• Tidak ada hasil yang ditemukan

Yield gaps in oil palm A quantitative review of contributing factors

N/A
N/A
AZHARUDIN APRIANSA

Academic year: 2023

Membagikan "Yield gaps in oil palm A quantitative review of contributing factors"

Copied!
21
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

European Journal of Agronomy

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e j a

Review article

Yield gaps in oil palm: A quantitative review of contributing factors

Lotte S. Woittiez

a,∗

, Mark T. van Wijk

b

, Maja Slingerland

a

, Meine van Noordwijk

a,c

, Ken E. Giller

a

aPlantProductionSystems,WageningenUniversity,P.O.Box430,6700AKWageningen,TheNetherlands

bInternationalLivestockResearchInstitute(ILRI),OldNaivashaRoad,POBox30709,Nairobi00100,Kenya

cWorldAgroforestryCentre(ICRAF)SoutheastAsiaRegionalOffice,Jl.Cifor,SituGede,SindangBarang,Bogor16115,Indonesia

a r t i c l e i n f o

Articlehistory:

Received14March2016

Receivedinrevisedform23August2016 Accepted1November2016

Availableonline13January2017 Keywords:

Palmoil Perennial Yield Intensification Physiology Management

a b s t ra c t

Oilpalm,currentlytheworld’smainvegetableoilcrop,ischaracterisedbyalargeproductivityanda longlifespan(≥25years).Peakoilyieldsof12tha1yr1havebeenachievedinsmallplantations,and maximumtheoreticalyieldsascalculatedwithsimulationmodelsare18.5toilha−1yr−1,yetaverage productivityworldwidehasstagnatedaround3toilha1yr1.Consideringthethreatofexpansioninto valuablerainforests,itisimportantthatthefactorsunderlyingtheseexistingyieldgapsareunderstood and,wherefeasible,addressed.Inthisreview,wepresentanoverviewoftheavailabledataonyield- determining,yield-limiting,andyield-reducingfactorsinoilpalm;theeffectsofthesefactorsonyield,as measuredincasestudiesorcalculatedusingcomputermodels;andtheunderlyingplant-physiological mechanisms.Wedistinguishfourproductionlevels:thepotential,water-limited,nutrient-limited,and theactualyield.Thepotentialyieldoveraplantationlifetimeisdeterminedbyincomingphotosyn- theticallyactiveradiation(PAR),temperature,atmosphericCO2concentrationandplantingmaterial, assumingoptimumplantationestablishment,plantingdensity(120–150palmsperhectares),canopy management(30–60leavesdependingonpalmage),pollination,andharvesting.Water-limitedyields inenvironmentswithwaterdeficits>400mmyear1canbelessthanone-thirdofthepotentialyield, dependingonadditionalfactorssuchastemperature,windspeed,soiltexture,andsoildepth.Nutrient- limitedyieldsoflessthan50%ofthepotentialyieldhavebeenrecordedwhennitrogenorpotassiumwere notapplied.Actualyieldsareinfluencedbyyield-reducingfactorssuchasunsuitablegroundvegetation, pests,anddiseases,andmaybeclosetozeroincaseofsevereinfestations.Smallholdersfaceparticular constraintssuchastheuseofcounterfeitseedandinsufficientfertiliserapplication.Closingyieldgapsin existingplantationscouldincreaseglobalproductionby15–20Mtoilyr−1,whichwouldlimitthedrive forfurtherareaexpansionataglobalscale.Toincreaseyieldsinexistingandfutureplantationsina sustainableway,allproductionfactorsmentionedneedtobeunderstoodandaddressed.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction...58

2. Plantationlifecycleandvegetativegrowth...59

2.1. Plantationlifecycle...59

2.2. Vegetativegrowth...59

3. Fruitdevelopment...60

3.1. Bunchnumber...60

3.1.1. Numberofdevelopinginflorescences ... 60

3.1.2. Sexdetermination,inflorescenceabortion,andsexratio...61

3.1.3. Bunchfailure...61

3.2. Bunchweightandoilcontent...61

Correspondingauthor.

E-mailaddresses:[email protected],[email protected](L.S.Woittiez),[email protected](M.T.vanWijk),[email protected](M.Slingerland), [email protected](M.vanNoordwijk),[email protected](K.E.Giller).

http://dx.doi.org/10.1016/j.eja.2016.11.002

1161-0301/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

3.2.1. Inflorescenceandbunchdevelopment ... 61

3.2.2. Regulatingmechanismsofbunchweightandoilcontent...62

4. Magnitude,causes,andmanagementofyieldgaps...62

4.1. Thedifferentyieldgapsinoilpalm...62

4.2. Potentialyieldandyield-determiningfactors...62

4.2.1. AvailableradiationandPAR...62

4.2.2. CO2concentration...64

4.2.3. Temperature...64

4.2.4. Plantingmaterial...64

4.2.5. Plantingdensity...64

4.2.6. Culling...65

4.2.7. Pruning...65

4.2.8. Pollination...65

4.2.9. Croprecovery...65

4.3. Water-limitedyieldandyield-limitingfactors...65

4.3.1. Rainfall...65

4.3.2. Soil...65

4.3.3. Topographyandslope...66

4.3.4. Waterlogging...67

4.4. Nutrient-limitedyieldandyield-limitingfactors ... 67

4.5. Actualyieldandyield-reducingfactors...67

4.5.1. Weeds ... 67

4.5.2. Pests...67

4.5.3. Diseases...69

4.6. Interactionsbetweenstressfactors...69

5. Currentcausesofyieldgapsandfutureoutlook...70

6. Conclusions...72

Acknowledgements ... 72

References...72

1. Introduction

Africanoilpalm(ElaeisguineensisJacq.)hasitscentreoforigin inthehumidlowlandtropicsofWestAfrica.Wildoilpalmsare uncommonin primaryforestsbutrathergrowindisturbedand verywetlocations,suchasswampsandriverbanks,wheresun- lightisabundantandwateravailablethroughouttheyear(Zeven, 1967).Theoilpalmisamemberofthemonocotyledonouspalm family(Arecaceae).Thewoodystemcarriesasingleterminalgrow- ingpoint,fromwhichleavesappearatregularintervalsinadouble spiral(Rees,1964).Eachleafsupportsasingleinflorescence,which canbeeithermaleorfemale.Theharvestedproductisafruitbunch comprising1500–2000fruitlets.Crudepalmoil(CPO)isextracted fromtheorange-yellowmesocarp,andpalmkerneloil(PKO)from thewhitekernel.

Overthelast 100years, oilpalm haschanged fromasmall- holder agroforestrycropand ornamentalpalminto theworld’s mostimportantvegetableoilcrop.Currentworldwideproduction isestimatedat63Mtcrudepalmoilperyear,or36%ofthetotal worldvegetableoilproduction(USDA,2014).Expansionofoilpalm plantationshasbeensuggestedasakeycauseofdeforestationin bothIndonesia(Carlsonetal.,2012;Stibigetal.,2014)andMalaysia (Miettinenetal.,2011;Stibigetal.,2014),althoughotherdrivers suchasloggingalsoplayamajorrole(Laurance,2007;Lambinetal., 2001).Theincreasingdemandforpalmoiloverthecomingdecades willprobablybemetboththroughexpansionoftheareaplanted andincreasedproductivity(Carteretal.,2007;Corley,2009).

