• Tidak ada hasil yang ditemukan

Relation of Morrey Sequence Spaces, Weak Type Morrey Sequence Spaces, and Sequence Spaces

N/A
N/A
Protected

Academic year: 2024

Membagikan "Relation of Morrey Sequence Spaces, Weak Type Morrey Sequence Spaces, and Sequence Spaces"

Copied!
9
0
0

Teks penuh

(1)

Relation of Morrey Sequence Spaces, Weak Type Morrey Sequence Spaces, and Sequence Spaces

Pragasto Aji Hendro Puadi1*, Eridani1, Abdulloh Jaelani1*

1Department of Mathematics, Universitas Airlangga, Surabaya, Indonesia

Article history:

Received Apr 26, 2022 Revised, Jun 5, 2022 Accepted, Jun 28, 2022

Kata Kunci:

Ruang Barisan, Ruang Morrey Ruang Morrey Tipe Lemah

Abstrak. Ruang Morrey merupakan ruang yang cukup penting dan banyak dikaji dalam banyak cabang matematika. Ruang Morrey tipe lemah merupakan ruang berorde semu dan memiliki sifat dasar yang sama dengan ruang barisan Morrey.Pada artikel ini diselidiki sifat elementer antara ruang barisan Morrey dan ruang barisan Morrey tipe lemah. Selanjutnya ditunjukkan hubungannya antara ruang barisan Morrey dan ruang barisan Morrey tipe lemah dengan ruang barisan. Berdasarkan hasil pembahasan diperoleh sifat elementer ruang barisan Morrey ℓ𝑝⊂ ℓ𝑞𝑝 dengan 1 ≤ 𝑝 ≤ 𝑞 < ∞ dan ℓ𝑞𝑝2 𝑞𝑝1 dengan 1 ≤ 𝑝1≤ 𝑝2≤ 𝑞 < ∞. Sifat elementer dari ruang barisan Morrey tipe lemah adalah ℓ𝑞𝑝⊆ 𝜔ℓ𝑞𝑝 dengan 1 ≤ 𝑝 ≤ 𝑞 <

∞, 𝜔ℓ𝑞𝑝2⊆ 𝜔ℓ𝑞𝑝1 dengan 1 ≤ 𝑝1≤ 𝑝2≤ 𝑞 < ∞ dan ruang barisan Morrey tipe lemah merupakan ruang quasi norma. Lebih lanjut hubungan ruang barisan Morrey, ruang barisan Morrey lemah dan ruang barisan adalah ℓ𝑝⊂ ℓ𝑞𝑝⊆ 𝜔ℓ𝑞𝑝.

Keywords:

Sequence Spaces, Morrey Spaces, Weak Type Morrey Spaces,

Abstract. Morrey space is a space that important spaces and widely studied in many branches of mathematics. Weak type Morrey spaces is a quasinormed spaces and have alike elementary properties with Morrey sequence spaces. This article investigates some properties the elementary properties of Morrey sequence spaces and weak type Morrey sequence space. Next is show relation Morrey sequence spaces and weak type Morrey sequence space with sequence spaces.

Based on the results of the discussion, it was obtained that the elementary properties of Morrey sequence spaces is 𝑝⊂ ℓ𝑞𝑝 with 1 ≤ 𝑝 ≤ 𝑞 < ∞ and 𝑞𝑝2⊆ ℓ𝑞𝑝1 with 1 ≤ 𝑝1≤ 𝑝2≤ 𝑞 < ∞. The elementary properties of weak type Morrey sequence spaces 𝜔ℓ𝑞𝑝 is 𝑞𝑝⊆ 𝜔ℓ𝑞𝑝 with 1 ≤ 𝑝 ≤ 𝑞 < ∞, 𝜔ℓ𝑞𝑝2⊆ 𝜔ℓ𝑞𝑝1 with 1 ≤ 𝑝1≤ 𝑝2 𝑞 < ∞ and weak type Morrey sequence spaces is quasinormed space. Furthermore, the relation of Morrey sequence spaces, weak type Morrey sequence spaces and sequence spaces is 𝑝⊂ ℓ𝑞𝑝 𝜔ℓ𝑞𝑝

How to cite:

P. A. H. Puadi, Eridani, & A. Jaelani, “Relation of Morrey Sequence Spaces, Weak Type Morrey Sequence Spaces, and Sequence Spaces”. J. Mat Mantik, vol. 8, no. 1, pp. 36-44, Jun. 2022.

(2)

1. Introduction

Morrey spaces were first introduced by Charles Bardfield Morrey Jr. (1907-1984) on 1938. Morrey spaces became an important space in many branches of mathematics even though it was first discovered to solve partial differential equations, now there are hundreds of articles and journals that discuss Morrey space to take up the recent development of Morrey Spaces [1], [2].

