• Tidak ada hasil yang ditemukan

Physical chemical studies of reactions of human hemoglobins

N/A
N/A
Protected

Academic year: 2024

Membagikan "Physical chemical studies of reactions of human hemoglobins"

Copied!
108
0
0

Teks penuh

(1)

PHYSICAL CBEMICAL STUDIES OF REACTIONS OF HUNAN HE%OGTX>BINS

Thesis by

William Day Hutchinson

I n P a r t i a l F u l f i l l m e n t of t h e Requirements For the Degree o f

Doctor o f Philosophy

C a l i f o r n i a I n s t i t u t e of Technology Pasadena, C a l i f o r n i a

(2)

With a deep sense of g r a t i t u d e

X

acknowledge t h e stimulating

&pidance o f D r , Jerome Vinograd during the course of my graduate study a t the California I n s t i t u t e of Technology. I am proud *a have been a b l e t o work with and l e a r n from h i m .

I wish t o thank the many people who have donated t h e blood used i n this research, Thanks a r e especially due t o my cousin, Nelson C, Jackson, Jr., who donated @oat of t h e s i a k l e e e l 1 hemoglobin used i n t h i s work, Far c l i n i c a l s t u d i e s , I wish t o actknowledge t h e help of D r , P h i l l i p A, Sturgeon and t h e Hematology s t a f f of The Children's Hospital, Us Angeles.

The people o f t h e Ccal Tech~community have made my years here both enlightening and enjoyable,

I wish t o thank D s , Paul E, Lloyd and t h e California I n s t i t u t e of Technology f o r making a v a i l a b l e t o me t h e Paul E, Lloyd Fellowship during my residence here.

(3)

ABSTRACT

The molecular d i s s o c i a t i o n of t h e d e r i v a t i v e s , carbonmonoxy-, oxy-, ferro-, and f e r r i - , o f normal a d u l t hemoglobin has been s t u d i e d a t a pH o f f i v e , Of t h e s e d e r i v a t i v e s , ferrohemoglobin i s l e a s t d i s - s o c i a t e d while ferrihemoglobin is most extensively d i s s o c i a t e d a t a given concentration. The apparent d i s s o c i a t i o n c o n s t a n t s have been c a l c u l a t e d and r e l a t e d t o t h e a c i d d i s s o c i a t i o n o f t h e ffHeme-linkedtt a c i d groups o f t h e s e d e r i v a t i v e s ,

Hemoglobins l a b e l l e d with carbon-14 have been prepared. Using C' l a b e l s on one hemoglobin, t h e exchange of molecular s u b u n i t s h a s been s t u d i e d a f t e r d i s s o c i a t i o n o f mixtures of normal a d u l t and s i c k l e c e l l hemoglobins a t a c i d and a l k a l i n e pH. Hemoglobin '$hybridsw, i n which one type of subunit i s r a d i o a c t i v e and t h e o t h e r n o t , have been formed and i s o l a t e d . These hybrids have been used i n t h e i d e n t i f i c a - t i o n o f t h e polypeptide chain i n which t h e anomaly occurs i n s i c k l e c e l l hemoglobin. This anomaly was found t o occur i n t h e f3 chains.

The k i n e t i c s o f t h e a chain exchange between t h e two hemoglobins has been s t u d i e d a t a l k a l i n e pH. Presumptive evidence o f t h e mode o f d i s - s o c i a t i o n a t t h i s pH has been obtained. Preliminary i n v e s t i g a t i o n s a r e r e p o r t e d on t h e i s o l a t i o n o f hemoglobin hybrids i n which only t h e

c h a i n s a r e r a d i o a c t i v e .

S p e c t r a l d a t a f o r s e v e r a l d e r i v a t i v e s o f hemoglobin have been r e l a t e d t o a r e c e n t l y adopted standard, The use o f t h e f e r r o v e r s e n a t e i o n i n forming ferrohemoglobin from oxyhemoglobin i s reported.

(4)

TABLE OF CONTENTS PART I

DIFFERENCES I N THE ACID INDUCED MOLECULAR DISSOCIATION BEHAVIOR OF SEVERAL DERIVATIVES OF

NORMAL ADULT HEMOGIDBIN

I n t r o d u c t i o n

. . .

1

. . .

Procedure 2

. . .

P r e p a r a t i o n o f M a t e r i a l s .

3

. . .

Experimental Method

5

R e s u l t s

. . .

7

. . .

Discussion of R e s u l t s

18

PART I1

CARBON-14 LABELLEID HYBRIDS OF NORMAL ADULT

AND

SICKLE CELL HEKOGMBIMS

A. PREPARATION AND ISOLATION OF CARBON-14 LAB.E&LEXI HPBRIDS OF

NORMAL ADULT AND SICKLE CELL HEMOGLOBINS

. . .

22

I n t r o d u c t i o n

. . .

0 2 2

. . .

Procedure 25

P r e p a r a t i o n of M a t e r i a l s

. . .

26

Chromatography

. . . O .

30

. . .

R e s u l t s of Hybridization Experiments

32

. . .

S i g n i f i c a n c e of Hybridization o f Radioactive Hemoglobins 39 B

. %m

IDEHTfFICATION OF THE ABERRANT CHAIN I N SICKLE

. . .

CELL WEM0GIX)BIN 4-0

. . .

I n t r o d u c t i o n 40

. . .

Procedure 40

(5)

...

P r e p a r a t i o n o f M a t e r i a l s 40

. . .

R e s u l t s

41

. . .

Discussion 42

THE KINETICS OF SUBUNIT EXCHANGE I N THE ADULT-SICKLF: CELL HEMOGUIBIN SYSTEM RND THE MODE OF DISSOCIATION OF

KmoGmBINATpH11.0

... 44

I n t r o d u c t i o n

. . .

44

Experimental Procedure

. . . 45

...

R e s u l t s

46

. . .

Conclusion 60

PRELIHINARY INVESTIGATION OF THE ISOLATION OF HEM0GU)BIN

...

HYBRIDS LABEUED I N THE CHAINS 61

. . .

I n t r o d u c t i o n

61

...

Procedure

61

. . .

Experimental Procedure 62

...

P r e p a r a t i o n o f M a t e r i a l s 62

. . .

R e s u l t s

63

...

REFERENCES

68

APPENDICES

1. SPECIRC EXTINCTION COEFFICI3ZNTS ) OF

HEM0GU)BIN DERIVATIVES

. . . ~ . . . 70

I T

.

REDUCTION OF OXYHmOGmBIN USING THE FERXIVERSENATE I O N

. .

73

P I 1

.

PREPARATION OF VARIOUSLY WELLED RADIOACTIVE

. . .

SICKLE CELL HEHOGLOBINS 75

I V

.

CHROMATOGRAPHY PXOTOCOL SHEETS a

. .

77
(6)

PART I

DIFFERENCES I N T H E A C I D INDUCED MOLEUZAR D I S S O C I A T I O N BEHAVIOR O F SEVERAL

DERIVATIVES O F NORMAL ADULT HENOGLOBIN

(7)

I n t r o d u c t i o n

I n 1955 F i e l d and OtBrien reported a decrease i n t h e sedi- mentation c o e f f i c i e n t o f hunnan carbonmonoxyhemoglobin i n s o l u t i o n s of pH below f i v e (1). This decrease i n sedimentation c o e f f i c i e n t w a s accompanied by an i n c r e a s e i n t h e d i f f u s i o n c o e f f i c i e n t , which sug- gested a d i s s o c i a t i o n of t h e hemoglobin molecule i n t o a new s p e c i e s having h a l f t h e molecular weight of t h e o r i g i n a l hemoglobin molecule, F i e l d and Ogston (2) concluded from c o n s i d e r a t i o n s of t h e r a t e of boundary spread i n t h e u l t r a c e n t r i f u g e t h a t t h e r e a c t i o n w a s revers- i b l e and t h a t t h e d i s s o c i a t i o n equilibrium w a s e s t a b l i s h e d i n l e s s than 200 seconds, It was l a t e r demonstrated ( 3 ) t h a t t h e mass a c t i o n expression obeyed by t h e r e a c t i o n w a s given by:

H I I H I I + H + - - - + H M ~ + H ~ (1)

where Hh i s a hemoglobin h a l f molecule. From s t u d i e s of t h e dependence o f t h e r e a c t i o n on p r o t e i n concentration and hydrogen i o n concentration, apparent equilibrium c o n s t a n t s were calculated. The c o n s t a n t s were

found t o have a s c a t t e r which could not be a t t r i b u t e d t o e r r o r s i n - herent i n t h e method of t h e i r evaluation, Since ferrihemoglobin is r a p i d l y formed i n carbonmonoxyhemoglobin s o l u t i o n s a t a c i d pH (4) i t appeared p o s s i b l e t h a t t h e s c a t t e r i n t h e values found f o r t h e equi- librium c o n s t a n t s w a s due t o contamination o f t h e carbonmonoxyhemo- g l o b i n with ferrihemoglobin, Preliminary work indeed showed t h a t a t equal concentrations carbonmonoxyhemoglobin and ferrihemoglobin d i d d i s s o c i a t e t o d i f f e r e n t e x t e n t s a t pH 5.0.

