Hotel Okura Tokyo PartⅠ: “Challenges Facing the Liberal International Order and Japan’s Role” 09:30- Registration