Sinceoilpalmexpansionmayleadtothedisplacementofbio- diverserainforests(Gaveauetal.,2014), increasedproductivity, combinedwithtargetedexpansionintodegradedareas(Fairhurst andMcLaughlin,2009),arethepreferredstrategies tomeetthe growingdemandforpalm oil.Increasingproductivitydoesnot, perse,leadtoreductionindeforestationunlesssupportingpoli- ciesareinplaceandareproperlyenforced(Angelsen,2010),but isanecessarysteptowardsreducingpressureonland.Athorough understandingandquantificationofthecontributionofdifferent

productionfactorstooilpalmyieldisurgentlyneededtoestimate thescopetoincreaseproductivityinexistingstands,andinongoing (re)plantingprograms.

Yieldgapanalysishasbeencommonlyusedasatooltoexplore thepossibilitiesforimprovinglandproductivity(Lobelletal.,2009;

vanIttersumetal.,2013;seealsowww.yieldgap.org).The‘yield gap’isdefinedasthedifferencebetweenpotentialandactualyield (vanIttersumandRabbinge,1997),withtheupperlimitofproduc- tivityperhectarebeingthe‘potentialyield’.Thispotentialyieldis definedasthetheoreticalyieldatagiventemperature,ambient atmosphericCO2concentration,andincomingphotosynthetically activeradiation(PAR),withoptimumagronomicmanagementand withoutwater,nutrient,pestanddiseaselimitations(vanIttersum andRabbinge,1997).Itreferstocurrentgermplasmortothebest currentlyavailablematerial.

Yieldgapanalysishasbeencarriedoutforarangeofannual cropssuchaswheat(AggarwalandKalra,1994;Belletal.,1995;

Anderson,2010),cassava(Fermontetal.,2009),rice(Yangetal., 2008;Laborteetal.,2012),andcerealsingeneral(Neumannetal., 2010).Alimitednumberofperennialcroppingsystemshasbeen subjectedtoyieldgapanalysis,includingcoffee(WairegiandAsten, 2012),highlandbanana(Wairegietal.,2010),andcocoa(Zuidema etal.,2005).Perennialcropssuchasoilpalmarestructurallydif- ferentfromannualcropsinseveralways.Inannualcrops,growers cantakeadvantageofnewseedswitheachgrowingseason.Bycon- trast,theyieldpotentialforperennialcrops,withalifespanofup toseveraldecades,isfixedforeachplantingcycle.Eventsearlyin theplantationlifetime,especiallyinthenurseryandatplanting, mayhavestrongeffectsonyieldinlateryears,whichcomplicates theinterpretationofyielddata(BreureandMenendez,1990).In addition,oilpalmfruitbunchestakeseveralyearstodevelop,and thereisatimelagof20–30monthsbetweentheonsetofstress factorsandtheirimpactonyield.Thismakesitdifficulttoseparate andquantifytheeffectsofindividualfactors(Adametal.,2011).

Quantitative dataonyieldresponsesof oilpalm todifferent productionfactors,particularlyplantingdensity,irrigation,andfer-

(3)

tiliseruse,areavailablefromtrialscarriedoutbycompaniesor researchstations.Results ofmany suchtrialsarereportedonly in thegrey literature and canbe difficulttoaccess, but Corley and Tinker(2016) providea very complete overview.Recently, Fairhurstand Griffiths(2014)performedayield gapanalysisin oilpalmfromapracticalplanters’perspective,withastep-by-step guidanceontheidentificationandresolutionofyieldconstraintsin thefield.However,anassessmentoftheunderlyingcausesofyield gapsinoilpalmproductionsystemsworldwideislacking.Inthis review,weexploreexistingknowledgeonoilpalmproductivity fromaplantphysiologicalperspective,toprovideacoherentpic- tureoffactorscontributingtoyieldgapsinoilpalm.Westartwith adiscussiononplantationlifecycle,vegetativegrowth,andleaf areadevelopmentinSection2.InSection3weprovideadetailed assessmentofbunchproduction,focusingonbunchnumberand bunchweight,thetwomaindeterminantsofyield.InSection4 wereviewtheyieldgapconceptandthedifferentproductionlev- els(i.e.potential,water-limited,nutrient-limited,andactualyield), anddiscussthedifferentfactorsthataffectgenerativeproductiv- ityinoilpalm,includingclimaticfactors,nutrition,andthemain pestsanddiseases.InSection5weconsiderthemostimportant constraintstoyieldintheoilpalmproducingregionsaroundthe world,withfocusonbothlarge-scalecommercialandsmallholder systems.FinallyinSection6weidentifytheexistingknowledge gapsandproposedirectionsforfutureactionandresearch.

2. Plantationlifecycleandvegetativegrowth

Inthissectionwediscusstheoilpalmproductionsystem,the differentyieldprofilesduringtheplantationlifetimeandthevege- tativegrowthoftheoilpalm,withafocusonleafareadevelopment.

2.1. Plantationlifecycle

Oilpalmsarecommerciallygrowninplantationsystems,witha densityof120–150palmsperhectare.Pre-germinatedseedsare raised in polybagsin a nursery for 6–12 months(Rankine and Fairhurst,1999a),afterwhichtheseedlingsareplantedinthefield atfinaldensitywithlimitedoptionsforreplacingplantsthatdo notsurviveorprovetohaveless-desirablepropertiesbeyondthe first12months.Plantationshaveanaveragelifetimeof25years,of which21–23areproductive.Fouryieldphaseshavebeendescribed (Fig.1):1)theimmatureor‘yieldbuildingphase’,upto2–3years after planting (YAP), before harvestable production begins and when thecanopy isnot yetclosed;2)theyoungmaturephase or‘steepascentyieldphase’,4–7YAP,whenleafareaandyield increaselinearly;3)thematureor‘plateauyieldphase’,8–14YAP, whenyieldandleafareaarestable;and4)aphaseofyielddecline, 15–25 YAP(Ng,1983; Gohet al.,1994; Fairhurstand Griffiths, 2014).

Thefirstyearofharvesttypicallyyields10–15tfruitbunches ha1 (withand oiltobunchratio of10–15%) under favourable circumstances; initial yields of >20t fruit bunches ha−1 have beenachievedincommercialplantings(Raoetal.,2008).Under favourableconditions,bunchproductionpeaks6–7YAP,withtyp- icalpeak yields of35tfruit bunchesha−1 (Ng,1983; Donough etal.,2009).Maximumyieldsof60tfruitbunchesha−1havebeen obtainedwithselectedclonalplantingmaterials(Ngetal.,2003).

Duringthematurephase,bunchproductionstabilisessomewhat belowthepeakachievedatsixYAP,withtypicalcommercialyields of 25–30tfruit bunchesha1 inwell-managed plantations(Ng, 1983;Donoughetal.,2010).Inthephaseofyielddecline,leafpro- ductionrateandbunchnumbersdecrease,butincreasedbunchsize partlycompensatesforthereductioninbunchnumber(Hardon et al.,1969;Goh et al.,1994;Jacquemard andBaudouin,1998:

0 2 4 6 8 10 12

0 5 10 15 20 25

Yield (tonne oil ha-1year-1)

Years Aer Planng Potenal yield

Nutrient/water limited yield Actual yield

Fig.1. Developmentofoilpalmyieldovertimeinthreehypotheticalplantations (afterNg,1983;Gohetal.,1994;FairhurstandGriffiths,2014).Thelightgrey (bottom),darkgrey(middle)andblackgrey(top)linesshowtheyieldprogress atdifferentproductivitylevels:actualyield(average3.5toilha−1year−1),nutri- ent/waterlimitedyield(average6.1toilha−1year−1)andpotentialyield(average 8.9toilha−1year−1),respectively,withalargegapbetweenthethreelevels.The yieldbuilding(noyield),youngmature(increasingyield),mature(plateau)and yielddeclinephasecanbediscerned.