On 2016, it is defined that Morrey sequence space is denoted by ℓ𝑞𝑝 with 1 ≤ 𝑝 ≤ 𝑞 <

∞ is a set of all real sequence 𝑥 = 〈𝑥𝑘𝑘∈ℤ that holds ‖𝑥‖

𝑞

𝑝 = sup

𝑁

|𝑆𝑁|

1 𝑞1𝑝

(∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝 < ∞

with 𝑁 ∈ ℕ, 𝑆𝑁 = {−𝑁, −(𝑁 − 1), … , 0, … , 𝑁 − 1, 𝑁} and |𝑆𝑁| denote the cardinality of 𝑆𝑁 [3], [4]. Sequence spaces denote by ℓ𝑝= ℓ𝑝𝑝 with 𝑝 = 𝑞 is a set of all sequences that holds

𝑘 ∈ ℤ|𝑥𝑘|𝑝< ∞ and 𝑝 as parameter [5]–[7] .

Morrey sequence space ℓ𝑞𝑝 has a very close relation with sequence space ℓ𝑝. One of the Morrey sequence space’s elementary properties is ‖𝑥‖

𝑞

𝑝 ≤ ‖𝑥‖𝑝

for all 𝑥 ∈ ℓ𝑝, hence ℓ𝑝⊆ ℓ𝑞𝑝 for 1 ≤ 𝑝 ≤ 𝑞 < ∞. In other words, Morrey sequence space ℓ𝑞𝑝 is an extension of sequence space ℓ𝑝. Morrey sequence space ℓ𝑞𝑝 can be more extend to weak type Morrey sequence space ωℓ𝑞𝑝 [8]–[10]. Weak type Morrey sequence spaces is a set of all real sequence 𝑥 = 〈𝑥𝑘𝑘∈ℤ that holds

‖𝑥‖ω ℓ

𝑞

𝑝= sup

𝑁∈ℕ,𝛾>0

|𝑆𝑁|

1 𝑞1

𝑝𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘| > 𝛾}|1/𝑝 < ∞.

Weak type Morrey sequence spaces is a quasinormed spaces and have alike elementary properties with Morrey sequence spaces. Based on the description above, we will discuss about Morrey sequence spaces’ elementary properties and weak type Morrey sequence spaces and also the relation between sequence space ℓp, Morrey sequence space ℓ𝑞𝑝 dan weak type Morrey sequence space ωℓ𝑞𝑝.

Definition [11]

Quasinorm ‖∙ ‖ on a vector space 𝑉 over a field ℝ is a function from 𝑉 to [0, ∞) and holds (i) ‖𝑢‖ = 0 if and only if 𝑢 = 0

(ii) ‖𝑟𝑢‖ = |𝑟|‖𝑢‖ for every 𝑟 ∈ ℝ and 𝑢 ∈ 𝑉

(iii) There exists 𝐶 ≥ 1 so that if 𝑢, 𝑣 ∈ 𝑉 then ‖𝑢 + 𝑣‖ ≤ 𝐶(‖𝑢‖ + ‖𝑣‖) if ‖ ‖ is a quasinorm and (𝑉, ‖∙ ‖) is a quasinormed space.

Theorem [12] (Minkowski inequality)

If 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛∈ ℝ and 𝑝 ≥ 1 then

(∑𝑛𝑘=1|𝑥𝑘+ 𝑦𝑘|𝑝)1/𝑝≤ (∑𝑛𝑘=1|𝑥𝑘|𝑝)1/𝑝+ (∑𝑛𝑘=1|𝑦𝑘|𝑝)1/𝑝. Theorem [12]

If 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛∈ ℝ and 0 < 𝑝 < 1 then ∑𝑛𝑘=1|𝑥𝑘+ 𝑦𝑘|𝑝≤ ∑𝑛𝑘=1|𝑥𝑘|𝑝+ ∑𝑛𝑘=1|𝑦𝑘|𝑝.

Theorem [12] (Hölder inequality)

If 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛∈ ℝ and 𝑝, 𝑞 is an exponent conjugation then ∑𝑛𝑘=1|𝑥𝑘𝑦𝑘|≤ (∑𝑛𝑘=1|𝑥𝑘|𝑝)1/𝑝(∑𝑛𝑘=1|𝑦𝑘|𝑞)1/𝑞.

(3)

Definition [12]

Suppose that 𝑝 ∈ (0, ∞). ℓ𝑝 is a set of all sequence 𝑥 ∶ ℕ → ℝ that holds ∑𝑖=1|𝑥𝑘|𝑝 convergent or

𝑝= {𝑥 = 〈𝑥𝑛〉 ∶ ∑𝑘=1|𝑥𝑘|𝑝 < ∞}.

But on this article, ℓ𝑝 sequence space is a set of all sequence 𝑥 ∶ ℤ → ℝ that holds ∑𝑘∈ℤ|𝑥𝑘|𝑝= ∑−∞|𝑥𝑘|𝑝< ∞.

Definition [3]

Suppose that 1 ≤ 𝑝 ≤ 𝑞 < ∞, 𝑁 ∈ ℕ, 𝑆𝑁= {−𝑁, −(𝑁 − 1), … , 0, … , 𝑁 − 1, 𝑁} and

|𝑆𝑁| = 2𝑁 + 1 denote the cardinality of 𝑆𝑁. Let ℓ𝑞𝑝 denote Morrey sequence space is a set of all sequence 〈𝑥𝑘𝑘∈ℤ that holds

‖𝑥‖

𝑞

𝑝= sup

𝑁

|𝑆𝑁|

1 𝑞1

𝑝(∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝 < ∞.

