REFERENCES
Albrecht, A. C. and M. C. Hutley (1971), “On the Dependence of Vibrational Raman Intensity on the Wavelength of Incident Light,” Journal of Chemical Physics, 55, 4438- 4443.
Alessandretti, G. C. and P. Violono (1983), “Thermometry by CARS in an auto-mobile engine,” Journal of Physics D: Applied Physics, 16, 1583-1594.
Andresen, P., A. Bath, W. Gröger, H. W. Lülf, G. Meijer, and J. J. Meulen (1988), “Laser- induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,”
Applied Optics, 27, 365-378.
Beck, J. V. and K. J. Arnold (1977), Parameter Estimation in Engineering and Science John Wiley and Sons, NY.
Barlow, R. S. and C. D. Carter (1994), “Raman/Rayleigh/LIF Measurements of Nitric Oxide Formation in Turbulent Hydrogen Jet Flames,” Combustion and Flame, 97, 261-280.
Bergmann, V. and W. Stricker (1995), “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40 bar,” Applied Physics B, 61, 49-57.
Bessler, W. G. and C. Schulz (2004), “Quantitative multi-line NO-LIF temperature imaging,” Applied Physics B, 78, 519-533.
Bischel, W. K. and G. Black (1983), “Wavelength Dependence of Raman Scattering Cross Sections from 200-600nm,” in Excimer Lasers – 1983, eds. C. K. Rhodes, H. Egger, and H. Pummer, American Institute of Physics, NY, 181-187.
Blint, R. J., J. H. Bechtel, and D. A. Stephenson (1980), “Carbon Dioxide concentration and temperature in flames by Raman spectroscopy,” Journal of Quantitative Spectroscopy and Radiative Transfer, 23, 89-94.
Boiarski, A. A., R. H. Barnes, and J. F. Kircher (1978), “Flame Measurements Utilizing Raman Scattering,” Combustion and Flame, 32, 111-114.
Bribes, J. L., R. Gaufres, M. Monan, M. Lapp, and C. M. Penney (1976), “Raman band contours for water vapor as a function of temperature,” Applied Physics Letters, 28, 336-337.
Cheng, T. S., T. Yuan, C. C. Lu, and Y. C. Chao (2002), “The application of spontaneous vibrational Raman scattering for temperature measurements in high pressure
Cignoli, F., S. Benecchi, and G. Zizak (1991), “Use of an intensified photodiode array detector for the acquisition of rotationally resolved laser-induced fluorescence spectra of OH in flames,” Spectrochimica Acta, 46B, 1285-1295.
Clauss, W., D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M.
Stelmakh, and V. I. Fabelinsky (2002), “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” Journal of Raman Spectroscopy, 33, 906-910.
Cohen, L. M., D. M. Jassowski, and I. J. Ito (2001), “Performance of a Titan rocket engine using laser-induced fluorescence of OH,” AIAA Journal, 39, 1926-1935.
Conny, J. M., C. J. Powell, and L. A. Currie (1998), “Standard Test Data for Estimating Peak- Parameter Errors in X-ray Photelectron Spectroscopy. I. Peak Binding Energies,” Surface and Interface Analysis, 26, 939-956.
Conny, J. M. and C. J. Powell (2000a), “Standard Test Data for Estimating Peak-Parameter Errors in X-ray Photelectron Spectroscopy. II. Peak Intensities,” Surface and Interface Analysis, 29, 444-459.
Conny, J. M. and C. J. Powell (2000b), “Standard Test Data for Estimating Peak- Parameter errors in X-ray Photelectron Spectroscopy. III. Errors with different curve-fitting approaches,” Surface and Interface Analysis, 29, 856-872.
Crosley, D. A. and J. B. Jeffries (1992), “Temperature measurements by laser-induced fluorescence of the hydroxyl radical,” in Temperature: Its Measurement and Control in Science and Industry. 6, ed. J. F. Schooley, American Institute of Physics, NY, 701-704.
Dabrowski, I (1984), “The Lyman and Werner bands of H2,” Canadian Journal of Physics, 62, 1639-1664.
de Groot, W. A. (1998), “Temperature and Species Measurements in a Low-Thrust Hydrogen/Oxygen Rocket Engine,” Journal of Propulsion and Power, 14, 301-308.
Diecke, G. H. and H. M. Crosswhite (1962), “The ultraviolet band of OH,” Journal of Quantitative Spectroscopy and Radiation Transfer, 2, 97-199.
Drake, M. C. and J. W. Hastie (1981), “Temperature Profiles of Inhibited Flames Using Raman Spectroscopy,” Combustion and Flame, 40, 201-211.
Drake, M. C., M. Lapp, and C. M. Penney (1982), “Use of the vibrational Raman effect for gas temperature measurements,” in Temperature: Its Measurement and Control in Science and Industry. 5, ed. J. F. Schooley, American Institute of Physics, NY, 631-638.
Dunham, J. L. (1932), “The Energy Levels of a Rotating Vibrator,” Physical Review, 41, 721- 731.