(8)

-2-

It has been demonstrated

(5)

t h a t c e r t a i n a c i d groups i n v a r i - ous hemoglobin d e r i v a t i v e s have a c i d d i s s o c i a t i o n c o n s t a n t s which de- pend upon t h e n a t u r e o f t h e bonding s t a t e o f t h e i r o n i n t h e heme, o r t h e n a t u r e of t h e ligand bonded t o t h e heme group. The d i f f e r e n c e ob- . served i n t h e e x t e n t s of d i s s o c i a t i o n of carbonmonoxyhemoglobin and ferrihemoglobin suggested t h a t t h e molecular d i s s o c i a t i o n r e a c t i o n o f hemoglobin might a l s o be wheme-Linkedll, A study of t h e c o r r e l a t i o n s between t h e r e a c t i o n s o f a molecule with a s t r u c t u r e as complex as t h a t of hemoglobin can be i n s t r u c t i v e i n e l u c i d a t i n g r e l a t i v e p o s i t i o n s o f r e a c t i v e groups i n t h e molecule, It i s with this view i n mind t h a t a study o f t h e d i s s o c i a t i o n p r o p e r t i e s o f s e v e r a l d e r i v a t i v e s of normal a d u l t hemoglobin was undertaken.

Proe edure

The method of study has been t h e determination o f t h e s e d i - mentation c o e f f i c i e n t s of v a r i o u s d e r i v a t i v e s o f normal a d u l t hemoglo- b i n a s a f u n c t i o n o f t h e t o t a l p r o t e i n concentration a t a pH o f

5.0.

The d e r i v a t i v e s which have been s t u d i e d a r e carbonmonoxy-, oxy-, f e r r o - , and ferrihemoglobin. These s t u d i e s were c a r r i e d o u t a t a pH o f f i v e because t h e concentration range i n which d i s s o c i a t i o n occurs c o i n c i d e s with t h e optimum range o f p r o t e i n concentration f o r use o f t h e s o h l i e r e n o p t i c a l of t h e u l t r a c e n t r i f u g e .

It has been shown t h a t t h e measured sedimentation c o e f f i c i e n t , S , i n a system i n d i s s o c i a t i o n equilibrium i s given by

( 3 ) :

where S and S. a r e t h e sedimentation c o e f f i c i e n t s of t h e o r i g i n a l

0 1

s p e c i e s and t h e products o f i t s d i s s o c i a t i o n r e s p e c t i v e l y and a is t h e

(9)

degree of d i s s o c i a t i o n . The q u a n t i t y

f

i s t h e r a t i o o f t h e molecular weight o f t h e ith s p e c i e s produced i n t h e d i s s o c i a t i o n t o t h e molecular weight o f t h e o r i g i n a l materials. For t h e c a s e o f d i s s o c i a t i o n i n t o s u b u n i t s having h a l f t h e molecular weight o f t h e o r i g i n a l m a t e r i a l t h e expression f o r t h e sedimentation c o e f f i c i e n t becomes:

where S i s t h e sedimentation c o e f f i c i e n t of t h e h a l f molecule.

H

Preparation o f M a t e r i a l s

Hemoglobin s t o c k s o l u t i o n s were prepared from f r e s h l y drawn r e d blood c e l l s from normal a d u l t donor@. These c e l l s were washed fourtgi-aes with i s o t o n i c s a l i n e s o l u t i o n ; and t h e supernatant from each washing was removed using a s u c t i o n p i p e t t e . The packed r e d blood c e l l s from t h e last wash were mixed with an equal volume o f d i s t i l l e d water and 0.4 volume o f toluene. This mixture, r e d blood c e l l s , water, and toluene was shaken vigorously t o r u p t u r e c e l l w a l l s and t o e f f e c t complete l y s i s , The l y s a t e was c e n t r i f u g e d f o r 15-20 minutes a t

1800

RPM i n a c l i n i c a l c e n t r i f u g e s f t e r which t h e toluene and stroma were removed. The remaining hemoglobin s o l u t i o n was then c e n t r i f u g e d f o r 1-2 hours a t 30,000 BPI4 i n t h e Spinco Model L U l t r a c e n t r i f u g e t o remove t h e last t r a c e s of stroma,

To avoid any d i f f e r e n c e s i n t h e behavior o f t h e d e r i v a t i v e s o f hemoglobin due t o t h e e f f e c t s of t h e technique used t o prepare f e r r o - hemoglobin, a l l o f t h e p r o t e i n was i n i t i a l l y reduced, then t r e a t e d as necessary t o prepare t h e o t h e r d e r i v a t i v e s . The method o f Adams ( 6 ) w a s f i r s t used t o prepare ferrohemoglobin; t h i s method was, however, abandoned because o f t h e d e l e t e r i o u s e f f e c t s of t h e reducing agent

(10)

sodium d i t h i o n i t e a f t e r p a r t i a l oxidation (7).

It w a s found t h a t hemoglobin could be q u a n t i t a t i v e l y reduced by evacuation, The evacuation technique used was as follows:

A s t o c k s o l u t i o n of t h e non-crystallized oxyhemoglobin was placed i n a stoppered serum b o t t l e , After p l a c i n g t h i s serum b o t t l e i n a water bath held a t 37*C,, a hypodermic needle connected t o a water a s p i r a t o r was introduced i n t o t h e b o t t l e through its stopper, The evacuation of oxygen from t h e b o t t l e was c a r r i e d o u t while s w i r l i n g t h e con- t e n t s around t o avoid bubbling of t h e s o l u t i o n , After

15

minutes t h e evacuation was complete, a s i n d i c a t e d by t h e change i n c o l o r of t h e s o l u t i o n from a b r i l l i a n t r e d t o a deep blue red, Before removal of t h e a s p i r a t o r needle, n i t r o g e n was introduced i n t o t h e b o t t l e t o b r i n g t h e pres- s u r e above t h e s o l u t i o n t o a point above atmospheric pres- sure. The concentration of t h e ferrohemoglobin s o l u t i o n w a s determined using t h e Brice-Pheonix D i f f e r e n t i a l Re- fractometer, The value of t h e s p e c i f i c r e f r a c t i v e index increment w a s taken as 0,00181,

An a l i q u o t of t h e above ferrohemoglobin s o l u t i o n w a s dissolved i n a deoxygenated Acetate-NaC1 b u f f e r (0.1 M NaOAc

,

0,042 M HOAc

,

0.15 M NaC1) of pH 5,0, u = 0.25; this s o l u t i o n was of a concentration a p p r o p r i a t e f o r use i n t h e u l t r a c e n t r i f u g e , For sedimentation s t u d i e s on ferrohemoglobin, a p o r t i o n of t h i s s o l u t i o n was t r a n s f e r r e d , using a hypodermic syringe, t o an u l t r a c e n t r i f u g e c e l l which had been flushed o u t with nitrogen, Other p o r t i o n s of t h i s s o l u t i o n wese used t o pre- pare t h e oxy-, carb~nmonoxy-, and ferrihemoglobin s o l u t i o n s run i n t h e u l t r a c e n t r i f u g e , Oxyhemoglobin and carbonmonoxyhemoglobin s o l u t i o n s wese prepared by blowing oxygen and carbon monoxide, respectively,,over portions, Ferrihemoglobin s o l u t i o n s were prepared by allowing a por- t i o n of t h e ferrohemoglobin s o l u t i o n of pH 5.0 t o stand f o r 24 hours under oxygen a t room temperature. After 24 hours under t h e s e condi- t i o n s t h e conversion t o ferrihemoglobin i s 95% complete.

(11)

Experimental Method

A l l sedimentation c o e f f i c i e n t determinations were made using t h e Spinco Model E U l t r a c e n t r i f u g e , o p e r a t i n g a t speeds of 52,640 o r 56,100 RPM. A t t h e s e speeds o f r o t a t i o n t h e p r o t e i n i n a l l c a s e s moved through a t l e a s t h a l f t h e l e n g t h of t h e c e l l i n t h r e e hours run- ning time. I n a l l experiments two c e l l s were used, one o f which was f i t t e d with a lo p o s i t i v e wedge shaped window. The s c h l i e r e n diagram corresponding t o t h e s o l u t i o n i n t h i s c e l l was displaced upward on t h e viewing screen o f t h e u l t r a c e n t r i f u g e , t h u s f a c i l i t a t i n g simultaneous sedimentation experiments on i d e n t i c a l o r non-identical s o l u t i o n s . I t was p o s s i b l e i n t h i s way t o make a v i s u a l comparison o f t h e sedimenta- t i o n behavior o f any two d i f f e r e n t hemoglobin d e r i v a t i v e s .