Definition [3]

Suppose that 1 ≤ 𝑝 ≤ 𝑞 < ∞. Let 𝜔ℓ𝑞𝑝 denote weak type Morrey sequence space is a set of all sequence 〈𝑥𝑘𝑘∈ℤ that holds

‖𝑥‖ω ℓ

𝑞

𝑝= sup

𝑁∈ℕ,𝛾>0

|𝑆𝑁|

1 𝑞1

𝑝𝛾|{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| > 𝛾}|1/𝑝 < ∞.

2. Methods

We used the properties of definition quasinorm, Minkowski Inequality, Hölder inequality, and characteristics of norm on the set of real [4], [13]–[15] to obtain properties of Morrey sequence spaces, weak type Morrey sequence space, and relation Morrey sequence spaces and weak type Morrey sequence space with sequence spaces.

3. Results and Discussion

Proposition

Morrey Sequence Space ℓ𝑞𝑝 is a vector space over ℝ.

Proof :

Suppose that 𝑥 = 〈𝑥𝑘𝑘∈ℤ, 𝑦 = 〈𝑦𝑘𝑘∈ℤ is an element of ℓ𝑞𝑝. For every 𝑎 ∈ ℝ,

‖𝑎𝑥‖

𝑞

𝑝= sup

𝑁 |𝑆𝑁|

1 𝑞1

𝑝(∑𝑘 ∈ 𝑆𝑁|𝑎𝑥𝑘|𝑝)1/𝑝 = |𝑎| sup

𝑁

|𝑆𝑁|

1 𝑞1𝑝

(∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝 = |𝑎|‖𝑥‖

𝑞

𝑝< ∞ Then 𝑎𝑥 ∈ ℓ𝑞𝑝.

With Minkowski Inequality we got

(∑𝑘 ∈ 𝑆𝑁|𝑥𝑘+ 𝑦𝑘|𝑝)1/𝑝≤ (∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝+ (∑𝑘 ∈ 𝑆𝑁|𝑦𝑘|𝑝)1/𝑝 ≤ |𝑆𝑁|

1 𝑞𝑝1

(∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝+ |𝑆𝑁|

1 𝑞1𝑝

(∑𝑘 ∈ 𝑆𝑁|𝑦𝑘|𝑝)1/𝑝 ‖𝑥 + 𝑦‖

𝑞

𝑝≤ ‖𝑥‖

𝑞

𝑝+ ‖𝑦‖

𝑞 𝑝. If ‖𝑥‖

𝑞𝑝< ∞ and ‖𝑦‖

𝑞𝑝< ∞, then ‖𝑥 + 𝑦‖

𝑞𝑝< ∞ so that 𝑥 + 𝑦 ∈ ℓ𝑞𝑝. ℓ𝑞𝑝 is closed under the operation (+).

Let 𝑧 ∈ ℓ𝑞𝑝 then

(4)

(ii) 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for every 𝑥, 𝑦, 𝑧 ∈ ℓ𝑞𝑝

(iii) There exists 0 = 〈… ,0,0,0, … . 〉, then 0 + 𝑥 = 𝑥 + 0 for every 𝑥 ∈ ℓ𝑞𝑝

(iv) There exists −𝑥 = 〈−𝑥𝑘𝑘∈ℤ, then (−𝑥) + 𝑥 = 𝑥 + (−𝑥) = 0 for every 𝑥 ∈ ℓ𝑞𝑝 (v) Let 𝑏 ∈ ℝ.

𝑎(𝑥 + 𝑦) = 𝑎𝑥 + 𝑎𝑦 (𝑎 + 𝑏)𝑥 = 𝑎𝑥 + 𝑏𝑥

(𝑎𝑏)𝑥 = 𝑎(𝑏𝑥) for every 𝑥 ∈ ℓ𝑞𝑝

(vi) There exists 1 ∈ ℝ so that 1𝑥 = 𝑥 for every 𝑥 ∈ ℓ𝑞𝑝 thus ℓ𝑞𝑝 is a vector space over ℝ.∎

Example:

Suppose that 1 ≤ 𝑝 < 𝑞 < ∞. A sequence 𝑥 = 〈𝑥𝑘𝑘∈ℤ with 𝑥𝑘 = |𝑘|−𝑞/𝑝 for 𝑘 ≠ 0 and 𝑥𝑘 = 0 for 𝑘 = 0.