21).Oilpalmscontinuetoproducefruitbunchesuntildeath,but replantingisrequiredat20–25YAPwhenpalmsbecometootall foreconomicharvestingorwhenyieldsdeclineduetothelossof palmstopestsanddiseases.

2.2. Vegetativegrowth

The averageyearlyabove-ground dry matterproduction per hectareformaturepalms(>10YAP)plantedwithtriangularspac- ingatplantingdensitiesof120–150palmsha−1rangesfrom19t DMha−1yr−1inNigeria(ReesandTinker,1963)to32tDMha−1 yr1inMalaysia(Corleyetal.,1971a).Drymatterproductioncan bedescribedbythefollowingequation:

DMP=PAR×f×RUE (1)

where DMP=dry matter production (kgm2yr−1), PAR=yearly photosynthetically active radiation (MJm2yr−1; 50% of total incomingsolar radiation(Monteith,1972)),f=fractionofradia- tioninterceptedbythecanopy,andRUE=radiationuseefficiency (kgDMMJ−1PAR)(Monteith,1977;Corley,2006).Estimatedval- uesforRUEare0.6–1.3gMJ1PAR(ReesandTinker,1963;Squire, 1986; Squireand Corley,1987).RUEdoesnot changewithage inoilpalm(SquireandCorley,1987)butisdecreasedindrycli- matesandonpoorsoilsandenhancedbyfertiliseruse(15–30%

increaseinresponsetotheapplicationofN-P-K)(Squire,1986).

Radiationinterception(f)dependsmainlyontheleafareaindex (LAI),i.e.theareaofleavespersurfacearea(m2m2),althoughleaf orientationwithrespecttolightanglecanmodifyeffectiveinter- ception.TheLAIincreaseslinearlyfromplantinguntil5–6YAPand peaksaround10YAP,whentheleavesreachtheirmaximumsize (GerritsmaandSoebagyo,1999).ThemaximumLAItypicallyvaries between4and6dependingongenotype(GerritsmaandSoebagyo, 1999;Breure, 2010), environment(Corleyetal.,1973), planting density(Corleyetal.,1973;GerritsmaandSoebagyo,1999),prun- ing(SquireandCorley,1987),fertiliseruse(Breure,1985;Corley andMok,1972),andgeneralagronomicmanagement.Inplanta- tionswhereoldleavesarenotremoved,LAImayexceed10(Squire andCorley,1987).AtanLAIof4.5interceptionofPARisatleast 80%,increasingupto90–95%atanLAIof6–7(Gerritsma,1988;

Breure,1988).YieldsarereducedwhenLAIexceedsavalueof6 duetocompetitionamongpalms(Breure,2010).

(4)

Fig.2.Schematicrepresentationofinflorescenceandbunchdevelopment,showingkeydevelopmentalstagesandtheeffectsofstressonpotentialbunchnumber(after UexküllandFairhurst,1991;Corleyetal.,1995;Adametal.,2005).Timestartsatleafinitiation(pointzero)andprogressesuntilbunchripeness,andisindicatedinmonths sinceleafinitiation(bottomx-axis)andleafnumber(upperx-axis,assuminganaveragephyllochronlengthof1.9month−1).They-axisshowsthenumberofpotential bunchesperhectare.Thetwolinesshowtheprogressoftwohypotheticalbatchesofpotentialbunches,startingatoneperpalminaplantationwithaplantingdensityof 142palmsperhectare.Overtimethenumberofpotentialbunchesdecreasesasthebatchespassthroughseveralcriticalphases.Severestress(bottomline)leadstolarger reductionsinbunchnumberthanmildstress(topline).Thebarsrepresentthestress-sensitiveperiods:sexdetermination(left),inflorescenceabortion(middle)andbunch failure(right).

Inolderplantations,mostofthestandingbiomassiscontained inthetrunk(ReesandTinker,1963).Ofanestimatedgrosspri- mary production of 160tDMha1yr1 in 10-year-oldpalms in Malaysia,around70tha−1yr−1wasallocatedtotrunk,root,and rachisrespiration,and55tha1yr1 allocatedtoleafletrespira- tion,leaving30–35tha1yr1 ofdrymatterproduction(Corley, 1976b).Estimatesofstandingrootbiomassat15YAPfromdifferent experimentswerelistedbyHensonandChai(1997),rangingfrom 9tDMha1(Corleyetal.,1971a)to20tDMha1(TeohandChew, 1988).Underconditionswithoutwaterlimitation,about10–12%of assimilatesareallocatedtotheroots(HensonandChai,1997),but underwaterlimitedconditions,assimilateallocationtorootsmay beupto35%(Dufrèneetal.,1990;vanNoordwijketal.,2015).

Inproductivepalmsplantedatstandarddensities,about45–50%

oftheabovegrounddrymatterproductionisallocatedtogener- ativegrowth(maleinflorescencesandfemaleinflorescencesand bunches;Corleyetal.,1971b).Ithasbeenproposedthatallocation ofassimilatestoinflorescencesandbuncheswillnotoccuruntil demandsforvegetativeproductionaremet(the“overflow”model;

Corleyetal.,1971b).Yetlaterresearchhasshownthatbothvegeta- tiveandgenerativegrowtharesource-limitedandthatcompetition occursbetweenthedifferentsinks,althoughpriorityisgiven to vegetativegrowth(CorleyandTinker,2016:103).

3. Fruitdevelopment

Anumberofkeystagescanbedistinguishedduringinflores- cenceandfruitbunchdevelopment(Fig.2;foradetailedreview,

seeAdametal.,2005).Oilyielddependsonthenumberofhar- vestedbunches,thebunchweight,andtheoilcontentofthefruit (Breureetal.,1990).Thesefactorsarediscussedindetailbelow.

3.1. Bunchnumber

Thenumberofripebunchesavailableforharvestisdetermined by1)thenumberofinflorescencesinitiated(whichinturndepends ontherateofleafproduction;GerritsmaandSoebagyo,1999);2) sexratio(Corleyetal.,1995;Adametal.,2011;Heeletal.,1987);

3)abortionoffemaleinflorescencesbeforeanthesis(Pallasetal., 2013);and4)failureofdevelopingbunchesbetweenanthesisand bunchripeness(Combresetal.,2013).

3.1.1. Numberofdevelopinginflorescences

Leafinitiationratedeterminesdirectlythepotentialnumberof inflorescences,asasingleinflorescenceisinitiatedintheaxilof eachleaf.Anaverageoilpalmcarries45–50unopenedleavesin varyingstagesofdevelopmentand32–48openedleaves(Breure, 1994).TheyoungestfullyopenedleafisdenotedasLeaf1,with unopenedleavesbeingnumberednegatively(Fig.2).Leafinitia- tionrateisdeterminedprimarilybypalmage(Broekmans,1957), withopeningratesdecliningrapidlyinthefirst10YAP(Gerritsma and Soebagyo, 1999).Typically40–45leaves palm1year1 are produced at two YAP, 25–35 leaves year1 at six YAP, 20–25 leavesyear−1at12–14yearsYAP(Broekmans,1957;Gerritsmaand Soebagyo,1999)and17–20leavesyear1at21YAP(Broekmans, 1957;Rafiietal.,2013).Leafinitiationratemayvarybetweendif-

(5)

ferentplantingmaterialsby±1leafpalm−1year−1(Gerritsmaand Soebagyo,1999)orthreedaysperphyllochron(thetimeelapsed betweentheappearanceoftwoconsecutiveleaves)(Lamadeetal., 1998).Leafinitiationratesofindividualpalmsrespondpositively tolight availability:initiationrates increasedby19%two years afterthinningofpalms11–15YAPathighdensity(186palmsha1; Breure,1994).Sinklimitationin13yearoldpalms,resultingfrom completeremovalofdevelopingfruits,reducedphyllochronlength from17daysto15days(Legrosetal.,2009b),possiblybecauseof increasedcarbohydrateavailabilitytoyoungleaves.Thissuggests thatoilpalmisabletorespondtoabundantcarbohydratesupply byincreasingitsrateofinflorescenceinitiation(Pallasetal.,2013).