The sedimentation c o e f f i c i e n t , S, is defined as t h e r a t e o f movement o f a dissolved molecule i n u n i t c e n t r i f u g a l f i e l d

(8):

where x i s t h e p o s i t i o n o f t h e molecule a t time t and i s t h e angular v e l o c i t y o f t h e u l t r a c e n t r i f u g e r o t o r . The r a t e of movement o f a s e d i - menting molecule i n t h e bulk of a s o l u t i o n is taken t o be t h e r a t e o f movement o f t h e boundary between s o l u t i o n and solvent. Using t h e second form o f t h e equation f o r S t h e logarithm of t h e boundary p o s i t i o n w a s p l o t t e d as a function o f t h e time. The s l o p e of t h i s l i n e divided by t h e square of t h e angular v e l o c i t y g i v e s t h e sedimentation c o e f f i c i e n t uncorrected f o r t h e v i s c o s i t y and bouyancy o f t h e s o l v e n t , It i s con- venient t o r e f e r t h e v a l u e s o f t h e sedimentation c o e f f i c i e n t t o a standard s o l v e n t , water a t 20°C, The sedimentation c o e f f i c i e n t s were reduced t o t h i s standard by t h e use of t h e equation:

(12)

where :

T = t h e temperature a t which t h e sedimentation experiment i s c a r r i e d out.

T

./Q

= t h e r e l a t i v e v i s c o s i t y o f t h e s o l v e n t a t temperature T.

w

72 7

20 = t h e v i s c o s i t y of water a t temperature T r e l a t i v e t o i t s w

value a t 20°C.

-

V = t h e p a r t i a l s p e c i f i c volume o f t h e sedimenting molecule.

P

= t h e d e n s i t y o f t h e solvent a t temperature T.

s

p

20 = t h e d e n s i t y of water a t 20°C.

W

A l l sedimentation experiments were c a r r i e d o u t a t 20°C, The r e s u l t s of t h e sedimentation c o e f f i c i e n t determinations correspond t h e r e f o r e t o t h e d i s s o c i a t i o n e q u i l i b r i a a t t h i s temperature,

The s c h l i e r e n o p t i c a l system of t h e u l t r a c e n t r i f u g e was f i t t e d with a #29 Wratten f i l t e r , and t h e s c h l i e r e n p a t t e r n s were recorded on Eastman 103-F Spectroscopic p l a t e s . The boundary p o s i t i o n s were taken as t h e p o s i t i o n of t h e perpendicular b i s e c t o r of t h e s c h l i e r e n peaks;

i t was n o t found necessary t o apply t h e method of Goldberg ( 9 ) t o t h e determination o f t h e boundary p o s i t i o n . The boundary p o s i t i o n s were measured on enlargements o f t h e photographic p l a t e s such t h a t a meas- ured 1 cm, corresponded t o a d i s t a n c e of 0.05 cm, i n t h e u l t r a c e n t r i f u g e c e l l .

(13)

-7-

Results

It i s seen i n equation j t h a t t h e q u a n t i t i e s r e q u i r e d f o r t h e evaluation of t h e degree of d i s s o c i a t i o n a from t h e measured sedimenta- t i o n c o e f f i c i e n t S a r e t h e values of t h e sedimentation c o e f f i c i e n t s o f undissociated hemoglobin and of t h e hemoglobin h a l f molecules. To determine t h e value of t h e sedimentation c o e f f i c i e n t of undissociated hemoglobin, sedimentation measurements of carbonmonoxyhemoglobin were performed a t s e v e r a l concentrations i n a b u f f e r o f pH 7 . 0 , ~ = 0.1

(0,0286 M K ,HPO

,,

0.0143 M KH *PO ,). A t t h e concentrations chosen f o r t h e s e measurements t h e hemoglobin i s not appreciably d i s s o c i a t e d ; t h e s e measurements do show t h e e f f e c t o f t h e t o t a l p r o t e i n concentra- t i o n on t h e sedimentation c o e f f i c i e n t . I n f i g u r e 1 i s seen a p l o t of t h e sedimentation c o e f f i c i e n t of carbonmonoxyhemoglobin a g a i n s t con- c e n t r a t i o n a t n e u t r a l pH, A t zero concentration t h e value o f t h e sedi- mentation c o e f f i c i e n t of hemoglobin approaches t h e value 4.50 Svedbergs;

this value is taken t o be t h e sedimentation c o e f f i c i e n t o f undissociated hemoglobin. The concentration dependence of t h e a c i d d i s s o c i a t i o n o f carbonmonoxyhemoglobin has been s t u d i e d a t pH 5.0. I n f i g u r e 2 t h e sedimentation c o e f f i c i e n t o f carbonmonoxyhemoglobin as a f u n c t i o n of t o t a l concentration i s given a t pH 5.0. The value approached by t h e sedimentation c o e f f i c i e n t a t zero concentration a t t h i s pH i s 2.70 Svedbergs. This value i s taken t o be t h e sedimentation c o e f f i c i e n t of t h e hemoglobin h a l f molecule.

Since t h e values of t h e sedimentation c o e f f i c i e n t s of hemoglo- b i n and t h e hemoglobin h a l f molecule have been obtained from d a t a e x t r a p o l a t e d t o zero concentrationi i t is necessary t o c o r r e c t t h e measured sedimentation c o e f f i c i e n t s t o t h e values which would o b t a i n

(14)

F i g u r e 1

0

(15)
(16)

-10-

at i n f i n i t e d i l u t i o n . It i s seen i n f i g u r e 1 t h a t t h e sedimentation c o e f f i c i e n t o f undissociated hemoglobin i s 4.25 Svedbergs a t a t o t a l concentration of 1%; i t i s assumed t h a t t h e c o n t r i b u t i o n t o t h e t o t a l c o r r e c t i o n o f t h e measured sedimentation c o e f f i c i e n t s due t o t h e whole molecule w i l l amount t o 0.25 ~vedbergs/% to t a l p r o t e i n . The l a c t o - g l o b u l i n molecule has a f r i c t i o n a l c o e f f i c i e n t and a molecular weight c l o s e t o t h a t of t h e hemoglobin h a l f molecule. The e f f e c t o f t h e t o t a l p r o t e i n concentration on t h e sedimentation c o e f f i c i e n t o f t h i s m a t e r i a l amounts t o 0,125 S v e d b e r g s h t o t a l p r o t e i n (10). This same value has been assumed t o hold f o r t h e hemoglobin h a l f molecule.

I n o r d e r t o apply t h e s e c o r r e c t i o n s t o t h e measured sedimenta- t i o n c o e f f i c i e n t s , an approximate value of t h e degree o f d i s s o c i a t i o n w a s c a l c u l a t e d using t h e experimentally determined sedimentation coef- f i c i e n t i n equation

3,

S u b s t i t u t i n g t h e values o f t h e sedimentation c o e f f i c i e n t s o f hemoglobin and t h e hemoglobin h a l f molecule i n t o t h i s equation and rearranging, t h i s equation becomes:

The v a l u e s o f q obtained from t h i s equation were used i n an expression for SY, 2O t h e c o r r e c t i o n t o be a p p l i e d Co t h e measured sedimentation coefficient*:

The value o f t h e sedimentation c o e f f i c i e n t obtained by adding t h i s increment t o t h e experimentally determined value i s t h e sedimentation c o e f f i c i e n t c o r r e c t e d f o r f r i c t i o n a l e f f e c t s . I n t a b l e I a r e given t h e r e s u l t s o f t h e sedimentation c o e f f i c i e n t determinations f o r hemoglobin d e r i v a t i v e s and t h e values o f t h e s e q u a n t i t i e s a f t e r applying t h e above

(17)

Table I

Measured Sedimentation C o e f f i c i e n t s (S ) and Their w* 2 0

Corrected Values (S:, 20) of Derivatives o f Normal Human Hemoglobin at pH 5.0

Ekpt. No. Derivative Concentration S S

%

w* 20 W, 2 0

Carbonmonoxy F e r r i

Carbonmonoxy F e r r i

Carbonmonoxy F e r r i

Ferro

ow

Ferro OXY Ferro 0 XY

Ferro

Carbonmonoxy OXY

F e r r i

~ X Y

FerWro OXY Ferro oxy

Carbonmonoxy

(18)

c o r r e c t i o n . These c o r r e c t e d sedimentation c o e f f i c i e n t s a r e p l o t t e d i n f i g u r e s

3 - 6

f o r t h e s e d e r i v a t i v e s a t s e v e r a l concentrations.