Eckbreth, A. C. (1996), Laser Diagnostics for Combustion Temperature and Species 2nd Ed., Gordon and Breach, The Netherlands.
Eckbreth, A. C., G. M. Dobbs, J. H. Stufflebeam, and P. A. Tellex (1984), “CARS temperature and species measurements in augmented jet engine exhausts,”
Applied Optics, 23, 1328-1339.
Farhangi, S., V. T. Gylys, and R. J. Jensen (1994), “Gas Composition and Temperature Measurments in a Rocket Engine Combustor Using the Raman Technique,” 32nd Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 10-13.
Gillespie, W. D. (1993), “Raman Scattering Measurments of Vibrational relaxation in Expanding Nitrogen,” PhD Dissertation, Standford University, Palo Alto, California.
Grünefeld, G. H. Schlüter, P. Andresen, and E. W. Rothe (1996), “Operation of KrF and ArF tunable excimer lasers,” Applied Physics B, 62, 241-247.
GNU Scientific Library (GSL) (2002), http://sources.redhat.com/gsl/.
Hancock, R. D., K. E. Bertagnolli, and R. P. Lucht (1997), “Nitrogen and Hydrogen CARS Temperature Measurements in Hydrogen/Air Flame Using a Near- Adiabatic Flat-Flame Burner,” Combustion and Flame, 109, 323-331.
Hussong, J. (2002), “H2 Q-Zweig CARS-Thermometrie bei hohem Druck:
Untersuchungen zum Einfluss der Linienbreiten auf die Genauigkeit,” Dr. Ing., University of Stuttgart, Stuttgart, Germany.
Hussong, J., W. Stricker, X. Bruet, J. Joubert, J. Bonamy, D. Robert, X. Michaut, T.
Garbard, and H. Berger (2000), “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidth models,” Applied Physics B, 70, 447-454.
Jones, R. A., W. A. de Groot, L. N. Myrabo, and H. T. Nagamatsu (1996), “Oxygen Temperature and Concentration Measurements in H2-O2 Rocket Engines,” 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 15-18.
Kaskan, W. E. (1957), “The dependence of flame temperature on mass burning velocity,”
Proceedings of the Combustion Institute, 6, 134-142.
Kohse-Höinghaus, K. (1994), “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Progress in Energy and Combustion Science, 20,
Kohse-Höinghaus, K and J. B. Jeffries (2002) editors. Applied Combustion Diagnostics, Taylor and Francis New York, NY.
Kojima, J. and Q. Nguyen (2004), “Measurement and simulation of spontaneous Raman scattering in high-pressure fuel-rich H2-air flames,” Measurement Science and Technology, 15, 565-580.
Lallemand, P. and P. Simova (1968), “Stimulated Raman Spectroscopy in Hydrogen Gas,”
Journal of Molecular Spectroscopy, 26, 262-276.
Lapp, M. (1974), “Flame temperatures from vibrational Raman scattering,” in Laser Raman Gas Diagnostics. eds. M. Lapp and C. M. Penney, Plenum Press, NY, 107-145.
Lapp, M., C. M. Penney, and L. M. Goldman (1973), “Vibrational Raman Scattering Temperature Measurements,” Optics Communications, 9, 195-200.
Long, D. A. (1977), Raman Spectroscopy, McGraw Hill London,UK.
Luque, J. and D. R. Crosley (1999), LIFBASE(v 1.6) SRI International Report MP 99-009.
May, A. D., G. Varghese, J. C. Stryland, and H. L. Welsh (1964), “Vibrational frequency perturbations in the Raman spectrum of compressed gaseous hydrogen,” Canadian Journal of Physics, 42, 1058-1069.
Miles, R. B., W. R. Lempert, and J. N. Forkey (2001), “Laser Rayleigh scattering,”
Measurement Science Technology, 12, R33-R51.
Murray, J. A. and A. Javan (1972), “Effects of Collisions on Raman Line Profiles of Hydrogen and Deuterium Gas,” Journal of Molecular Spectroscopy, 42, 1-26.
Placzek, G. (1934), “Rayleigh-Streuung und Raman-Effekt,” in Handbuch der Radiologie, 6, No. 2, ed. E. Marx, Akademische Verlag, Leipzig, 205-374, (NTIS UCRL-Trans- 526(L)).
Rahn, L. A., R. L. Farrow, and G. J. Rosasco (1991), “Measurement of the self-broadening of the H2 Q(0-5) Raman transitions from 295 to 1000K,” Physics Review A, 43, 6075-6088.
Redlich, O. and J. N. S. Kwong (1949), Chemical Reviews, 44, 233.
Rosasco, G. J. and W. S. Hurst (1992), “Q Branch Lineshape Functions for CARS Thermometry,” in Temperature: Its Measurement and Control in Science and Industry, 6, ed. J. F. Schooley, American Institute of Physics, NY, 655-660.
Schoenung, S. M., and R. E. Mitchell (1979), “Comparison of Raman and Thermocouple Temperature Measurements in Flames,” Combustion and Flame, 35, 207-211.