Therateofleafopeningisreducedrapidlyinresponsetodrought (Changetal.,1988),resultingin theaccumulationofunopened leavesinthecentreofthepalmcrown(Broekmans,1957;Nouy etal.,1999).Droughtmayalsoreduceleafinitiationrates(Chang etal.,1988;Breure,1994).

3.1.2. Sexdetermination,inflorescenceabortion,andsexratio Incontrasttootherpalms,suchascoconut,thatcarrymaleand femaleflowersinthesameinflorescence,sexisdeterminedatinflo- rescencelevelinoilpalm.Theearliestmorphologicaldifference betweenmaleandfemaleinflorescencesistheincreasednumber ofbractsinitiatedonmalerachillae(Leaf-6;Corley,1976a;Heel etal.,1987;Adametal.,2005).Thetimingofsexdetermination variesamongexperiments,researchsitesand plantingmaterial, rangingfrom29to30monthsbeforeharvest(Broekmans,1957) to20 monthsbeforeharvest(Breureand Menendez,1990; Fig.

2).Corleyetal.(1995)foundthatthetimingofsexdetermina- tionvariesamongclones:eitheratbractinitiation,Leaf-29,orjust beforefirstrachillainitiation,Leaf-10,orboth.ThisledCorleyand Tinker(2016:121)tospeculatethatsexdifferentiationoccursat Leaf-29butisreversibleuptoLeaf-10(Crosetal.,2013).Thephys- iologicalmechanismsunderlyingsexdeterminationandtheroleof carbohydratebalanceandplanthormonesremainpoorlyunder- stood(Corley,1976a;CorleyandTinker,2016:120;forareview ontheeffectsofenvironmentalfactorsonsexdeterminationsee Adametal.,2011).

Sexratio(i.e.theratiooffemaleinflorescencenumbertototal inflorescencenumber)isaffectedbybothsexdeterminationand thepreferentialabortionoffemaleormaleinflorescences;thetwo effectsaredifficulttoseparate(Corley,1976a).Intheabsenceof severestress,theaveragesexratiois0.9–1.0inthefirstfourYAP (Henson andDolmat, 2004), 0.6–0.9until 12YAP (Jones, 1997;

HensonandDolmat,2004),andthensteadilydeclines(Corleyand Gray,1976).Severewaterdeficit,suchasoccursinthedryseasonin WestAfrica,canreducethesexratioto0.1–0.2(Broekmans,1957;

Bredasand Scuvie, 1960; Corley,1976a). Sexratio, particularly inflorescenceabortion,isaffectedbyfruitingactivity(Corleyand Breure,1992).Thecombinedeffectsofenvironmentalandinter- nalsignalsresultinannualoscillationsinsexratioandyield(Cros etal.,2013).Developinginflorescencesaremostsensitivetoabor- tion4–6monthsbeforeanthesis,whichcoincideswiththeonset of floralorgandevelopmentand elongation(Broekmans,1957).

Whereasseveralauthorsreportedapreferentialabortionoffemale inflorescencesduring(partof)thesensitiveperiodofinflorescence development (Bredas and Scuvie, 1960; Breure and Menendez, 1990; Pallasetal., 2013), othersobserved preferential abortion offemaleinflorescencesonlyinspecificlines(Corleyetal.,1995), preferentialabortionofmaleinflorescences(Legrosetal.,2009b), or equalabortionrates for inflorescencesof bothsexes (Henry, 1960).Inflorescenceabortionratesof25–40%weremeasuredin youngmaturepalmsthatexperiencedprolongeddryseasonsin Nigeria,decreasingto5–10%inpalms>15YAP(Broekmans,1957).

Muchsmallerabortionrates of2–13%weremeasuredin palms

of4–17YAPplantedondeeppeatsoilswitha highwatertable in Malaysia,and noclearagetrendwasobserved (Henson and Dolmat,2004).Areductioninsourceavailabilitythroughdefoli- ationdownto16leavesincreasedinflorescenceabortionratesin Leaves+2to+12from10%to40%,onaverage,inclonalpalmsof 9YAPinMalaysia(Corleyetal.,1995).Whilethesexratioatthe momentofpeakabortiondidnotchangesignificantlyinallclones butone,theaveragepercentageofleafaxilswithmaleinflores- cences increasedfrom50%in thecontrolto60% inthepruned palms,intheperiod11–25monthsafterdefoliation.Conversely, adecreaseinsinkactivityinducedbyfruitpruninginpalmsof14 YAPinSumatraincreasedthefractionoffemaleinflorescencesin thetroughand thepeak seasonfrom0.15–0.6inthecontrolto 0.25–0.8inthepruned palms.Simultaneously,theabortedfrac- tionsdecreasedfrom0.2–0.6to0.1–0.2,andthenumberofmale inflorescencesinthetroughseasonincreasedfrom0.1to0.5(Legros etal.,2009b).Thresholdsofspecificassimilateavailabilitythattrig- gersexdeterminationandfloralabortionresponsesremaintobe identified,duetothelargevariationinresponseamongplanting materials,researchsites,andexperiments(Breure,1987;Corley andBreure,1992;Corleyetal.,1995;Crosetal.,2013).

3.1.3. Bunchfailure

Bunchfailure,theabortionofabunchbeforefullripening,occurs 2–4monthsafteranthesis(Sparnaaij,1960).Bunchfailuremaybe causedbypoorpollinationoracuteandsevereassimilateshortage, usuallycaused bylackofwater orradiation(CorleyandTinker, 2016:125;Combresetal.,2013).Bunchfailureratesbetween1.5%

(Corley,1973b)and>25%(Sparnaaij,1960;CorleyandTinker,2016:

124–125)havebeenobserved,buttheavailabledataisscarce,and thephenomenonremainspoorlydescribedandunderstood(Corley andTinker,2016:124–125).

3.2. Bunchweightandoilcontent

Bunchweightandoilcontentarelessresponsivetostressthan bunch number, but have a major impact on yield. We briefly describeinflorescenceandbunchdevelopment,andthendiscuss theregulationofthevariouscomponentsofbunchweightandoil content.