I n f i g u r e

3

a r e shown t h e c o r r e c t e d sedimentation c o e f f i c i e n t s f o r oxyhemoglobin a t d i f f e r e n t concentration a t pH 5.0, The g r e a t s c a t t e r o f t h e s e p o i n t s i s probably due t o t h e extreme l a b i l i t y o f oxyhemoglobin t o o x i d a t i o n t o ferrihemoglobin i n a c i d s o l u t i o n . I n f i g u r e s

4, 5,

and 6 , a r e shown t h e c o r r e c t e d sedimentation c o e f f i c i e n t s o f ferrihemoglobin, ferrohemoglobin, and carbonmonoxyhemoglobin, re- s p e c t i v e l y , a t d i f f e r e n t concentrations,

Of t h e hemoglobin d e r i v a t i v e s shudied, i t appears t h a t a t a given concentration a t pH 5.0 t h e sedimentation c o e f f i c i e n t o f f e r r o - hemoglobin is g r e a t e r than t h a t o f t h e o t h e r m a t e r i a l s , For example, i n experiment 261 which was a simultaneous sedimentation experiment on t h e d e r i v a t i v e s carbonmonoxy- and ferrohemoglobin a t 0,7876 each, t h e c o r r e c t e d sedimentation c o e f f i c i e n t of carbonmonoxyhemoglobin i s

3.78

Svedbergs while t h a t of ferrohemoglobin i s 4.25 S, A d i f f e r e n c e i n t h e values o f t h e sedimentation c o e f f i c i e n t s o f t h e d e r i v a t i v e s may a r i s e from d i f f e r e n c e s i n t h e values o f t h e f r i c t i o n a l c o e f f i c i e n t s o f t h e m a t e r i a l s , I n t a b l e 11 a r e shown t h e r e s u l t s of sedimentation coef- f i c i e n t determinations on t h e d e r i v a t i v e s ferro-, oxy-, and ferrihemo- globin a t a pH o f 7.0, It i s seen t h a t t h e c o r r e c t e d sedimentation c o e f f i c i e n t s o f t h e s e d e r i v a t i v e s a g r e e well with t h e value o f t h e sedimentation c o e f f i c i e n t o f carbonmonoxy hemoglobin a t t h i s pH,

Shape f a c t o r s , t h e r e f o r e , do n o t account f o r t h e d i f f e r e n c e s observed a t pH 5.0, I n t a b l e I I S a r e presented t h e r e s u l t s o f molecular weight determinations by t h e method o f Archibald (11) on ferrohemoglobin and oxyhemoglobin a t pH 5.0, These molecular weights, though n o t i n

(19)
(20)
(21)

-15-

Figure

5

I I

\

- \ .. .. \ z - 61 0

-

_I

( 3 0

0

Lf-l

I I

= I a

I

0

CT

a

W

- LL

I I

0. Ln v m

Ln

-I\

0

0

-LC)

0

Ln

-a

0

0 m

(22)

-16- Figure

6

(23)

agreement with t h e sedimentation c o e f f i c i e n t d a t a f o r t h e s e m a t e r i a l s a t pH 5.0 and a t t h e concentration 0.5&, do show t h e molecular weight of oxyhemoglobin t o be s i g n i f i c a n t l y l e s s than t h a t of ferrohemoglobin,

Table I1

Measured Sedimentation C o e f f i c i e n t s (Sw,20) and Their Corrected Values (S;, 20 ) of Derivatives of

Normal Human ~ e m o ~ l o b i n a t pH 7.0

Derivative Concentration

%

266 Ferro O,86 4.24 4.46

266 OXY 0.86 4,23 4.45

267 Ferro 0.43 4.37

4.48

267 OXY 0.43 4.34 4.45

282 F e r r i 0.27 4.40 4*47

282 F e r r i 0.54 4.26 4,40

Table I11

Molecular Weights of Oxyhemoglobin and Ferrohernoglobin a t Equal Concentration i n Solutions of pH 5.0

Expt, No. Derivative Concentration % Molecular Weight

269 Ferro 0.56 64,600

A s u i t a b l e parameter f o r t h e demonstration of any i n t r i n s i c d i f f e r e n c e i n t h e molecular d i s s o c i a t i o n behavior of t h e s e d e r i v a t i v e s i s t h e apparent d i s s o c i a t i o n constant K

~ P P ' For t h e purposes of t h e s e c a l c u l a t i o n s , i t has been assumed t h a t t h e d i s s o c i a t i o n of hemoglobin d e r i v a t i v e s i n a c i d s o l u t i o n produces non-identical h a l f molecular spe- e i e s ' m , The apparent d i s s o c i a t i o n constant K i s , i n t h i s case:

aPP

(24)

I n t h i s expression MW

undissoc

.

i s t h e gram molecular weight o f human hemoglobin,

66,800.

The q u a n t i t y a i s t h e second approximation of

2

t h e degree o f d i s s o c i a t i o n c a l c u l a t e d using t h e c o r r e c t e d values o f t h e measured sedimentation c o e f f i c i e n t s t a b u l a t e d ( t a b l e I ) i n equa- t i o n

6.

I n t a b l e I V a r e t h e values of t h e apparent d i s s o c i a t i o n con- s t a n t s f o r t h e d i f f e r e n t d e r i v a t i v e s using t h e d a t a o f t a b l e

H,

It appears from t h e apparent d i s s o c i a t i o n c o n s t a n t s i n t a b l e I V t h a t t h e r e i s an e f f e c t of t h e n a t u r e o f a hemoglobin d e r i v a t i v e on t h e e x t e n t of d i s s o c i a t i o n i n a c i d , From t h e v a l u e s o f t h e s e c o n s t a n t s i t may be seen t h a t ferrihemoglobin d i s s o c i a t e s t o t h e g r e a t e s t e x t e n t while a t t h e same concentration ferrohemoglobin i s l e a s t d i s s o c i a t e d , The s c a t t e r of t h e sedimentation c o e f f i c i e n t s o f oxyhemoglobin seen i n f i g u r e

3

i s a g a i n manifested i n t h e d i s s o c i a t i o n c o n s t a n t s c a l c u l a t e d f o r t h i s m a t e r i a l , Since t h e values f o r oxyhemoglobin f a l l between those o f carbonmonoxyhemoglobin and ferrihemoglobin, i t appears t h a t t h e l a t t e r i s t h e contaminant i n t h e oxyhemoglobin experiments,

Discussion of R e s u l t s

The "hemelinked" a c i d groups o f hemoglobin d e r i v a t i v e s have been extensively i n v e s t i g a t e d

(51,

The a c i d d i s s o c i a t i o n c o n s t a n t s f o r t h e s e groups have been determined and found t o vary from one de- r i v a t i v e t o another, Tabulated i n t a b l e V a r e t h e pK values o f t h e s e

a

groups i n t h e d i f f e r e n t d e r i v a t i v e s . Of i n t e r e s t a r e t h e pKa v a l u e s o f t h e f i r s t hemelinked a c i d group, fa^ t h i s group would be most a f - f e c t e d a t pH 5,0 where t h e molecular d i s s o c i a t i o n r e a c t i o n has been

(25)

-19- Table I V

Apparent Dissociation Constants of Derivatives of Normal Adult Hemoglobin i n Ac-NaC1 Buffer pH 5,0, u = 0.25

Ekpt. No. Derivative Concentration % K X 1 0 5

aPP

Ferro Ferro Ferro Ferro Ferro Ferro F e r r i F e r r i F e r r i F e r r i

Carbonmonoxy Carbonmonoxy Carbonmonoxy Carbonmonoxy Carbonmonoxy

(26)

-20-

shown t o be a f f e c t e d by t h e nature of t h e hemoglobin d e r i v a t i v e . It has been shown t h a t t h e molecular d i s s o c i a t i o n r e a c t i o n involves t h e uptake o f a t l e a s t one proton f o r each hemoglobin molecule d i s s o c i a t e d

(3).

I f t h e f i r s t hemelinked a c i d group were t h e group r e c e i v i n g this proton i n t h e d i s s o c i a t i o n r e a c t i o n , i t would be expected t h a t t h e hemoglobin d e r i v a t i v e s would d i s s o c i a t e t o d i f f e r e n t e x t e n t s a t pH 5.0. Further, t h e ferrohemoglobin would be l e a s t d i s s o c i a t e d s i n c e t h e

f i r s t hemelinked a c i d group i n t h i s m a t e r i a l is, a t pH 5.0 only

64%

protonated a s opposed t o

85%

protonation of t h i s group i n t h e o t h e r d e r i v a t i v e s .

Table V

Hemelinked Acid Groups

Hemoglobin Group One Group Two Group Three

Derivative

PKa PKa PKa

F e r r i 5075 6.68 8.01

Carbonmonoxy (5.75)* (6.68)*

Ferro 3-25 7.93

*No values were found f o r t h e pKa values of car- bonmonoxyhemoglobin. Since t h e i r o n i s bonded covalently through d2s p 3 bonds i n both oxy and carbonmonoxyhemoglo- b i n i t has been assumed t h a t t h e i r pKa values a r e equal.