For every 𝑁 ∈ ℕ,

𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝= 2 ∑ 1

𝑘𝑞<

𝑁𝑘=1 2 ∑ 1

𝑘𝑞

𝑘=1 . (1) ∑ 1

𝑘𝑞

𝑘=1 = 1 + (21𝑞+31𝑞) + (41𝑞+51𝑞+61𝑞+71𝑞) + ⋯ < 1 + 2

2𝑞+ 4

4𝑞+ 8

8𝑞+ ⋯ = 1 + 1

2𝑞−1+ 1

4𝑞−1+ 1

8𝑞−1+ ⋯ If 𝑞 > 1 then 0 < 1

2𝑞−1< 1 implies that ∑ 1

𝑘𝑞

𝑘=1 < 1

1− 1

2𝑞−1

. (2) From (1) and (2) obtained

|𝑆𝑁|

𝑝 𝑞−1

𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝= ( 1

|𝑆𝑁|1−

𝑝

𝑞) ∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝< ∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝< 2

1− 1

2𝑞−1

(|𝑆𝑁|

𝑝 𝑞−1

𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)

1/𝑝

< ( 2𝑞

2𝑞−1−1)1/𝑞 sup

𝑁

|𝑆𝑁|

1 𝑞1

𝑝(∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝 ≤ (2𝑞−12𝑞−1)1/𝑞. Thus 𝑥 ∈ ℓ𝑞𝑝. ∎

Theorem

Suppose that 1 ≤ 𝑝 ≤ 𝑞 < ∞. ‖𝑥‖

𝑞

𝑝≤ ‖𝑥‖p for every 𝑥 ∈ ℓ𝑝. Proof :

For all 𝑁 ∈ ℕ, it’s easy to see that 0 < |𝑆𝑁|

1 𝑞1

𝑝≤ 1 then |𝑆𝑁|

1 𝑞1

𝑝(∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝≤ (∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝 and

sup

𝑁

|𝑆𝑁|

1 𝑞1

𝑝(∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝 ≤ sup

𝑁 (∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝 ‖𝑥‖

𝑞

𝑝≤ ‖𝑥‖p. ∎

(5)

Example :

Let 1 ≤ 𝑝 < 𝑞 < ∞ and a sequence 𝑥 = 〈𝑥𝑘𝑘∈ℤ with 𝑥𝑘 = |𝑘|−1/𝑞 for 𝑘 ≠ 0 and 𝑥𝑘= 0 for 𝑘 = 0.

If 0 <𝑝𝑞< 1 then

𝑘 ∈ ℤ|𝑥𝑘|𝑝= 2 ∑𝑘=1𝑘𝑝/𝑞1 ≥ 2 ∑𝑘=11𝑘 . We know that ∑ 1

𝑘

𝑘=1 is harmonic series then it’s divergent and ∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝 divergent thus 𝑥 ∉ ℓ𝑝.

For all 𝑁 ∈ ℕ, ∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝= ∑ 1

|𝑘|𝑝/𝑞

𝑘 ∈ 𝑆𝑁,𝑘≠0 = 2 ∑ 1

𝑘𝑝/𝑞 𝑁𝑘=1 .

For every 𝑝 and 𝑞 with 1 ≤ 𝑝 < 𝑞 < ∞, function 𝑦 = 𝑥−𝑝/𝑞 has 𝑦< 0 and 𝑦′′> 0 on 𝑥 ≥ 1.

Figure 1. Area of partition below 𝑦 = 𝑥−𝑝/𝑞 We know that the sum of areas of partitions equal to

1

𝑘𝑝/𝑞 𝑁𝑘=2

And ∑ 1

𝑘𝑝/𝑞

𝑁𝑘=2 ≤ ∑ 1

𝑘𝑝/𝑞

𝑁𝑘=1 = 1 + ∑ 1

𝑘𝑝/𝑞

𝑁𝑘=2 ≤ 1 + ∫ 1

𝑥𝑝/𝑞 𝑑𝑥

𝑁 1

≤ 1 − 𝑞

𝑞−𝑝+ 𝑞

𝑞−𝑝𝑁1−

𝑝 𝑞. Hence,

|𝑆𝑁|

𝑝 𝑞−1

𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝≤ 2 ( 1−

𝑞 𝑞−𝑝+ 𝑞

𝑞−𝑝𝑁1−

𝑝 𝑞

(2𝑁+1)1−

𝑝 𝑞

)

and

lim

𝑁→∞2 ( 1−

𝑞 𝑞−𝑝+ 𝑞

𝑞−𝑝𝑁1−

𝑝 𝑞

(2𝑁+1)1−

𝑝 𝑞

) = 2 ( 𝑞

𝑞−𝑝2

𝑝 𝑞−1

) = 𝑞

𝑞−𝑝2

𝑝 𝑞

|𝑆𝑁|

1 𝑞1

𝑝(∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)

1/𝑝

≤ (2 ( 1−

𝑞

𝑞−𝑝+ 𝑞−𝑝𝑞 𝑁1−

𝑝 𝑞

(2𝑁+1)1−

𝑝 𝑞

))

1/𝑝

sup

𝑁

|𝑆𝑁|

1 𝑞1

𝑝(∑𝑘 ∈ 𝑆𝑁|𝑥𝑘|𝑝)1/𝑝 ≤ 21/𝑝( 𝑞

𝑞−𝑝)1/𝑝 thus 𝑥 ∈ ℓ𝑞𝑝.∎

Theorem

(6)

‖𝑥‖

𝑞𝑝1 ≤ ‖𝑥‖

qp2. Proof :