3.2.1. Inflorescenceandbunchdevelopment

Bothmaleandfemaleinflorescencesconsistofapeduncle,car- ryingspikeletsonwhichtheflowersareset,eachsubtendedbya singlebract.Themalepeduncleandspikeletsare40and10–30cm inlength,respectively,andeachofthe100–300spikeletscarries 400–1500maleflowers3–4mminlength.Thefemalepeduncleis shorter(20–30cm)andthickerandcarriesaround150spikelets, each 6–15cm inlength.Aspikeletcarries5–30flowersthatare subtendedbyabractintheshapeofasharpspine(Jacquemard andBaudouin,1998).Thenumberofspikeletsandthenumberof flowersperspikeletincreasewithpalmagebutreachaplateauat 10–12YAP(CorleyandGray,1976).Thenumberoffemaleflow- ers thatdevelopsintofruitletsrangesfrom30–60%(Corleyand Tinker, 2016: 49) to80% (Harun and Noor, 2002) when insect pollinators are present. In palms 10–15 YAP, bunches contain 1500–2000fruitlets.Thebunchmaturationtime(fromanthesisto bunchripeness)variesfrom140to180days,dependingonboth geneticandenvironmentalfactors(Lamadeetal.,1998;Henson, 2005).Fruitmaturationstartstwoweeksafteranthesisandoccurs inseveraldistinctphases(Ooetal.,1986).Oilstartstoaccumulatein theendospermoffruitletsabout12weeksafteranthesis,andfour weeks latertheendocarpandendosperm(whichtogetherform thekernel)havehardened(Ooetal.,1986;Sambanthamurthietal., 2000).Oildepositioninthemesocarpbeginsaround15weeksafter anthesisandcontinuesuntilfruitripeness,5–6monthsafteranthe-

(6)

sis(Ooetal.,1986),whenfruitletmesocarpoilcontentisabout60%

andwatercontenthasdecreasedfrommorethan80%tolessthan 40%(BaforandOsagie,1986;BilleNgalleetal.,2013).

3.2.2. Regulatingmechanismsofbunchweightandoilcontent Themain componentsthat determinebunchweightarethe number of spikelets, number of flowers per spikelet, fruit set, weightper fruitlet,and weight ofnon-fruit bunchcomponents (Broekmans,1957).Bunchfreshweight(with53%drymatter,on average;Corleyetal.,1971b)increaseswithpalmage,startingat 3–5kgat24MAPandincreasingtoover30kgby25YAP(Limand Chan,1998,citedby Corleyand Tinker,2003:113;Sutarta and Rahutomo,2016).Allcomponentsofbunchweightrespondpos- itivelytoincreasedassimilateavailability(BreureandMenendez, 1990;CorleyandBreure,1992;Pallasetal.,2013).Removalof75%

oftheinflorescencesinpalmsof4–7YAPincreasedtotal bunch weightto12.7kgfrom7.6kgincontrolpalms,resultingfroman increaseinallcomponentsmentionedabove(CorleyandBreure, 1992;BreureandCorley,1992).Fruitsetisdeterminedmainlyby pollinationefficiency(4.2.8).

Oilcontentisprimarilyaffectedbyplantingmaterial(4.2.4).A singlegenedetermineskernelshellthickness,whichinturnaffects thethicknessofthemesocarpandthereforefruitbunchoilcontent (BeirnaertandVanderweyen,1941).Wildtypeoilpalm(dura)has athickshellandatypicaloilextractionrateof16–18%,whereas thetenerahybrid,acrossbetweenduraandtheshell-lesspisifera mutant,hasanintermediateshellthicknessandoilextractionrates of22–30%(Jalanietal.,2002;RajanaiduandKushairi,2006).Fer- tiliseruseaffectsbunchoilcontent(OchsandOllagnier,1977),with increasedtissuechlorideconcentrationsleadingtoanincreasein kernel-to-fruitfrom7.8to9.3%,andareductioninmesocarp-to- fruitfrom81.7to79.2%inpalmsof8YAPinPapuaNewGuinea (Breure,1982).Oilcontentisnegativelycorrelatedwithrainfall, andpositivelycorrelatedwithavailableradiation;highrainfallin Malaysiain1996resultedina0.8–1.5%decreaseofoilextraction rate(OER)comparedwith1993(HoongandDonough,1998).Itis positivelyrelatedwiththeconcentrationofMginleaftissue(Ochs andOllagnier,1977)butsometimesnegativelycorrelatedwiththe applicationofpotassiumchloride(OchsandOllagnier,1977;Zin etal.,1993),probablyasaconsequenceofincreasedClconcentra- tionsintheplanttissueresultinginincreasedkernel-to-fruitratio (Breure,1982).

4. Magnitude,causes,andmanagementofyieldgaps

Oilpalmisgrowninlarge-scalemonocultureplantationsoras asmallholdercrop,withfruitbunchesastheprimaryoutputand crudepalmoil(CPO)andpalmkerneloil(PKO)asthefinalproducts.

Productivityisbestmeasuredasoilyield(tha−1),calculatedfrom theyieldoffruitbunches(tha1)andtheextractionrate(%).Inthis reviewyieldsareexpressedeitherintha1 fruitbunches(with 53%DM)orintha−1oil.PKOisnotconsidered,asitisaby-product whichisextractedandtradedbyalimitednumberofmills.Kernel extractionrateisusuallyabout5%(Carteretal.,2007).

4.1. Thedifferentyieldgapsinoilpalm

Inproductionecology,threeproductionlevelsarecommonly distinguished: the potential yield (Yp) determined by yield- defining factors(PAR, temperature,ambient CO2 concentration, and crop genetic characteristics); the water-limited (Yw) and nutrient-limitedyield (Yn)determined byyield-limitingfactors (waterand nutrition); and the actualyield (Ya) determinedby yield-reducingfactors(weeds,pest,diseases)(vanIttersum and Rabbinge,1997).Yieldgapanalysisistheanalysisofthedifference betweenYp(assuminggenotype andmanagement areoptimal)

and Ya in a particularphysical environment (vanIttersum and Rabbinge,1997;forrecentreviewsonyieldgapanalysisseealso Lobelletal.,2009;vanIttersumetal.,2013).

We definethepotentialyieldasthe yield ofacultivar,when growninenvironments towhichitisadapted; withnutrientsand waternon-limiting;andwithpests,diseases,weeds,lodgingandother stresseseffectivelycontrolled(Evans,1993).Thetheoreticallimitto geneticgainincropyieldcanbecalculatedusingsimulationmod- els(Lobelletal.,2009).Thisnumberissometimesalsoreferredto asthe‘potentialyield’inoilpalmliterature(Breure,2003;Corley, 2006),andcanbeusedtosetatargetforbreedersandtoexplore futurescenarios,suchasforlanduse.Oilpalmmanagementliter- aturereferstothe“siteyieldpotential”(Tinker,1984;Gohetal., 2000),definedastheyieldobtainedonaspecifiedsite,withnatural watersupply,nutrientssuppliedatoptimumrates,andagronomicand diseasecontrolmeasuresimplementedtoahighstandard(Corleyand Tinker,2016:322).Thisissimilartowhatwecallthewater-limited yield,butincludesmanagementdecisionstakenatplanting,specif- icallyplantingmaterialanddensity.Forthoroughreviewsonthe approachtoyieldgapanalysisfromtheoilpalmmanagementper- spective,seeGohetal.(1994);Griffithsetal.(2002),andFairhurst andGriffiths(2014),amongothers.

Accurate analysis of yield gaps depends on the correct assessment of thevarious production levels(Fig.3). Theyield- determining,yield-limitingandyield-reducingfactorsrelevantin oilpalmandtheirquantitativeeffectsonproductivityarediscussed indetailbelow.

4.2. Potentialyieldandyield-determiningfactors

Thepotentialoilyield,asdefinedbyfruitbunchyieldandoil content,is determined byPAR,temperature, ambientCO2 con- centration, and crop geneticcharacteristics, under perfect crop management(vanIttersumandRabbinge,1997;Table1).Wedis- cuss thedifferent factorsthat determinethe potentialyield in furtherdetailbelow.