I n order t o reasonably compare t h e change of t h e pKa of t h i s f i r s t hemelinked a c i d group with t h e change of t h e apparent d i s s o c i a - t i o n c o n s t a n t s of t h e d e r i v a t i v e s , t h e negative logarithms of t h e s e quantitieshavebeencalculated. ThesepK v a l u e s a r e s h o w n i n

aPP

t a b l e V I . It i s seen t h a t t h e value of t h e pK of ferrohemoglobin, aPP

5.35

0.15, d i f f e r s most from t h e corresponding values f o r t h e o t h e r
(27)

-21-

d e r i v a t i v e s ; and a l s o t h e pK values f o r f e r r i - , oxy-, and carbon- aPP

monoxyhemoglobin a r e equal within t h e l i m i t s o f e r r o r , Table V I

Values of t h e Negative Logarithms o f Apparent D i s s o c i a t i o n Constants o f

Hemoglobin D e r i v a t i v e s

Hemoglobin Average K

Derivative (x 1 0 ~ ) ~PKaPP ~ ~

F e r r i 5.2 2 1.2 4.3 L 0 - 2

OXY

3.1

2 0.9 4 - s ~ 0 - 1 5

Carbonmonoxy 2.4 2

0-8

4 - 6 = ~ 0.1'

Ferro 0 - 5

+

0.2

5 . 3 5 ~

0.15

The a c i d c o n s t a n t s o f t h e hemelinked a c i d groups o f hemoglo- b i n were determined by t i t r a t i o n s of t h e d e r i v a t i v e s

(5).

There w a s no c o n s i d e r a t i o n made o f t h e molecular d i s s o c i a t i o n of t h e s e d e r i v a t i v e s i n a c i d s o l u t i o n a t t h e time t h e s e c o n s t a n t s were evaluated. It i s p o s s i b l e t h a t t h e t i t r a t i o n s r e f l e c t n o t only t h e protonation o f t h e hemelinked a c i d groups but a l s o t h e protonation of a c i d groups ex- posed t o r e a c t i o n by t h e d i s s o c i a t i o n . The d i f f e r e n c e between t h e pK values of ferrohemoglobin and t h e o t h e r d e r i v a t i v e s i s t h e r e f o r e

a

not d i r e c t l y comparable t o t h e d i f f e r e n c e s between t h e pK value o f aPP

ferrohemoglobin and t h e o t h e r m a t e r i a l s ,

It i s s i g n i f i c a n t t h a t , i n t h e t e r t i a r y s t r u c t u r e published f o r horse hemoglobin (121, t h e hemelinked h i s t i d i n e i s seen t o form t h e bond between t h e non-identical chains of t h i s m a t e r i a l , Human hemoglobin i s known t o d i s s o c i a t e i n t o non-identical s u b u n i t s i n a c i d s o l u t i o n ( l g ) , and may be expected t o have a s t r u c t u r e similar t o t h a t of horse hemoglobin.

(28)

PART I1

CARBON-14 LABELLED H B R I D S OF NORMAL ADULT AND S I C K L E CELL EEMOGLOBINS

(29)

A. PREPARATION

AND

ISOLATION OF

CARBON-14

LABELLED HYBRIDS OF NOFZMAL ADULT AND SICKLE CELL HEMOGXQBIN

I n t r o d u c t i o n

The d i s e a s e s i c k l e c e l l anemia has received much study s i n c e i t was f i r s t reported i n t h e medical l i t e r a t u r e by Herrick (14) i n 1910, Herrick described t h e c l i n i c a l manifestations of an i n d i v i d u a l a f f l i c t e d with t h e disease, Other workers have described t h e p e c u l i a r change i n shape of t h e red blood c e l l s of such i n d i v i d u a l s under con- d i t i o n s of decreased oxygen pressure and have noted t h e r e v e r s i b i l i t y o f t h i s change on r e t u r n i n g t h e pressure t o normal. The r o l e of oxygen and o t h e r l i g a n d s on t h e heme i n a f f e c t i n g t h i s shape change has been s t u d i e d q u a l i t a t i v e l y and q u a n t i t a t i v e l y f o r many years.

It was n o t u n t i l 1 9 4 9 , however, t h a t t h e p e c u l i a r p r o p e r t i e s of t h e s e r e d blood c e l l s were recognized a s being due t o an abnormality of t h e oxygen c a r r y i n g pigment, hemoglobin (15 )

.

I n t h i s work e l e c t r o p h o r e t i c s t u d i e s were done on t h e hemoglo- b i n from normal i n d i v i d u a l s and on t h e hemoglobin from persons who had t h e d i s e a s e s i c k l e c e l l anemia (15). It w a s found t h a t t h e r e e x i s t e d mobility d i f f e r e n c e s between t h e two hemoglobins i n t h e region of t h e i r i s o e l e c t r i c points. This mobility d i f f e r e n c e corresponded t o a d i f -

ference i n n e t charge of t h e hemoglobins. Since t h i s discovery t h e r e have been i d e n t i f i e d more than IjS d i f f e r e n t human hemoglobins using

t h e e l e c t r o p h o r e t i c technique and o t h e r s (16).

(30)

4 3 -

%he main emphasis i n t h e study of these rqabnomalw'hemoglobins has been i n the elucidation of chemical d i s t i n c t i o n s between t h e s i c k l e c e l l type and normal a d u l t hemoglobin. With the electrophoretic d i f - ference t o account f o r , the f i r s t s t e p taken was a study of the heme groups of t h e two proteins (15). These s t u d i e s indicated no differences i n t h e c r y s t a l s t r u c t u r e s of the prosthetic groups o f t h e proteins, Further electrophoretic s t u d i e s of t h e globin a o i e t i e s from these hemo- globins showed t h a t i t was i n the polypeptide chains t h a t t h e anomalies were t o be found, T j t r a t i o n s t u d i e s were undertaken i n an attempt t o i d e n t i f y t h e m i n o acid residues reajponsible f o r t h e difference i n charge of t h e proteins. Lack of s u i t a b l e s e n s i t i v i t y of t h e t i t r a t i o n s obviated t h e success of t h i s method, Total amino acid analyses (17)

f a i l e d a l s o t o account f o r the differences, These amino a c i d analyses did, however, point out t h e c l o s e s i m i l a r i t y o f amino a c i d composition of t h e two heaoglobins, Ehd group analyses using the method of Sanger demonstrated t h a t the two hemoglobins were each composed of two d i f - ferent polypeptide chains, occurring i n p a i r s and having the same N- terminal sequences (17,18), Using combined paper chromatography and paper electrophoresis on hydrolysates of normal a d u l t and s i c k l e c e l l hemoglobins Ingram (19) was a b l e t o obtain charac t e r i s t i e "fingerprints"

of the two hemoglobins. Elution of the d i f f e r i n g polypeptide s p o t s on t h e "Iingerprintsr8" and a n a l y s i s of these peptides showed the d i f - ference between the hemoglobins t o be due t o the s u b s t i t u t i o n i n s i c k l e c e l l hemoglobin of a v a l i n e residue f o r t h e glutamic a c i d r e s i - due found i n normal a d u l t hemoglobin. This finding accounted quanti- t a t i v e l y f o r the observed difference i n electrophoretic mobility be- tween the two hemoglobins.

(31)

-24-

I n h i s work, Ingram found only 26 peptide fragments f o r both normal a d u l t and s i c k l e c e l l hemoglobin a p a r t from a t r y p t i c h y d r o l y s i s r e s i s t a n t "core". This number of p e p t i d e s was s i g n i f i c a n t i n t h e sense t h a t i t demonstrated again t h e o v e r a l l s i m i l a r i t y o f t h e two hemoglo- b i n s . With such o u t s t a n d i n g s i m i l a r i t i e s o f t h e two hemoglobins, t h e p o s s i b i l i t y e x i s t e d t h a t t h e anomaly w a s confined t o only a small region o f t h e s i c k l e c e l l molecule. It was known t h a t t h e two poly- p e p t i d e c h a i n s , designated as t h e a and t h e

p

c h a i n s , of t h e two hemo- g l o b i n s had t h e same N-terminal sequences, The work o f Ingram, however, l e f t unanswered t h e q u e s t i o n o f t h e chemical i d e n t i t y o f t h e polypeptide c h a i n s having t h e same composition i n t h e two hemoglobins,

I n P a r t I of t h i s Thesis, mention has been made o f t h e a c i d induced d i s s o c i a t i o n o f human hemoglobin. A f t e r passing through a minimum i n d i s s o c i a t i o n i n t h e r e g i o n o f n e u t r a l i t y , hemoglobin under- goes a n o t h e r d i s s o c i a t i o n i n a l k a l i n e s o l u t i o n ; t h i s molecular d i s s o c i - a t i o n i s more s t r o n g l y dependent on t h e hydrogen i o n c o n c e n t r a t i o n (20).