Seasholtz, R. G., A. E. Buggele, and M. F. Reeder (1997), “Flow Measurements Based on Rayleigh Scattering and Fabry-Perot Interferometer,” Optics and Lasers in Engineering, 27, 543-570.
Setchell, R. E. and J. A. Miller (1978), “Raman Scattering Measurements of Nitric Oxide in ammonia/Oxygen Flames,” Combustion and Flame, 33, 23-32.
Shirley, J. A. (1990), “UV Raman Spectroscopy of H2-Air Flames Excited with a Narrowband KrF Laser,” Applied Physics B, 51, 45-48.
Shirley, J. A. and R. J. Hall (1977), “Vibrational excitation in H2 and D2 electric discharges,”
Journal of Chemical Physics, 67, 2419-2421.
Sinclair, P., J. Ph. Berger, X. Michaut, R. Saint-Loup, R. Chaux, H. Berger, J. Bonamy, and D.
Robert (1996), “Collisional broadening and shifting parameters of the Raman Q- branch of H2 perturbed by N2 determined from speed-dependent line profiles at high temperature,” Physics Review A, 54, 402-409.
Smith, J., D. Klimenko, W. Clauss, and W. Mayer (2002), “Supercritical LOX/Hydrogen Rocket Combustion Investigations Using Optical Diagnostics,” 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, Paper No. AIAA-2002- 4033.
Sobel’ man, I. I. (1972), Introduction to the Theory of Atomic Spectra, Ed. 2, Pergamon Press, N.Y.
Steele, A. (1971). Theory of Vibrational Raman Spectroscopy. Philadelphia, W. B.
Saunders.
Stephenson, D. A. and W. R. Aiman (1978), “A Laser Raman Probe of a Premixed Laminar Flame,” Combustion and Flame, 31, 85-88.
Stephenson, D. A. and R. J. Blint (1979), “Theoretical Fitting of Computer Processed Laser Raman Spectra from Methane- and Propane-Air Flames,” Applied Spectroscopy, 33, 41- 45.
Stephenson, D. A. (1981), “High-temperature Raman Spectra of CO2 and H2O for Combustion Diagnostics,” Applied Spectroscopy, 35, 582-584.
Tellinghuisen, J. (1993), “High-resolution spectroscopy with a CCD array detector:
application to the 2880Å emission band system in I2” Canadian Journal of Physics, 71, 1645-1654.
Tellinghuisen, J. (1994), “On the Least-Squares Fitting of Correlated Data: removing the
Tellinghuisen, J. (1996), “On the Least-Squares Fitting of Correlated Data: a Priori vs. a Posteriori Weighting,” Journal of Molecular Spectroscopy, 179, 299-309.
Tellinghuisen, J. (2000), “A Monte Carlo Study of Precision, Bias, Inconsistency, and Non- Gaussian Distributions in Nonlinear Least Squares,” Journal of Physical Chemistry A, 104, 2834-2844.
Tellinghuisen, J. (2001), “Direct-fitting approach to the analysis of high-resolution optical spectra: Monte Carlo and experimental studies of OH A(0) → X(0) spectra,” Journal of Chemical Physics, 114, 3465-3475.
Weber, A. (1973), “High Resolution Raman Studies of Gases,” in The Raman Effect, Vol. 2:
Application, ed. A. Anderson, Marcel Dekker, NY, 543-713.
Wehrmeyer, J. A. (1990), “UV Raman Scattering for Flame Diagnostics Using A KrF Excimer Laser,” Ph.D. dissertation, Vanderbilt University, Nashville, Tennessee.
Wehrmeyer, J.A., T. S. Cheng, and R. W. Pitz (1992a), “Raman scattering measurements in flames using a tunable KrF excimer laser,” Applied Optics, 31, 1495-1504.
Wehrmeyer, J. A., T. S. Cheng, and R. W. Pitz (1992b), “Temperature measurements in turbulent flames by KrF excimer-induced vibrational Raman scattering,” in Temperature:
Its Measurement and Control in Science and Industry, 6, 695-700.
Wehrmeyer, J. A., J. M. Cramer, R. H. Eskridge, and C. C. Dobson (2001), “Development of Ultraviolet Raman Diagnostics for Rocket engine Injector Analysis,” Journal of Propulsion and Power, 17, 27-34.
Wehrmeyer, J. A., R. J. Osborne, and H. P. Trinh (2002), “Measuring Rocket engine Temperatures with Hydrogen Raman Spectroscopy,” in Temperature: Its Measurement and Control in Science and Industry 7, ed. J. F. Schooley, American Institute of
Physics, NY.
Widhopf, G. F. and S. Lederman (1971), “Specie Concentration Measurements Utilizing Raman Scattering of a Laser Beam,” AIAA Journal, 9, 309-316.
Yeralan, S., S. Pal, and R. J. Santoro (2001), “Experimental study of major species and temperature profiles of liquid oxygen/gaseous hydrogen rocket combustion,”
Journal of Propulsion and Power, 17, 788-793.