4.2.1. AvailableradiationandPAR

Asaperennialwithapermanentleafcanopy,oilpalmisableto interceptradiationthroughouttheyear,whichisoneofthemain reasonswhyitsproductivityissolargecomparedwithotherveg- etableoilcrops.Inthetropics,availableradiationismostlylimited bycloudiness.Therangeoftotaldailyincomingshort-waveradi- ationandsunshinehoursperdayinoilpalmgrowingregionsare showninTable1.

Aminimumof15MJm2day1 total solarradiation(equiva- lentto∼7.5MJm2day1PAR)or5.5hday1ofsunshineisoptimal foroilpalmgrowth,indicatingalesseryieldpotentialinpartsof AfricaandtheAmericas(Paramananthan,2003).Modellingwork byKraalingen etal.(1989) indicatedthat each hourperdayof brightsunshineresultsin15–20kgbunchdrymatterproduction palm1year1inexcessofthebunchdrymatterproducedunder cloudycircumstances,assumingaplantingdensityof110palms ha−1.Thuspotentialyieldsinregionswitheightsunshinehoursper daywouldbe>60%largerthaninregionswiththreesunshinehours perday(Kraalingenetal.,1989).Lightsaturationinoilpalmleaves typicallyoccursataphotosyntheticphotonfluxdensity(PPFD)of

>1100–1200␮molm−2s−1,roughlyequivalentto250Wm−2PAR (Dufrèneet al.,1990).A light-saturatednetassimilationrateof about20␮molCO2m2s1wasmeasuredat1100␮molm2s1 PPFDinleaf8and9ofpalmsplantedinIvoryCoast(Dufrèneand Saugier,1993),whichissimilartotheaveragerateof17.8␮molCO2 m2s1 foundinpalms12–13YAPinMalaysia(Henson,1991b).

ReductionofavailablePARduetohaze,causedbyforestburning, isacommonissueinIndonesia.Forestburningoccursmostlydur- ingthedryseasonwhenavailableradiationisatitspeak,andis

(7)

Table1

Yield-determiningfactorsinoilpalmsystems:potentialyield(Yp).

Yield-determining factors

Rangeinoil-palmgrowingareas Yieldeffectsmeasuredincasestudies Selectedreferences

Radiation:solar radiation

Allregions:average15to23MJtotal radiationm−2day−1

Africaandpartsofthe

Americas:<10MJm−2day−1during thewetseason

Modelledincreasesof1.7–2.1tfruitbunchesha−1yr−1per additionalMJm−2day−1

Modelled15–20%annualyieldlossaftertwomonths reductionfrom15to12MJtotalradiationm−2day−1dueto haze

(Paramananthanetal.,2000) (Henson,2000)

(Goh,2000) (Calimanetal.,1998)

Radiation:sunshine hoursday−1

Asia:5.3–6.9

Americas:2.2–7.7

Africa:3.6–6.3

Productivityconstraintsif<5.5hday−1

Oneadditionalhrday−1yieldsanadditional15–20kgbunch DMpalm−1yr−1comparedwithproductivityundercloudy conditions

(Hartley,1988:100-101) (Kraalingenetal.,1989) (Paramananthan,2003)

CO2concentration 1960:317ppm

1980:339ppm

2000:370ppm

2015:399ppm

ModelledbunchDMproduction(tha−1yr−1)insitewithout waterdeficit:

(Ibrahimetal.,2010) (Henson,2006) (TansandKeeling,2015)

Temperature Lowestmonthlyminimum:17.7C (Bahia,Brazil)

Highestmonthlymaximum:34.6C (Aracataca,Colombia)

Undefinedstrongyieldreductionsatminimummonthly averagetemperaturesoflessthan18–19C

Seedlinggrowthinhibitedat15C,seventimesslowerat 17.5Candthreetimesslowerat20Cthanat25C

Immatureperiodincoldconditionsupto1yearlonger

(Hartley,1988:102-103;110) (Henry,1958)

(Olivin,1986)

Plantingmaterial Teneraclones

Tenerasemi-clones

DxPteneraseed

Duraseed

Seedofunknownorigin

Teneraclones:15.7toilha−1yr−1at7YAP

Tenerasemi-clones:11.1toilha−1yr−1at5YAP

DxPteneraseed:8.9toilha−1yr−1

Duraseed:35–50%reducedbunchoilcontent

Seedofunknownorigin:reductionspotentiallyverylarge dependingonpercentagepisiferainpopulation(zeroyield frompisiferapalms)andpotentialofparentmaterials

(Simonetal.,1998) (Ngetal.,2003) (Rajanaiduetal.,2005) (Sharma,2007)

Plantingdensity 110–156palmsha−1infavourable environments

160–170palmsha−1inunfavourable soils

Optimumfixedplantingdensity:140–160palmsha−1; optimumLAI:5.5–6.0

1-2%reductionincumulativeplantationyieldwhen density±10palmsfromoptimum

Ondeeppeat:higheroptimumdensities(>160palmsha−1)

Yieldincreaseof4tfruitbunchesha−1yr−1from9to16YAP inresponsetothinningfrom160to120palmsha−1at8YAP comparedwithnothinningorafixeddensityof143palms ha−1inThailand

(CorleyandTinker,2016:282) (Breure,2010)

(Corley,1973a) (Breure,1977) (Gurmitetal.,1986) (Gohetal.,1994) (Uexkülletal.,2003)

Culling Good:20–30%ofseedlingsremoved

Poor:incorrectorinsufficientculling

Noculling:20–30%abnormalseedlingsproducing40–100%

lessyieldthannormalseedlings

(Tam,1973) (Gillbanks,2003)

Pruning 50–60leavesat0–3YAP

40–50leavesat4–10YAP

32–40leavesat>10YAP

Over-pruningpalms8–12YAPplantedat138palmsha−1in Malaysia:<2,12,19,24,and25tfruitbunchesha−1with8, 16,24,32,and40leavespalm−1,respectively

Under-pruning:directbutunquantifiedyieldlossdueto reducedharvestingefficiency

(Hartley,1988:441-442) (Henson,2002) (CorleyandHew,1976)

Fruitsetand pollination

Pollinatingweevilpresentinall regions

Averagefruitset70–80%

Quadraticasymptoticrelationbetweenfruitsetandbunch weightwithanaveragebunchweightof24,20and14kgat 90,50and20%fruitset,respectively

Quadraticrelationbetweenfruitsetandoiltobunchratio withanaverageO/Bof25,20and13%atafruitsetof75,40 and20%,respectively

(HarunandNoor,2002) (Syedetal.,1982) (RaoandLaw,1998) (Henson,2001)

Harvestingfrequency Plantations:7-day,10-dayor14-day harvestinginterval

Smallholders:usually14or15-day harvestinginterval,sometimesupto 30days

Yieldincreaseof5–20%whenreducinglengthofharvesting roundfrom14to10days

(Donoughetal.,2013) (Leeetal.,2013) (Corley,2001) (Donough,2003)

Croprecoveryinthe field

Varyingfromnearcomplete recoverytolessthan70%offruit

Reportedyieldlossesofupto5tfruitbunchesha−1dueto poorcroprecovery

Yearlylossesunderstrictharvestingregimeat7-day interval:200kgfruitbunchesha−1unharvestedbunches and65kgha−1uncollectedloosefruits

Incompletecollectionofloosefruit:onaverage>5%yield loss

∼30%lessoilyieldfromunripebunches

(FairhurstandGriffiths,2014:

Chapter6)

(Donoughetal.,2013) (Corley,2001) (Wood,1985)

(8)

Fig.3.Differentoilpalmproductionlevelsandthecontributingfactors.

likelytoreduceyieldssignificantly(Table1).InAfrica,dustfrom theHarmattanandsmogcauseperiodicreductionsinradiation.