Knowing o f t h e a c i d d i s s o c i a t i o n o f normal a d u l t and s i c k l e c e l l hemoglobins, Singer and I t a n o (21) attempted t o form lthybridstl o f t h e two hemoglobins by d i s s o c i a t i o n o f mixtures o f t h e p r o t e i n s f o l - lowed by d i a l y s i s t o n e u t r a l i t y , Free boundary e l e c t r o p h o r e s i s w a s done on t h e s e recombined mixtures. I n explaining t h e i r l a c k o f suc- c e s s i n forming new e l e c t r o p h o r e t i c s p e c i e s , t h e s e workers suggested t h a t t h e hemoglobins recombined asymmetrically such t h a t , even i n t h e event o f chain exchange, no new e l e c t r o p h o r e t i c s p e c i e s would be formed. It w a s a t t h i s p o i n t t h a t t h e experiments r e p o r t e d i n t h i s Thesis were begun. The f i r s t a t t e m p t s made i n t h i s i n v e s t i g a t i o n a t forming lfhybridsfv c o n s i s t e d i n l a b e l l i n g one o f t h e hemoglobins with

(32)

i o d o a c e t i c a c i d , iodoacetamide, para-chloromercuribenzoic a c i d , o r dimethylnaphthalene sulfonylchloride. Due e i t h e r t o l a c k of s u f f i c i e n t time f o r chain exchange t o occur o r t o unfavorable s t e r i c e f f e c t s o f t h e s e l a b e l s , none of t h e s e e a r l y experiments c l e a r l y demonstrated t h a t chain exchange had taken place. It w a s then decided t o attempt h y b r i d i z a t i o n experiments with r a d i o a c t i v e l y l a b e l l e d hemoglobins.

Indeed, t h e f i r s t evidence o f chain exchange between t h e two hemoglo- b i n s i n t h i s work was obtained using C" l a b e l l e d normal hemoglobin and u n l a b e l l e d s i c k l e c e l l hemoglobin. Because of t h e p o t e n t i a l u s e s o f s u i t a b l y a c t i v e hybrid hemoglobins, a method w a s developed f o r pro- ducing and i s o l a t i n g highly r a d i o a c t i v e hemoglobin hybrids, i n which only one type o f subunit i s r a d i o a c t i v e and t h e o t h e r i s s u b s t a n t i a l l y i n a c t i v e . I n t h e course o f t h i s work chain exchange h a s been observed a f t e r d i s s o c i a t i o n of hemoglobin mixtures i n both a c i d and a l k a l i n e s o l u t i o n .

Procedure

Since hemoglobin d i s s o c i a t e s r e v e r s i b l y i n both a c i d and alka- l i n e s o l u t i o n , hybrid hemoglobins have been formed a f t e r d i s s o c i a t i o n under both conditions. Equimolar mixtures of carbonmonoxy s i c k l e c e l l hemoglobin Hbs(CO), and carbonmonoxy a d u l t hemoglobin HbA(C0) were d i a l y s e d f o r 24 hours a g a i n s t e i t h e r an a c i d o r a l k a l i n e b u f f e r a t 3@C. The a c i d b u f f e r was an a c e t i c acid-sodium a c e t a t e b u f f e r o f pH 5.0 having t h e composition: 0.042 N HAc, 0.10 M NaAc, 0.15 M NaC1.

m e a l k a l i n e b u f f e r was t h e b u f f e r o f Hasserodt and Vinograd (20)

having a pH o f 11.0, and u = 0.35 with t h e composition: 0.033 M N a 2 H P O L , 0,0167 M Ha,POL, 0.15 M NaC1. After d i s s o c i a t i o n of a mixture o f t h e

(33)

-26-

hemoglobins, t h e m a t e r i a l s were d i a l y a e d t o a pH of 7.22, a g a i n s t t h e b u f f e r s p e c i f i e d as developer no, 1 by Allen, Schroeder, and Balog

( 2 2 ) . This developer has t h e composition: 0,024 M NaEL, PO,

,

0.050

M N a 2 H P 0 , , 0.01 M KCH. The hemoglobin mixtures were s e p a r a t e d chro- matographically on IRC-50 columns i n equilibrium with t h i s developer,

I n t h e s e experiments one o f t h e hemoglobins i n t h e mixtures was uniformly l a b e l l e d with carbon-14 c o n t a i n i n g amino a c i d s , Upon forma- t i o n o f hybrids r a d i o a c t i v i t y was t r a n s f e r r e d t o t h e o t h e r i n i t i a l l y non-radioactive hemoglobin, I n experiments u s i n g r a d i o a c t i v e s i c k l e c e l l hemoglobin i t was necessary t o remove t h e f a s t minor components from t h e HbS before h y b r i d i z a t i o n s i n c e t h e s e minor components have t h e same chromatographic p r o p e r t i e s a s FhA (23). This was accomplished by chromatography o f from

50

t o 100 mg, o f t h e r a d i o a c t i v e s i c k l e c e l l hemoglobin on columns i n equilibrium with developer no, 2, Only t h e major s i c k l e c e l l hemoglobin component recovered from t h e s e columns w a s Used i n t h e subsequent h y b r i d i z a L ~ o n experiments.

P r e p a r a t i o n of M a t e r i a l s Unlabelled Normal Adult and S i c k l e C e l l Hemoalobins

The u n l a b e l l e d hemoglobins were prepared from f r e s h l y drawn r e d blood c e l l s from e i t h e r normal o r s i c k l e c e l l anemic donors, This procedure has been described i n P a r t I o f t h i s Thesis.

Uniformly Labelled Adult and S i c k l e C e l l Hemoalobins

It was necessary t h a t t h e r a d i o a c t i v e hemoglobins used i n pre- p a r i n g hemoglobin hybrids be uniformly l a b e l l e d i n t h e a and t h e

p

chains. It was a l s o d e s i r a b l e t h a t t h e amino a c i d chosen f o r t h e l a b e l occur with high frequency i n t h e hemoglobin molecule t o a s s u r e

(34)

-27-

t h e highest p o s s i b l e incorporation of r a d i o a c t i v i t y i n t o t h e hemoglobino A t t h e o u t s e t of t h i s work nothing w a s known of t h e r e l a t i v e composi- t i o n s of t h e a and t h e $ chains; i t w a s f e l t , however, t h a t l e u c i n e would f u l f i l l t h e s e two requirements. This w a s a f o r t u n a t e choice f o r i t has been shown by H i l l and Craig (24) t h a t t h e r e is an equal number of l e u c i n e r e s i d u e s i n t h e two chains, The incorporation of C' -1- l e u c i n e thus a s s u r e s equal s p e c i f i c a c t i v i t i e s i n both chains,

Blood samples containing from

15%

t o 66% r e t i c u l o c y t e s were obtained from donors having acquired hemolytic o r s i c k l e c e l l anemias, After f o u r washings of t h e r e t i c u l o c y t e - r i c h r e d blood c e l l s with cold i s o t o n i c s a l i n e s o l u t i o n t h e incorporation of t h e d b - 1 - l e u c i n e w a s begun using a modification of t h e procedure o f Borsook, e t a1 (25) f o r t h e incorporation of r a d i o a c t i v e amino a c i d s i n t o r a b b i t hemoglobin, This procedure w a s begun within two hours a f t e r t h e red blood c e l l s were drawn, The complete incubation medium was prepared using t h e s t o c k s o l u t i o n s described i n Table V I I , The following amounts of t h e s e s t o c k s o l u t i o n s were added t o each 1 0 m l , of packed r e d blood c e l l s from t h e last wash:

5.85

m l . of amino a c i d mixture without l e u c i n e , 0.60 m l , of glucose s o l u t i o n , 1,2 m l o glutarnine s o l u t i o n ,

1.8

m l , o f NaHCOJ s o l u t i o n , and

l l , 7

m l . of f e r r o u s ammonium s u l f a t e s o l u t i o n . To t h i s mixture w a s added 7 micromoles, 50 uc, of Nuclear-Chicago uni- formly l a b e l l e d

d

-1-leucine dissolved i n 0.5 m l , NKM s a l i n e s o l u t i o n .

The complete incubation mixture was separated i n t o 2 m l , por- t i o n s i n 20 m l , beakers which were then placed i n a Dubnoff Shaking Incubator under an atmosphere of 95% C0, -SOB2

.

After incubation f o r four hours, t h e red blood c e l l s were washed f o u r times i n c o l d i s o t o n i c s a l i n e s o l u t i o n , The supernatant s o l u t i o n s r e s u l t i n g from t h e
(35)

Table V I I

S o l u t i o n s Required f o r Incubations

NKM S a l i n e , 0.13

M

N a C 1 , 0,005 M K C 1 , 0,0075 M MgC1,.

This s o l u t i o n was prepared u s i n g r e d i s t i l l e d water, Glucose i n NKM, 0.22 M Glucose i n NKM s a l i n e , This s o l u t i o n was prepared f r e s h l y f o r each incubation.

Ferrous Ammonium S u l f a t e . 0.01 M Fe(NH4 ) k (SO,,

I3

i n NKM

s a l i n e , T h i s s o l u t i o n w a s prepared f r e s h l y f o r each i n - cubation.