By Hölder inequality, we have

𝑘∈𝑆𝑁|𝑥𝑘|𝑝1≤ (∑𝑘∈𝑆𝑁|𝑥𝑘|𝑝2)𝑝1𝑝2(∑𝑘∈𝑆𝑁1)1−𝑝1𝑝2 (|𝑆1

𝑁|𝑘∈𝑆𝑁|𝑥𝑘|𝑝1)

1 𝑝1 ≤ (|𝑆1

𝑁|𝑘∈𝑆𝑁|𝑥𝑘|𝑝2)

1

𝑝2 |𝑆𝑁|

1 𝑞1

𝑝1(∑𝑘∈𝑆𝑁|𝑥𝑘|𝑝1)

1

𝑝1 ≤ |𝑆𝑁|

1 𝑞1

𝑝2(∑𝑘∈𝑆𝑁|𝑥𝑘|𝑝2)

1

𝑝2

‖𝑥‖

𝑞𝑝1 ≤ ‖𝑥‖

qp2. ∎

From the above theorem, we have ℓ𝑞𝑝2 ⊆ ℓ𝑞𝑝1on 1 ≤ 𝑝1≤ 𝑝2≤ 𝑞 < ∞ but we can’t approve ℓ𝑞𝑝2 ⊂ ℓ𝑞𝑝1 yet [3].

Theorem

If 1 ≤ 𝑝 ≤ 𝑞 < ∞ then ‖𝑥‖𝜔ℓ

𝑞

𝑝≤ ‖𝑥‖

𝑞 𝑝

For every 𝑥 ∈ ℓ𝑞𝑝. Proof:

|𝑆𝑁|

1 𝑞1

𝑝𝛾|{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| > 𝛾}|1/𝑝= |𝑆𝑁|

1 𝑞1

𝑝|𝛾𝑝{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| > 𝛾}|1/𝑝 = |𝑆𝑁|

1 𝑞1

𝑝(∑𝑘∈𝑆𝑁,|𝑥𝑘|>𝛾 𝛾𝑝)1/𝑝 ≤ |𝑆𝑁|

1 𝑞1

𝑝(∑𝑘∈𝑆𝑁,|𝑥𝑘|>𝛾 |𝑥𝑘|𝑝)1/𝑝 |𝑆𝑁|

1 𝑞1

𝑝𝛾|{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| > 𝛾}|1/𝑝≤ |𝑆𝑁|

1 𝑞1

𝑝(∑𝑘∈𝑆𝑁|𝑥𝑘|𝑝)1/𝑝 supremum over 𝑁 ∈ ℕ and 𝛾 > 0 on the above inequality, we have

sup

𝑁∈ℕ,𝛾>0

|𝑆𝑁|

1 𝑞1

𝑝𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘| > 𝛾}|1/𝑝≤ sup

𝑁

|𝑆𝑁|

1 𝑞1

𝑝(∑𝑘∈𝑆𝑁|𝑥𝑘|𝑝)1/𝑝 ‖𝑥‖𝜔ℓ

𝑞

𝑝 ≤ ‖𝑥‖

𝑞 𝑝.

Thus ℓ𝑞𝑝⊆ 𝜔ℓ𝑞𝑝 ∎.

Example :

Suppose that 1 ≤ 𝑝 ≤ 𝑞 < ∞. A sequence 𝑥 = 〈𝑥𝑘𝑘∈ℤ with 𝑥𝑘 = |𝑘|−1/𝑝 for 𝑘 ≠ 0 and 𝑥𝑘 = 0 for 𝑘 = 0.

𝑘 ∈ ℤ|𝑥𝑘|𝑝= 2 ∑ 1

𝑘

𝑘=1 . We know that ∑ 1

𝑘

𝑘=1 is divergent then 𝑥 ∉ ℓ𝑝 but for any 𝛾 > 0,

𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑘|−1/𝑝 > 𝛾}|1/𝑝= 2𝛾|{𝑘 ∈ ℕ ∶ 1 ≤ 𝑘 < 𝑁, 𝑘−1/𝑝> 𝛾}|1/𝑝 and 𝑘−1/𝑝 > 𝛾 ⟹ 𝑘−1> 𝛾𝑝⟹ 𝑘 < 1

𝛾𝑝 then 𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑘|−1/𝑝> 𝛾}|1/𝑝< 2𝛾 (1

𝛾𝑝)1/𝑝 𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑘|−1/𝑝> 𝛾}|1/𝑝< 2𝛾 (1𝛾) = 2 then 𝑥 ∈ 𝜔ℓ𝑝𝑝 and ℓ𝑝⊂ 𝜔ℓ𝑝𝑝= 𝜔ℓ𝑝.

Theorem

If 1 ≤ 𝑝 ≤ 𝑞 < ∞ then ‖ ‖𝜔ℓ

𝑞

𝑝 is a quasinorm and (𝜔ℓ𝑞𝑝, ‖ ‖𝜔ℓ

𝑞

𝑝 ) is a quasinormed space.