4.2.2. CO2concentration

UndercurrentcircumstancestherateofphotosynthesisinC3 cropssuchasoilpalmislimitedbytheavailabilityofCO2.Yield increasesof10–30%inresponsetodoublingatmosphericCO2con- centrationshavebeenobservedinotherC3cropssuchaswheat (Kimballetal.,1993;Fuhrer,2003),andmaybeexpectedinfuture inasoilpalmiswelladaptedtohightemperature-environments (DufrèneandSaugier,1993).Increasesinphotosyntheticratesinoil palmseedlingsfrom5to12␮molm2s1havebeenobservedin responsetochangesinatmosphericCO2concentrationsfrom400 to800ppm(Ibrahimetal.,2010).Whetherincreasedratesofphoto- synthesisaretranslatedintoimprovedyieldsdependsonmultiple factors,particularlythesource/sinkbalance(e.g.PaulandFoyer, 2001)andtheairtemperature(4.2.3).Maturepalmsareusually source-limited(Breure,2003)makinganactualyieldresponseto risingCO2 concentrationslikely,ifthetemperatureremainssta- ble.Noresearchhasbeencarriedouttodateontheactualeffectof availableCO2onoilpalmyieldinmatureplantations.Theexpected effectsofclimatechangeonworldwidepalmoilproductionare reviewedbyCorleyandTinker(2016,Section17.3).

4.2.3. Temperature

Thetemperaturerangeintheoilpalmgrowingregionsisshown in Table1.The uppertemperature limitfor efficientphotosyn- thesisinoilpalmleavesis>38C,providedthatvapourpressure deficitissmall(Dufrèneetal.,1990;DufrèneandSaugier,1993;

Paramananthan,2003).Temperatureandmaintenancerespiration inplantsarestronglypositivelyrelated,withanaveragefactortwo increaseinmaintenancerespirationatevery10Ctemperaturerise (Amthor,1984;Ryan,1991).Whetherthisestimateholdsforoil palmremainsunclear,andyieldresponsestoincreasingtemper- atureshavenotbeenquantified(Henson,2004,2006).Oilpalmis sensitivetocold(Table1).IncoolerregionssuchasinBahia(Brazil) andTela(Honduras),strongreductionsinyieldoccurduringthe secondhalfofthecoldseasonandthebeginningofthewarmer season,andinSumatralowtemperaturesathigherelevationswere foundtoextendtheimmatureperiodbyatleastoneyear(Hartley, 1988:110).

4.2.4. Plantingmaterial

Estimatesoftheoreticalceilingoilyields(withfutureplanting materialsunderthebestpossibleenvironmentalandmanagement condition)rangefrom10.6(Breure,2003)and14.0(Henson,1992) to18.5toilha1 yr1 (Corley,1998,2006)onaverageover the plantationlifetime.Whilethelargerestimatesmaybebasedon someunrealisticassumptions(Breure,2003),bestyieldsachieved insmallplantationsorexperimentalfieldsalreadyfallwithinthe estimatedrange (Table1).Non-clonalplantingmaterials,raised fromseed,consistofapopulationofoffspringfromaduramother andapisiferafather(DxP),andindividualsvaryintermsofpotential forvegetativegrowthandproductivity(Okwuagwuetal.,2008).

PotentialyieldsofDxPplantingmaterialshaveincreasedbyanesti- mated1.5%peryearthroughbreedingwithspecificmale/female parentcombinationsthat showanearlytrackrecord ofperfor- mance:thistrendinyieldincreaseisexpectedtocontinue(Soh, 2004;Corley,2006).Breedinghasparticularlyimprovedphotosyn- theticconversionefficiency(CorleyandLee,1992)andbunchoil content(CorleyandLee,1992;Prasetyoetal.,2014;Soh,2015).

Varietieswithimprovedtoleranceforcold(Chapmanetal.,2003) anddrought(Raoetal.,2008)arebeingfurtherdeveloped.

Clonesfromcarefullyselectedortetscanoutyieldconventional seedmaterialby20–30%,duetoacombinationofbetteruniformity, increasedfruitbunchyieldandgreateroiltobunchratio(Khaw andNg,1998;Simonetal.,1998;Kushairietal.,2010;Soh,2012;

Table1).Althoughfieldexperimentshaveconfirmedthesuperior yieldsofselectedclonesundercircumstancesofrigorousculling, keyissueswithmultiplicationofembryosandsomaclonalvaria- tionlimitthecurrentplantingofclonesatcommercialscale(Soh, 2004;Sohetal.,2011).Therecentfindingoftheepigeneticfac- torunderlyingthemantlingphenotype(afloralmalformationthat resultsinfailuretoformfruitletsorreducedfruitletoilcontent) islikelytoboosttheplantingandperformanceofclonaloilpalm (Ong-Abdullahetal.,2015).

4.2.5. Plantingdensity

Plantingdensityisanimportantdeterminantofpotentialyield (Corley,1973a;Breure,1977,1982;Uexkülletal.,2003).Anopti- mumplantingdensity(Table1)balancestherequirementforrapid canopyclosureintheimmaturephasewithalargenumberofpalms (i.e.bunches)intheyoungmaturephaseandlimitedinter-palm

(9)

competitionforlightinthematurephase.Ondeeppeat,vegeta- tivegrowthisreducedanddenserplantinghasbeenrecommended (Table1;Gurmitetal.,1986).High-densityplantingfollowedby selectivethinningat8–9YAPisaneffectivestrategyforyieldmax- imisation(Uexkülletal.,2003;Palatetal.,2012;Table1).

4.2.6. Culling

Thequalityanduniformityoffieldpalmsdependsontheplanted material andontheselection ofindividuals duringthenursery phase,termed‘culling’(Tam,1973).Duetogeneticdiversityand stressesduringthenurseryandfieldplantingphase,largediffer- ences in productivitybetweenpalmshave beenobserved even whenrigorouscullinghasbeencarriedout(Okwuagwuetal.,2008), withthemostproductiveindividualsyieldingtwotothreetimes morethanaverage,andtheleastproductiveindividualsyielding nobunches(Yeowetal.,1982;Hartley,1988:222).Normallythe prevalenceofstuntedorabnormalseedlingsis20–30%.Abnormal seedlings,identifiedbyphenotypicselectioninthenurseryphase, givestronglyreducedyieldswhenplantedout(Tam,1973;Table 1).Allabnormalseedlingsshouldberemovedduringthenursery phaseorreplacedwithin12monthsafterplanting(Gillbanks,2003;

JacquemardandBaudouin,1998:56).