Glutamine i n NKM. 0.01 M glutamine i n NKM s a l i n e . This s o l u t i o n may be prepared i n q u a n t i t y , s t o r e d frozen and thawed o u t as needed f o r use,

Sodium Bicarbonate, 0.27 M NaHC05 i n r e d i s t i l l e d water, This s o l u t i o n was prepared f r e s h f o r each incubation.

T o t a l Amino Acid Solution. This s o l u t i o n contained t h e following amounts of amino a c i d s expressed as mg, per 1000 m l , of NKM s a l i n e s o l u t i o n : 1-alanine

180,

l - a r g i - n i n e 100, 1 - a s p a r t i c a c i d

380,

1-cysteine 5 0 , g l y c i n e 400, I - h i s t i d i n e HC1.40 500, 1-hydroxyproline 150, l- i s o l e u c i n e 52, (1-leucine 5Z), 1 - l y s i n e H C 1 330, 1- methionine 50, 1-phenylalanine 260, 1-proline 160, 1- s e r i n e 175, 1-threonine 200, 1-tryptophan 60, 1 - t y r o s i n e 150, and 1-valine 370. This s o l u t i o n was heated t o a b o i l t o d i s s o l v e a l l amino a c i d s a f t e r which t h e pH w a s a d j u s t e d t o 7.0 with

5

M NaOH. This s t o c k s o l u t i o n w a s s t o r e d frozen i n small l o t s which were thawed o u t as needed f o r i n c u b a t i o n s , For t h e i n c u b a t i o n s i n which d 4 - 1 - l e u c i n e was i n c o r p o r a t e d i n t o hemoglobin t h i s s t o c k s o l u t i o n was made up omitting 1-leucine,

c e n t r i f u g a t i o n o f each o f t h e s e washings was consolidated and d i s p o s e d o f with r a d i o a c t i v e waste, The f u r t h e r p r e p a r a t i o n of t h e r a d i o a c t i v e hemoglobins w a s t h e same as previously described i n t h i s Thesis. The r e s u l t i n g hemoglobin s o l u t i o n s were d i a l y z e d a g a i n s t f o u r 2 l i t e r changes o f d i s t i l l e d water t o remove t h e last t r a c e s o f unincorporated d 4 - 1 - l e u c i n e . Depending roughly on t h e percentage o f r e t i c u l o c y t e s i n t h e r e d blood c e l l s incubated, t h e s p e c i f i c a c t i v i t i e s obtained i n t h e l e u c i n e l a b e l l e d hemoglobins ranged from l 9 O O t o 10,000 cpm/mg,

(36)

-29-

The s p e c i f i c a c t i v i t i e s of hemoglobin samples from s e v e r a l of t h e s e p r e p a r a t i o n s a r e given i n t a b l e V I I I ,

Table V I I I

S p e c i f i c A c t i v i t i e s o f Hemoglobins i n S e v e r a l P r e p a r a t i o n s

M a t e r i a l

9fo

R e t i c u l o c y t e s Label S p e c i f i c A c t i v i t y c pm/mg

~ b

s 18.9

l e u c i n e 1660

Hb A 40.0 l e u c i n e 7000

Hb S 34,O l e u c i n e 2700

Hb A 24,4 l e u c i n e 2800

Hb A 66.0 Leucine 11000

Hb S 18.9 Alga1,Hyd.

5

100

Hb S 18.9 Methionine 112

Hb S

18 ,

9 Tryptophan

135

Hb S 18.9 Fe

5 9

2660

Hemoglobin was prepared using amino a c i d s o t h e r than

d

-1- l e u c i n e . Also one p r e p a r a t i o n was made using an a l g a l h y d r o l y s a t e and one u s i n g pe5' as t h e l a b e l . The s p e c i f i c a c t i v i t i e s obtained i n t h e s e p r e p a r a t i o n s a r e a l s o given i n t a b l e V I I I , The d e t a i l e d method o f p r e p a r a t i o n o f t h e s e l a b e l l e d hemoglobins i s given i n Appendix 111.

The hemoglobins l a b e l l e d r e s p e c t i v e l y with methionine and tryptophan were t o be used i n forming hybrids; t r y p t i c d i g e s t i o n o f t h e s e hybrids and f i n g e r p r i n t i n g by t h e method o f Ingram (19) were planned, Radioautograms o f t h e f i n g e r p r i n t s would show t h e d i s t r i b u - t i o n o f t h e r e l a t i v e l y r a r e amino a c i d s , methionine and tryptophan,

(37)

-30-

between t h e a and t h e $ chains. During t h e course of t h i s work, a r e - p o r t of t h e s u c c e s s f u l s e p a r a t i o n of t h e a and t h e f3 chains and t h e amino a c i d analyses of t h e i n d i v i d u a l chains w a s published (24), The program f o r s o l u t i o n of t h e problem using t h e methionine and tryptophan l a b e l l e d hybrids w a s t h e r e f o r e abandoned.

Chroma t o graphy Preparation o f Resin f o r Chromatoaraphy

Two pounds o f IRC-50 Amberlite r e s i n were t r a n s f e r r e d i n a hood t o a j a r containing -16 l i t e r s of d i s t i l l e d water. The suspension of r e s i n i n water w a s s t i r r e d vigorously f o r f i v e minutes using an e l e c t r i c s t i r r e r a f t e r which t h e r e s i n w a s allowed t o s e t t l e and t h e supernatant decanted o f f , This process was repeated a t o t a l of f o u r times. The p r e c i p i t a t e from t h e last wash with d i s t i l l e d water was placed on a l a r g e r Buchner funnel and washed with

6

l i t e r s of

4

N HC1. With t h e r e s i n now i n i t s a c i d form i t w a s again washed with d i s t i l l e d water t o remove excess HCl.

The r e s i n of t h e c o r r e c t s i z e f o r use i n t h e chromatographic columns was separated and i s o l a t e d by t h e hydraulic method of Hamilton (26), a s described by Moore and S t e i n (27). This method c o n s i s t e d i n t h e d i f f e r e n t i a l f l o t a t i o n of t h e r e s i n p a r t i c l e s i n a Corning 6400 c o n i c a l separatory funnel. P a r t i c l e s of a s i z e smaller than 250 mesh were removed by f l o t a t i o n a t a flow r a t e of

315

ml./min.; those o f a s i z e from 250 t o 200 mesh were removed by f l o t a t i o n a t a r a t e of 525 ml,/min, The apparatus used i n t h e s e s e p a r a t i o n s w a s previously c a l i - b r a t e d using r e s i n p a r t i c l e s of 200-250 mesh which had been separated by screening,
(38)

-31-

The r e s i n p a r t i c l e s of t h e c o r r e c t s i z e were changed i n t o t h e sodium form by suspension i n 2 M NaOH, Excess base was removed by suspending t h e r e s i n again i n 4 x 10 l i t e r s of d i s t i l l e d water. After t h e last of t h e s e four suspensions, t h e supernatant gave only a s l i g h t l y a l k a l i n e r e a c t i o n with u n i v e r s a l litmus paper. The r e s i n w a s then sus- pen(ied5nth.e chromatographic developer with which i t w a s t o be used,

-

Preparation of Columns f o r Chromatoaraphy

The chromatographic columns were prepared by t h e method of Allen, Schroeder, and Balog (221, and were t h e same dimensions as those o f t h e s e authors, The columns were e q u i l i b r a t e d a t 6OC, by allowing approximately one l i t e r of developer no, 1 t o flow through t h e r e s i n bed,

Separation of Mixtures of Normal Adult and S i c k l e C e l l Hemo~lobins Mixtures of t h e two hemoglobins c o n t a i n i n g from 20 t o 5 0 mg, t o t a l p r o t e i n i n 2 t o

3

m l , of developer no, 1 were layered on t o p of t h e r e s i n beds of t h e e q u i l i b r a t e d columns. The normal a d u l t hemoglo- b i n w a s e l u t e d at 6OC, reaching a maximum of concentration a t 22 m l , e l u a t e , and t a i l i n g o f f t o inappreciable c o n c e n t r a t i o n s a t

40

through 50 m l , The flow of developer w a s then stopped, a f t e r which t h e tempera-

t u r e o f t h e jacketed columns w a s r a i s e d t o 2 8 0 ~ . Allowing from

15

t o 20 minutes f o r t h e r e s i n t o reach t h i s temperature, t h e flow of de- veloper w a s again s t a r t e d . The s i c k l e c e l l hemoglobin w a s desorbed a t t h i s temperature, reaching a maximum of concentration a t about 5 2 m l , e l u a t e ,

The concentrations of t h e chromatographic f r a c t i o n s were meas- ured s p e c t r o m e t r i c a l l y with a Beckman Model DU spectrophotometer, The o p t i c a l d e n s i t i e s of t h e s o l u t i o n s were measured a t t h e wavelengths of

(39)

-32-

415 mu o r

539

mu, corresponding t o absorption maxima of carbonmonoxy- hemoglobin; o r , i n c a s e s where i t w a s believed t h a t t h e hemoglobin f r a c t i o n s were contaminated with ferrihemoglobin cyanide, t h e measure- ments were made a t t h e carbonmonoxy-ferrihemoglobin cyanide i s o b e s t i c p o i n t , 522 mu,

Measurement of Radioactivity i n Hemoglobin Samples

The s p e c i f i c a c t i v i t i e s of hemoglobin samples and chromatographic f r a c t i o n s were measured using a Nuclear-Chicago gas flow Geiger c o u n t e r , Model D-47, equipped with a ffmicromilfl window. For counting, t h e hemo- globin samples were placed on p l a n c h e t t e s i n volumes o f 0.5 o r 1 , O m l , o f developer. The s o l u t i o n s were evaporated t o dryness with a h e a t lamp b e f o r e counting. Generally, no more than 0.5 mg, o f p r o t e i n w a s placed on t h e s e planchettes. A s may be seen from f i g u r e

7,

no correc- t i o n s were r e q u i r e d f o r s e l f a b s o r p t i o n by t h e hemoglobin. No correc- t i o n s were made f o r absorption by t h e b u f f e r salts s i n c e t h e s e were always present i n constant amounts.