(7)

Proof:

From the definition, we know that ‖𝑥‖𝜔ℓ

𝑞

𝑝≥ 0 for all 𝑥 ∈ 𝜔ℓ𝑞𝑝.

If 𝑥 = 0 (𝑥𝑘 = 0 for all 𝑘 ∈ ℤ) then {𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| > 𝛾} is an empty space and

|{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| > 𝛾}| = 0,

|𝑆𝑁|

1 𝑞1

𝑝𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘| > 𝛾}|1/𝑝= 0 sup

𝑁∈ℕ,𝛾>0|𝑆𝑁|

1 𝑞1

𝑝𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘| > 𝛾}|1/𝑝= 0

‖𝑥‖𝜔ℓ

𝑞 𝑝= 0.

If ‖𝑥‖𝜔ℓ

𝑞

𝑝 = 0 then |{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| > 𝛾}| = 0 for all 𝑁 ∈ ℕ and 𝛾 > 0, hence for every 𝑘 ∈ ℤ applies that

0 ≤ |𝑥𝑘| ≤ 𝛾

⟹𝑥𝑘 = 0 untuk setiap 𝑘 ∈ ℤ (𝑥 = 0).

Let 𝑥 ∈ 𝜔ℓ𝑞𝑝 and 𝑟 = 0 then ‖𝑟𝑥‖𝜔ℓ

𝑞

𝑝= |𝑟|‖𝑥‖𝜔ℓ

𝑞

𝑝= 0. If 𝑟 ≠ 0 then applies that ‖𝑟𝑥‖𝜔ℓ

𝑞

𝑝 = sup

𝑁∈ℕ,𝛾>0

|𝑆𝑁|

1 𝑞1𝑝

𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑟𝑥𝑘| > 𝛾}|1/𝑝 = sup

𝑁∈ℕ,𝛾>0|𝑆𝑁|

1 𝑞1

𝑝𝛾 |{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| > 𝛾

|𝑟|}|1/𝑝 let 𝛾

|𝑟|= 𝑎 ⟹ 𝛾 = |𝑟|𝑎 then

‖𝑟𝑥‖𝜔ℓ

𝑞

𝑝 = sup

𝑁∈ℕ,𝑎>0

|𝑆𝑁|

1 𝑞1

𝑝|𝑟|𝑎|{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| > 𝑎}|1/𝑝 = |𝑟| sup

𝑁∈ℕ,𝑎>0

|𝑆𝑁|

1 𝑞1

𝑝𝑎|{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| > 𝑎}|1/𝑝 = |𝑟|‖𝑥‖𝜔ℓ

𝑞

𝑝. Let 𝑥, 𝑦 ∈ 𝜔ℓ𝑞𝑝. For any 𝑁 ∈ ℕ, if 𝑘 ∈ 𝑆𝑁 dan |𝑥𝑘| ≤ |𝑦𝑘| then

|𝑥𝑘+ 𝑦𝑘| ≤ |𝑥𝑘| + |𝑦𝑘| ≤ 2|𝑦𝑘| else if 𝑘 ∈ 𝑆𝑁 dan |𝑥𝑘| > |𝑦𝑘| then

|𝑥𝑘+ 𝑦𝑘| ≤ |𝑥𝑘| + |𝑦𝑘| ≤ 2|𝑥𝑘|.

Thus

{𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘+ 𝑦𝑘| > 𝛾} ⊆ {𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘| + |𝑦𝑘| > 𝛾}

⊆ {𝑘 ∈ 𝑆𝑁 ∶ 2|𝑥𝑘| > 𝛾} ∪ {𝑘 ∈ 𝑆𝑁 ∶ 2|𝑦𝑘| > 𝛾}.

For any 𝛾 > 0 dan 𝑁 ∈ ℕ,

|{𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘+ 𝑦𝑘| > 𝛾}| ≤ |{𝑘 ∈ 𝑆𝑁 ∶ 2|𝑥𝑘| > 𝛾}| + |{𝑘 ∈ 𝑆𝑁 ∶ 2|𝑦𝑘| > 𝛾}|

Multiply both sides by (|𝑆𝑁|

1 𝑞1

𝑝𝛾)

𝑝

applies that (|𝑆𝑁|

1 𝑞1

𝑝𝛾)

𝑝

|{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘+ 𝑦𝑘| > 𝛾}|

≤ (|𝑆𝑁|

1 𝑞1𝑝

𝛾)

𝑝

|{𝑘 ∈ 𝑆𝑁∶ |𝑥𝑘| >𝛾

2}| + (|𝑆𝑁|

1 𝑞1𝑝

𝛾)

𝑝

|{𝑘 ∈ 𝑆𝑁∶ |𝑦𝑘| >𝛾

2}|

Let 𝛾

2= 𝜎 ⟹ 𝛾 = 2𝜎 |𝑆𝑁|

1 𝑞1

𝑝𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘+ 𝑦𝑘| > 𝛾}|1/𝑝 ≤ 2 ((|𝑆𝑁|

1 𝑞1

𝑝𝜎)

𝑝

|{𝑘 ∈ 𝑆𝑁: |𝑥𝑘| > 𝜎}| + (|𝑆𝑁|

1 𝑞1

𝑝𝜎)