4.2.7. Pruning

Pruning,theremovalofselectedleaves,isamanagementprac- ticespecificforperennialcrops.Pruningaimstooptimisesource availabilitywhileminimisinglossofassimilatesduetorespiration insenescingleaves.Newly-openedleavesinoilpalmshowastable orslightly increasingphotosyntheticactivityuntil4–10months afteropening(inpalmsof3and 10–12YAP,respectively),after whichactivitydecreasesuntiltheleavessenesceanddie(Corley, 1983,1976b).Leavesatthebottomofthecanopyremainphoto- syntheticallyactiveandarenetsourcesuntilsenescence(Henson, 1991a), and retaining all living leaves but removing senescing leavesisthebestwaytomaximiseassimilateavailabilityirrespec- tiveofplantationage(Hartley,1988:441;Henson,2002).Pruning in immatureand youngmaturepalmsisusually limited tothe removalofsenescingordeadleaves,asreductionsinleafareahave astrongnegativeeffectonlightinterceptionandtotalassimilate availabilityduringthisphase(Gerritsma,1988;Breure,2003).Yield penaltieswhenpruningfrom>48downto32–40leavesperpalm inmatureplantationsarenotsignificant(CorleyandHew,1976) andsufficientpruningoftallpalmstofacilitatecompleteandcor- rectharvestingandquickrecyclingofnutrientsisrecommended (FairhurstandGriffiths,2014).

4.2.8. Pollination

Aquadraticfunctiondescribestherelationshipbetweenfruit setandbunchweight,withamaximumbunchweightat90%,and amaximumoiltobunchratioat75%fruitset(HarunandNoor, 2002;Table1).Seasonalepisodesofpoor(10–20%)fruitsethave beenobservedinMalaysia,causedbystrongreductionsofpollinat- ingweevilpopulationsduetoexcessiverain,absenceofsufficient maleflowersandinfectionwithparasiticnematodes(RaoandLaw, 1998).Asaconsequenceoilextractionrate(OER)fellfrom21.2 to18.8%,andkernelextractionratefrom4.7to3.5%inMalaysia between1993and1996.Aminimumoftwomalepalmsperhectare inplantationswithahighsexratioisthoughttosupplysufficient pollenandmaintainweevilpopulations(RaoandLaw,1998).

4.2.9. Croprecovery

Thegoalofharvesting,orcroprecovery,istocollectallfruit bunchesatthemomentofoptimumripeness(i.e.maximumoil contentwithaminimumconcentrationoffreefattyacidsinthe extractedoil;PORLA,1995).Infrequent,incompleteorincorrect harvestingpractices (i.e.harvestingunripeoroverripebunches)

directly reduce both the quantity of fruit and the oil quality (Donoughetal.,2010;Table1).Theharvestinginterval(i.e.the numberofdaysbetweentwoharvestingrounds)shouldbeadapted tothespeedatwhichloosefruitsdetachfromtheripebunch,to minimiselossesfromuncollectedloosefruitandoverripebunches (Gan,1998).Anoptimalharvestinginterval of10dayshasbeen proposed (Gan, 1998; Rankine and Fairhurst, 1999b; Donough etal.,2010).Harvestingofunripebunchesislikelytoaffectthe source/sinkbalanceasbunchsinkrequirementsincreasestrongly towardsthelastphaseofripening(Henson,2007),butthishasnot beenquantified.

4.3. Water-limitedyieldandyield-limitingfactors

Thewater-limitedyield(Yw;Table2)isanimportantbench- markasmostoilpalmcroppingsystemsarerain-fed(Ludwigetal., 2011).Wateravailabilitydependsonrainfallandsoilcharacteris- ticsandisstronglysite-specific(Lobelletal.,2009;vanIttersum etal.,2013).Ywcanbeapproximatedbycropsimulationmodels usingplausiblephysiologicalandagronomicassumptions(Evans andFischer,1999),byfieldexperiments,estimatesofbestfarmers’

yields,orgrowers’contests(vanIttersumetal.,2013).

4.3.1. Rainfall

Oilpalmtranspiresabout6mmwaterday−1undernon-limiting conditions, and requires sufficient rainfall throughout the year (Table2).Averageactualtranspirationratesinoilpalmplantations are4.0–6.5mmday−1 intherainyseasonand1.0–2.5mmday−1 ondrydays(Carr,2011).Moderatetoseverewaterstressstrongly suppressesyield (Table3).Oil palmleavesdo notwilt,but the openingofnewleavesisdelayedinresponsetowaterstress,and stomatalopeningisstronglyaffectedbyairvapourpressuredeficit (VPD) and soil water availability (Smith,1989; Caliman,1992).

HensonandHarun(2005)measuredpotentialevapotranspiration ratesof1.3mmday1at1.9kPaVPDand75%availablesoilwater content,in palmsof3 YAPplantedata sitewitha regulardry seasoninMalaysia.Inanothersite,anincreasedVPDfrom0.4to 2.0kParesultedinadeclineinphotosyntheticratefrom18–19to 10–12␮molCO2 m1s1 in palmsof1–2YAP,evenundercon- ditions of sufficient soil water availability (Henson and Chang, 1990).

Alinearrelationshipbetweenappliedwatervolumeandyield hasbeenfoundinirrigationtrialsindrierenvironments(Corley, 1996; Palat et al., 2008; Carr, 2011; Table 2). Although yield responsestoirrigationhavebeenobservedinareaswithoccasional dryspellsinMalaysia,irrigationisnotalwayseconomicallyfeasible (CorleyandHong,1982;HensonandChang,1990).Criticalwater deficitthresholdsatdifferentstagesofpalmdevelopmentandopti- mumvolumesofwatertobeappliedremaintobedefined(Carr, 2011).

4.3.2. Soil

Soilwateravailabilitydependsontheinfluxofwater(rainfall, irrigation,andgroundwater),thelossofwater(evapotranspiration, drainage,andsurfacewaterrun-off),andtheprevioussoilwater reserve.AsimplifiedcalculationwasproposedbySurre(1968)to allowforaquickassessmentofthesuitabilityofsoil-climatecom- binationsforoilpalmdevelopment.Thiscalculationisbasedonthe followingequation:

B = Res+R−Etp (2)

where Bis thewaterbalanceat theendof aperiod, Resis the soilwaterreserveatthebeginningofaperiod,Ris rainfalland Etp isthepotentialevapotranspiration(Surre,1968).Using this equation,Olivin (1968)estimatedwater-limitedyieldsinAfrica forfivescenariosofwaterdeficitonfivesoilclassesrangingfrom

Referensi

Dokumen terkait

AR TICLE IN PRESS AR TICLE IN PRESS IMPACT OF Elaeidobius kamerunicus Faust INTRODUCTION ON OIL PALM FRUIT FORMATION IN MALAYSIA AND FACTORS AFFECTING ITS POLLINATION EFFICIENCY: A

GROUP FLUX CONTROL COEFFICIENTS FOR LIPID BIOSYNTHESIS IN OIL PALM MESOCARP Flux control coefficient single manipulation-TDCA Fatty acid synthesis Complex lipid assembly Block A

Maksudur Rahman Khan; Rosli Mohd Yunus; Rohaya Mohamed Halim; Astimar Abdul Aziz; Zawawi Ibrahim and Muhammad Remanul Islam Xylan Recovery from Dilute Nitric Acid Pretreated Oil Palm

In a managed floating exchange rate system, an expansive monetary policy by the central bank drives the depreciation of domestic currency and increases the price of imported goods that

Table 5 shows that the maximum FFB yield of 28.7 t ha-1 yr-1 was obtained by the application of 10 t ha-1 yr-1 compost plus 2 kg urea and 2 kg RP fertilisers, which indicates that if

So it is necessary to study an upgrading process that can produce high-quality fuel or valuable chemical products such as hydrotreatment to reduce oxygen content, supercritical water

1Assis Kamu, 1Darmesah Gabda, 1Chong Khim Phin, 2Idris Abu Seman & 1Ho Chong Mun 1Faculty of Science and Natural Resource, Universiti Malaysia Sabah UMS; 2GANODROP Unit, Malaysian Palm

Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total