• Tidak ada hasil yang ditemukan

Self-assembly and Anion Coordination Chemistry of Tripodal Scaffolds

1.5 Concluding remarks

In general, tripodal scaffolds with appropriately positioned hydrogen bonding groups can display exceptional self-assembling abilities. Notably, the functionalization of the tribenzylamine skeleton with one ureido group in every arm of the tripod leads to hydrogen bonded dimeric associations in solution and in the solid state. Furthermore, the tertiary amino group can be employed as a pH switch for the dimeric assembly-disassembly process.

In anion receptor chemistry, tris(2-aminoethyl)amine based tripodal urea/thiourea receptors have shown their high potential towards anion assisted capsule and pseudo-capsule formation. Higher coordination number of oxyanions like sulfate, phosphates and carbonate assist in dimeric capsular assembly formation while halides tend to form unimolecular capsules. On the other hand tripodal amide receptors on a benzene platform have shown their interest for recognition of hydrated anions, especially hydrated fluoride, via capsular assembly formation. Thus, a crucial task for going towards technological applications is the construction of molecular capsules for the recognition of hydrated anions rather than naked anions could be of better approach to target anions in natural environment. Capsular assemblies create a microenvironment with higher number of hydrogen bonding interaction sites that dictate the selectivity as well as assist to overcome the higher hydration energies of the anions. The recognition and binding of anions in molecular capsules is definitely a field which can expand considerably and bring immense advances in specialised applications such as: (a) removal and extraction of fluoride and other toxic anionic species from drinking water, (b) utilizing the binding and selectivity of the molecular capsules towards anionic species for the drug delivery applications, and (c) utilizing the molecular capsules as molecular reactors by stabilizing the anionic reactive intermediates inside the nanocavity.

__________________________________________________________________ Chapter 1

23 References

1. J. W. Steed and J. L. Atwood, Supramolecular chemistry, John Wiley and Sons, Ltd; 1997.

2. T. Steiner, Hydrogen Bond in the Solid State. Angew. Chem., Int. Ed., 2002, 41, 48.

3. (a) D. S. Lawrence, T. Jiang and M. Levett, Chem. Rev., 1995, 95, 2229; (b) L. M. Greig and D.

Philp, Chem. Soc. Rev., 2001, 30, 287.

4. D. J. Cram, Angew. Chem., Int. Ed., 1986, 25, 1039.

5. A. Bianchi, K. Bowman-James and E. Garcia-Espana, Supramolecular Chemistry of Anions, Wiley-VCH, New York, 1997.

6. J. L. Sessler, P. A. Gale and W. S. Cho, Anion Receptor Chemistry, The Royal Society of Chemistry, Cambridge, UK, 2006.

7. Moyer, B. A.; Bonnesen, P. V. Physical factors in anion separations, In Supramolecular Chemistry of Anions; Wiley-VCH: New York, 1997; chapter 1.

8. D. J. Mercer and S. J. Loeb, Chem. Soc. Rev., 2010, 39, 3612.

9. K. Bowman-James, Acc. Chem. Res., 2005, 38, 671.

10. (a) H. -J. Schneider and A. K. Yatsimirsky, Chem. Soc. Rev., 2008, 37, 263; (b) E. Garcia- Espana, P. Diaz, J. M. Llinares and A. Bianchi, Coord. Chem. Rev., 2006, 250, 2952; (c) S. O. Kang, M. A. Hossain and K. Bowman-James, Coord. Chem. Rev., 2006, 250, 3038.

11. (a) P. A. Gale, Chem. Commun., 2008, 4525; (b) C. Caltagirone and P. A. Gale, Chem. Soc. Rev., 2009, 38, 520; (c) P. A. Gale, Acc. Chem. Res., 2006, 39, 465; (d) A-F. Li, J-H. Wang, F. Wang and Y-B. Jiang, Chem. Soc. Rev., 2010, 39, 3729.

12. (a) T. Gunnlaugsson, P. E. Kruger, P. Jensen, F. M. Pfeffer and G. M. Hussey, Tetrahedron Lett., 2003, 44, 8909; (b) S. Camiolo, P. A. Gale, M. B. Hursthouse and M. E. Light, Org. Biomol. Chem., 2003, 1, 741; (c) V. Amendola, D. Esteban-Gomez, L. Fabbrizzi and M. Licchelli, Acc. Chem. Res., 2006, 39, 343.

13. R. Custelcean, Chem. Soc. Rev., 2010, 39, 3675.

14. (a) B. L. Schottel, H. T. Chifotides and K. R. Dunbar, Chem. Soc. Rev., 2008, 37, 68; (b) H. T.

Chifotides, B. L. Schottel and K. R. Dunbar, Angew. Chem., Int. Ed., 2010, 49, 7202.

15. (a) B. P. Hay and V. S. Bryantsev, Chem. Commun., 2008, 2417; (b) B. P. Hay and R.

Custelcean, Cryst. Growth Des., 2009, 9, 2539.

16. G. Cavallo, P. Metrangolo, T. Pilati, G. Resnati, M. Sansoteraa and G. Terraneo, Chem. Soc.

Rev., 2010, 39, 3772.

17. (a) P. Ballester, Chem. Soc. Rev., 2010, 39, 3810; (b) M. Arunachalam and P. Ghosh, Chem.

Commun., 2011,47, 8477.

18. (a) C. J. Avers, Molecular Cell Biology., Addison-Wesley: Reading, 1986; (b) J. L. Atwood and A. Szumna, J. Am. Chem. Soc., 2002, 124, 10646; (c) J. Rebek Jr., Acc. Chem. Res. 1999, 32, 278.