𝑝

|{𝑘 ∈ 𝑆𝑁: |𝑦𝑘| > 𝜎}|)

1/𝑝

. If 𝑝 > 1 ⟹ 𝑝1< 1then

|𝑆 |

1 𝑞1

𝑝𝛾|{𝑘 ∈ 𝑆 ∶ |𝑥 + 𝑦 | > 𝛾}|1/𝑝

(8)

≤ 2 ((|𝑆𝑁|

1 𝑞1

𝑝𝜎)

𝑝

|{𝑘 ∈ 𝑆𝑁: |𝑥𝑘| > 𝜎}| + (|𝑆𝑁|

1 𝑞1

𝑝𝜎)

𝑝

|{𝑘 ∈ 𝑆𝑁: |𝑦𝑘| > 𝜎}|)

1/𝑝

≤ 2 (|𝑆𝑁|

1 𝑞1

𝑝𝜎|{𝑘 ∈ 𝑆𝑁: |𝑥𝑘| > 𝜎}|)

1/𝑝

+ 2 (|𝑆𝑁|

1 𝑞1

𝑝𝜎|{𝑘 ∈ 𝑆𝑁: |𝑦𝑘| > 𝜎}|)

1/𝑝

taking supremum over 𝛾 > 0 dan 𝑁 ∈ ℕ from the above inequality, we get

‖𝑥 + 𝑦‖𝜔ℓ

𝑞

𝑝 ≤ 2‖𝑥‖𝜔ℓ

𝑞

𝑝+ 2‖𝑦‖𝜔ℓ

𝑞 𝑝

= 2 (‖𝑥‖𝜔ℓ

𝑞

𝑝+ ‖𝑦‖𝜔ℓ

𝑞 𝑝).

Thus ‖ ‖𝜔ℓ

𝑞

𝑝 is a quasinorm and (𝜔ℓ𝑞𝑝, ‖ ‖𝜔ℓ

𝑞

𝑝 ) is a quasinormed space.∎

Theorem

If 1 ≤ 𝑝1 ≤ 𝑝2≤ 𝑞 then ‖𝑥‖𝜔ℓ

𝑞𝑝1 ≤ ‖𝑥‖𝜔ℓ

𝑞𝑝2

for all 𝑥 ∈ 𝜔ℓ𝑞𝑝2. Proof :

From the definition, for all 𝑥 ∈ ‖𝑥‖𝜔ℓ

𝑞𝑝2 and any 𝑁 ∈ ℕ.

|𝑆𝑁|

1 𝑞1

𝑝2𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘| > 𝛾}|1/𝑝2≤ sup

𝑁∈ℕ,𝛾>0

|𝑆𝑁|

1 𝑞1

𝑝2𝛾|{𝑘 ∈ 𝑆𝑁: |𝑥𝑘| > 𝛾}|1/𝑝2

= ‖𝑥‖𝜔ℓ

𝑞𝑝2. And it is equivalent to

𝛾 ≤ |𝑆𝑁|

1 𝑝21

𝑞

|{𝑘∈𝑆𝑁∶|𝑥𝑘|>𝛾}|1/𝑝2‖𝑥‖𝜔ℓ

𝑞𝑝2

|𝑆𝑁|

1 𝑞1

𝑝1𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘| > 𝛾}|1/𝑝1|𝑆𝑁|

1 𝑝21

𝑝1

|{𝑘∈𝑆𝑁∶|𝑥𝑘|>𝛾}|

1 𝑝21

𝑝1

‖𝑥‖𝜔ℓ

𝑞𝑝2

|𝑆𝑁|

1 𝑞1

𝑝1𝛾|{𝑘 ∈ 𝑆𝑁 ∶ |𝑥𝑘| > 𝛾}|1/𝑝1≤ (|{𝑘∈𝑆𝑁∶|𝑥𝑘|>𝛾}|

|𝑆𝑁| )

1 𝑝11

𝑝2‖𝑥‖𝜔ℓ

𝑞𝑝2

≤ ‖𝑥‖𝜔ℓ

𝑞𝑝2

taking supremum over 𝑁 ∈ ℕ and 𝛾 > 0 on the above inequality, we get

‖𝑥‖𝜔ℓ

𝑞𝑝1 ≤ ‖𝑥‖𝜔ℓ

𝑞𝑝2. ∎ From the above inequality we have 𝜔ℓ𝑞𝑝2⊆ 𝜔ℓ𝑞𝑝1.

4. Conclusions

Based on the results and discussion, we obtained some conclusions:

1) There are some Morrey sequence space’s elementary properties : i. If 1 ≤ 𝑝 ≤ 𝑞 < ∞ then for all 𝑥 ∈ ℓ𝑝, we have ‖𝑥‖

𝑞𝑝≤ ‖𝑥‖p and ℓ𝑝⊂ ℓ𝑞𝑝. ii. If 1 ≤ 𝑝1≤ 𝑝2≤ 𝑞 < ∞ then for all 𝑥 ∈ ℓ𝑞𝑝2, we have ‖𝑥‖

𝑞𝑝1 ≤ ‖𝑥‖

qp2 and ℓ𝑞𝑝2⊆ ℓ𝑞𝑝1.