R e s u l t s o f Hybridization Experiments

Early experiments i n d i c a t e d t h a t hybrids were formed only a f t e r d i s s o c i a t i o n a t a c i d pH, These experiments c o n s i s t e d i n allowing mix- t u r e s o f C' -1-leucine l a b e l l e d normal a d u l t hemoglobin and i n a c t i v e s i c k l e c e l l hemoglobin t o s t a n d a t pH 4,5 o r 1 1 , O f o r a time o f one hour. A f t e r d i s s o c i a t i o n of t h e m a t e r i a l s a t t h e r e s p e c t i v e pH values, t h e s o l u t i o n s were dialyzed a g a i n s t a b a r b i t a l b u f f e r o f pH

8.6,

u = .01, The hemoglobins were s e p a r a t e d by f r e e boundary electropho- r e s i s i n t h e Spinco Model H, c u r r e n t

8

m a f o r

5

hours. Good resolu- t i o n o f t h e hemoglobins was obtained i n both t h e ascending and descend- i n g limbs, The hemoglobin samples were removed from t h e r e g i o n s
(40)
(41)

-34-

corresponding t o t h e f a s t and slow components using t h e sampling mecha- nism o f t h e Spinco instrument. Due t o t h e small amount of pure normal a d u l t o r s i c k l e c e l l helnoglobin which could be recovered by t h i s method, i t w a s not p o s s i b l e t o determine a c c u r a t e l y t h e amounts o f hemoglobins u l t i m a t e l y counted. Attempts were made t o count comparable amounts of t h e two hemoglobins however. The r e s u l t s of experiments o f t h i s type a r e s e e n i n t a b l e

IX.

It may be seen t h a t t h e r e i s an a p p r e c i a b l e t r a n s f e r o f a c t i v i t y t o t h e i n i t i a l l y u n l a b e l l e d s i c k l e c e l l hemoglo- b i n only a f t e r d i s s o c i a t i o n a t pH

4.5.

S e p a r a t i o n s of t h e hybridized mixtures o f t h e hemoglobins by f r e e boundary e l e c t r o p h o r e s i s d i d n o t allow t h e i s o l a t i o n o f u s e f u l amounts o f hybrids and were abandoned i n favor o f chromatographic

s e p a r a t i o n s . I n t h e course o f t h i s work i t was found t h a t by allowing hemoglobin mixtures t o remain a t pH 11.0 f o r 24 hours a t 3 O C . a s i g n i -

f i c a n t t r a n s f e r of a c t i v i t y t o t h e previously u n l a b e l l e d hemoglobin would occur. I n t h e s e experiments t h e hemoglobins were l a b e l l e d as d e s c r i b e d i n t h i s Thesis and were separated chromatographically as described. The r e s u l t s of a t y p i c a l h y b r i d i z a t i o n experiment a f t e r d i s s o c i a t i o n a t pH 11.0 and t h e chromatographic s e p a r a t i o n of t h e hemo- g l o b i n s i n t h e mixture i s seen i n f i g u r e

8.

Also seen i n t h i s f i g u r e a r e t h e r e s u l t s of a chromatographic s e p a r a t i o n of an u n d i s s o c i a t e d mixture o f t h e same m a t e r i a l s . The s i c k l e c e l l hemoglobin, uniformly l a b e l l e d with @ 4 - ~ - ~ e u c i n e , and t h e u n l a b e l l e d normal a d u l t hemoglo- b i n used i n t h e s e experimentswere s u b s t a n t i a l l y f r e e d chromatographically of minor components p r i o r t o t h e s e h y b r i d i z a t i o n experiments. I n

f i g u r e 9 a r e shown t h e r e s u l t s o f chromatographic s e p a r a t i o n s o f d4-1- l e u c i n e l a b e l l e d normal a d u l t hemoglobin and u n l a b e l l e d s i c k l e c e l l

(42)

-35 -

Table I X

Hybridization o f C' Labelled Normal Adult Hemoglobin with Unlabelled S i c k l e C e l l Hemoglobin

Net A c t i v i t y Net A c t i v i t y T o t a l A c t i v i t y a p t o No, Normal Adult S i c k l e C e l l Expected

(CPN (CPM) (CPM)

hemoglobin i n t h e absence o f h y b r i d i z a t i o n and a f t e r d i s s o c i a t i o n a t pH 5,0, I n experiments using l a b e l l e d normal hemoglobin i t w a s not necessary t o remove minor components p r i o r t o h y b r i d i z a t i o n s i n c e t h e s e minors do n o t contaminate t h e chromatograph of t h e s i c k l e c e l l hemo- g l o b i n f r a c t i o n , I n s p e c t i o n o f t h e chromatograms of t h e hybridized mixtures and comparison with t h e chromatograms of t h e unhybridized mixtures show t h a t t h e r e a r e no new chromatographic s p e c i e s formed as t h e r e s u l t o f chain exchange,* Observed, however, i s a t r a n s f e r o f r a d i o a c t i v i t y i n t o t h e i n i t i a l l y unlabelled hemoglobins as a r e s u l t o f t h e d i s s o c i a t i o n s ,

I n t a b l e X a r e summarized t h e r e s u l t s o f s e v e r a l h y b r i d i z a t i o n experiments, Experiments 1

-

7 show t h e r e s u l t s of chain exchange a f t e r a l k a l i n e d i s s o c i a t i o n , while experiments 1 0

- 13

show t h e re- s u l t s o f subunit exchange a f t e r a c i d d i s s o c i a t i o n . Experiments

8, 9,

*The chromatography protocol s h e e t s from which t h e d a t a o f t h e s e f i g u r e s were taken a r e presented i n Appendix IV.

(43)
(44)
(45)

Table X

R e s u l t s o f Hybridizakion Experiments

Expt

.

S p e c i f i c A c t i v i t y S p e c i f i c A c t i v i t y Percent

No

.

pH of Reactants of Products Hybridization

HbA HbS Hb A HbS

*Only samples of t h e most c o n c e n t r a t e d chromatographic f r a c - t i o n s o f t h e products were counted.

**Only t h e r e s u l t i n g HbS hybrid was assayed f o r r a d i o a c t i v i t y ,

***This hemoglobin mixture was allowed t o remain a t pH = 5.0 f o r 5 days.

and 1 4 demonstrate t h e r e s u l t s of chromatographicseparations of undis- s o c i a t e d hemoglobin mixtures, The s p e c i f i c a c t i v i t i e s given i n t h i s t a b l e a r e t h e averages o f s p e c i f i c a c t i v i t i e s of hemoglobin samples from chromatographic f r a

Referensi

Dokumen terkait

Applications of High Pulsed Electric Field (HPEF) is based on two main theories, namely the theory of electrical breakdown and electroporation membrane cell due to high pulsed

94 Figure 42 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. 95 Figure 43 Photos of

It was concluded Albizzia sawdust can be used as matrix in BT, but the residual should be replaced with fresh after 4 months usage due to maintain of BT performance.. Residual

xiii 2.5 Cell culture and transfection of HeLa cells 55 2.6 Double-stranded DNA preparation 55 2.7 Surface plasmon resonance SPR 56 2.8 Electrophoretic mobility shift assay EMSA 57

4 24 Positive rota virus ** R & C 15/76 FCK 4=Reo and Corona, 15th sample, year of isolation passages in foetal calf kidney cell cultures * Animal was sacrificed 24 h after

Organic Carbon Content = Morganic matter* 0.58 Moven-dry x100 4 Where, Morganic matter = Moven-dry – Mash Moven-dry = mass of the oven-dried sample 2.2.5 Ultimate Analysis The

In this Nyadran Tradition, the author presents primary data that will start from the beginning of the Nyadran event or starting from preparation, implementation, closing and will