19. (a) J. -M. Lehn, Proc. Natl. Acad. Sci., 2002, 99, 4763; (b) L. R. MacGillivray and J. L. Atwood, Angew. Chem., Int. Ed., 1999, 38, 1018.

20. (a) T. Heinz, D. M. Rudkevich and J. Rebek, Jr., Nature, 1998, 394, 764; (b) J. Rebek, Jr., J. Am.

Chem. Soc., 2002, 124, 12074.

21. (a) J. Rebek Jr., Chem. Commun., 2000, 637; (b) L. R. MacGillivray and J. L. Atwood, Nature, 1997, 389, 469; (c) J. M. Rivera, T. Martin and J. Rebek Jr., J. Am. Chem. Soc., 2001, 123, 5213; (d) T. Szabo, G. Hilmersson and J. Rebek Jr., J. Am. Chem. Soc., 1998, 120, 6193; (e) R. M. Grotzfeld, N. Branda and J. Rebek Jr., Science, 1996, 271, 487.

22. M. Alajarin, R-A. Orenes, J. W. Steed and A. Pastor, Chem. Commun., 2010, 46, 1394.

23. A. S. Singh, B-Y. Chen, Y-S. Wen, C. Tsai and S-S. Sun, Org. Lett., 2009, 11, 1867.

24. P. Bose, I. Ravikumar, and P. Ghosh, Inorg. Chem., 2011, 50, 10693.

25. A. L. Cresswell, M-O. M. Piepenbrock and J. W. Steed, Chem. Commun., 2010, 46, 2787.

26. M. A. Hossain, J. A. Liljegren, D. Powell and K. Bowman-James, Inorg. Chem., 2004, 43, 3751.

TH-1135_7612222

_________________________________________________________________ Chapter 1 27. M. Isiklan, M. A. Saeed, A. Pramanik, B. M. Wong, F. R. Fronczek, and M. A. Hossain, Cryst.

Growth Des., 2011, 11, 959.

28. I. Ravikumar, P. S. Lakshminarayanan and P. Ghosh, Inorg. Chim. Acta., 2010, doi:10.1016/j.ica.2010.02.030

29. P.S. Lakshminarayanan, E. Suresh and P. Ghosh, Inorg. Chem., 2006, 45, 4372.

30. I. Ravikumar, Subrata Saha and Pradyut Ghosh, Chem. Commun., 2010, DOI:

10.1039/c0cc03469j

31. M. Arunachalam and P. Ghosh, Inorg. Chem., 2010, 49, 943.

32. M. Arunachalam and P. Ghosh, Chem. Commun., 2009, 5389.

33. P. J. Smith, M. V. Reddington and C. S. Wilcox, Tetrahedron Lett., 1992, 33, 6085.

34. E. Fan, S. A. Van Arman, S. Kincaid and A. D. Hamilton, J. Am. Chem. Soc., 1993, 115, 369.

35. F. G. Bordwell, Acc. Chem. Res., 1988, 21, 456.

36. C. Raposo, M. Almaraz, M. Martin, V. Weinrich, M. L. Mussons, V. Alcazar, M. C. Caballero and J. R. Moran, Chem. Lett., 1995, 759.

37. N. Busschaert, P. A. Gale, C. J. E. Haynes, M. E. Light, S. J. Moore, C. C. Tong, J. T. Davis and W. A. Harrell, Jr., Chem. Commun., 2010, 46, 6252.

38. N. Busschaert, M. Wenzel, M. E. Light, P. Iglesias-Hernandez, R. Perez-Tomas and P. A. Gale, J.

Am. Chem. Soc., 2011, 133, 14136.

39. I. Ravikumar and P. Ghosh, Chem. Commun., 2010, 46, 1082.

40. I. Ravikumar, P. S. Lakshminarayanan, M. Arunachalam, E. Suresh and P. Ghosh, Dalton Trans., 2009, 4160.

41. D. A. Jose, D. K. Kumar, B. Ganguly and A. Das, Inorg. Chem., 2007, 46, 5817.

42. B. Akhuli, I. Ravikumar, and P. Ghosh, Chemical Science, 2012, 3, 1522.

43. R. Custelcean, B. A. Moyer and B. P. Hay, Chem. Commun., 2005, 5971.

44. (a) R. Custelcean, P. Remy, P. V. Bonnesen, D.-e. Jiang and B. A. Moyer, Angew. Chem., Int.

Ed., 2008, 47, 1866; (b) B. Wu, J. Liang, J. Yang, C. Jia, X. -J. Yang, H. Zhang, N. Tang and C.

Janiak, Chem. Commun., 2008, 1762.

45. R. Custelcean, A. Bock and B. A. Moyer, J. Am. Chem. Soc., 2010, 132, 7177.

46. R. Custelcean and P. Remy, Cryst. Growth Des., 2009, 9, 1985.

47. W. J. Belcher, M. Fabre, T. Farhan and J. W. Steed, Org. Biomol. Chem., 2006, 4, 781.

48. V. Amendola, M. Boiocchi, L. Fabbrizzi and A. Palchetti, Chem.–Eur. J., 2005, 11, 5648.

49. D. R. Turner, M. J. Paterson and J. W. Steed, Chem. Commun., 2008, 1395.

Chapter 2

Experimental methods and Characterization

TH-1135_7612222

__________________________________________________________________ Chapter 2 In this chapter, a detailed report of the various reagents used in the synthesis of tripodal receptors, L1-L5 (Scheme 2.1), their synthetic procedures, crystallization details and specifications of instruments/equipments employed in the characterization of synthesized receptors and their various complexes with anions are presented.