2) There are some weak type Morrey sequence space’s elementary properties : i. If 1 ≤ p ≤ q < ∞ then for all x ∈ ℓqp, we have ‖x‖ωℓ

q

p≤ ‖x‖

q

p and ℓqp⊆ ωℓqp. ii. If 1 ≤ p ≤ q < ∞ then ‖ ‖ωℓ

qp is a quasinorm and (ωℓqp, ‖ ‖ωℓ

qp ) is a quasinormed space.

iii. If 1 ≤ p1 ≤ p2≤ q < ∞ then for all x ∈ ωℓqp2, we have ‖x‖ωℓ

qp1 ≤ ‖x‖ωℓ

qp2 and 𝜔ℓ𝑞𝑝2 ⊆ 𝜔ℓ𝑞𝑝1.

(9)

3) Based on the results in points 1 and 2 it can be concluded that ℓ𝑝 sequence space is a subset of Morrey Sequence Space and Morrey Sequence Space is a subset of weak type Morrey Sequence Space or equivalent to ℓ𝑝⊂ ℓ𝑞𝑝⊆ 𝜔ℓ𝑞𝑝.

References

[1] Y. Sawano, H. Gunawan, V. Guliyev, and H. Tanaka, “Morrey spaces and related function spaces,” Journal of Function Spaces, vol. 2014. pp. 1–2, 2014, doi:

10.1155/2014/867192.

[2] V. Kokilashvili, A. Meskhi, and H. Rafeiro, “Sublinear operators in generalized weighted Morrey spaces,” Dokl. Math., vol. 94, no. 2, pp. 558–560, 2016, doi:

10.1134/S1064562416050203.

[3] H. Gunawan, E. Kikianty, and C. Schwanke, “Discrete Morrey spaces and their inclusion properties,” Math. Nachrichten, vol. 291, no. 8–9, pp. 1283–1296, 2018, doi: 10.1002/mana.201700054.

[4] S. Fatimah, A. A. Masta, S. Al Hazmy, C. Kustiawan, and I. Rukmana, “Discrete Orlicz-Morrey spaces and their inclusion properties,” J. Eng. Sci. Technol., vol. 16, no. 3, pp. 2018–2027, 2021.

[5] H. Roopaei, “Norm of Hilbert operator on sequence spaces,” J. Inequalities Appl., vol. 2020, no. 117, pp. 1–13, 2020, doi: 10.1186/s13660-020-02380-2.

[6] D. Carando, M. Mazzitelli, and P. Sevilla-Peris, “A Note on the Symmetry of Sequence Spaces,” Math. Notes, vol. 110, no. 1–2, pp. 26–40, 2021, doi:

10.1134/S0001434621070038.

[7] K. Boruah and B. Hazarika, “On some generalized geometric difference sequence spaces,” Proyecciones, vol. 36, no. 3, 2017, doi: 10.4067/S0716- 09172017000300373.

[8] N. Tumalun and H. Gunawan, “Morrey Spaces are Embedded Between Weak Morrey Spaces and Stummel Classes,” J. Indones. Math. Soc., pp. 203–209, 2019, doi: 10.22342/jims.25.3.817.203-209.

[9] Y. Sawano and S. R. El-Shabrawy, “Weak Morrey spaces with applications,” Math.

Nachrichten, vol. 291, no. 1, pp. 178–186, 2018, doi: 10.1002/mana.201700001.

[10] E. Nakai and Y. Sawano, “Spaces of pointwise multipliers on morrey spaces and weak morrey spaces,” Mathematics, vol. 9, no. 21, pp. 1–18, 2021, doi:

10.3390/math9212754.

[11] R. Haller and J. Langemets, “Geometry of banach spaces with an octahedral norm,”

Acta Comment. Univ. Tartu. Math., vol. 18, no. 1, pp. 125–133, 2014, doi:

10.12697/ACUTM.2014.18.13.

[12] S. Ovchinnikov, Functional Analysis: An Introductory Course. Switzerland : Springer, 2018.

[13] H. Gunawan, D. I. Hakim, and A. S. Putri, “On Geometric Properties Of Morrey Spaces,” Ufa Math. J., vol. 13, no. 1, pp. 131–136, 2021, doi: 10.13108/2021-13-1- 131.

[14] U. Kadak, “On multiplicative difference sequence spaces and related dual properties,” Bol. da Soc. Parana. Mat., vol. 35, no. 3, 2017, doi:

10.5269/bspm.v35i3.29182.

[15] A. A. Masta, S. Fatimah, and M. Taqiyuddin, “Third version of Weak Orlicz–

Morrey spaces and its inclusion properties,” Indones. J. Sci. Technol., vol. 4, no. 2, pp. 257–262, 2019, doi: 10.17509/ijost.v4i2.18182.

Referensi

Dokumen terkait

Based on the description above, the researcher can conclude that there is a relation of nutritional status to the gingivitis and dental caries severity among school