• Tidak ada hasil yang ditemukan

Scheme 1 L1 is used as ligand in this Chapter

2.11. Conclusion

In conclusion, it is evident that the probe L1 is unique in its kind and highly selective in its recognising properties towards Pd2+ ions have established itself as a potentially applicable sensor that not only detects Pd2+ ion in solution but also in living cells with high accuracy.

The limit of detection (0.210 M) of L1 is found to be far less than the international standard prescribed by the WHO (47–94 M). The probe remains intact after several cycles of using as a sensor, which is proved by the reversibility studies performed with Na2EDTA. The stability of L1–Pd(II) complex is very high and it is not affected by the presence any counter anions as examined. The probe was able to perform in water samples taken from various natural sources within the pH range of 2–8. The paper strip test and TLC plate test prove the practical applicability of L1 for spot tests which makes it easy to use for all practical purposes. The lifetime decay profile of the probe and the complex shows the static nature of quenching which further confirms the complex formation in solution. Theoretical calculations show a decrease in energies of HOMO, LUMO as well as the energy gap between them, consistent with experimentally observed red shift in the complex. A 5 M solution of L1 showed low cytotoxicity towards L929 cells and hence it can be used for detection of Pd2+

ion in living cells by fluorescence quenching phenomenon. In essence, the probe L1 can be used as an excellent sensor for Pd2+ ion in every practical aspect.

TH-2682_166122020

References:

1. M. Wang, X. Liu, H. Lu, H. Wang and Z. Qin, ACS Appl. Mater. Interfaces, 2015, 7, 12841289.

2. G. Campiani, S. Butini, C. Fattorusso, F. Trotta, S. Gemma, B. Catalanotti, V. Nacci, I. Fiorini, A. Cagnotto, A. Mereghetti, T. Mennini, P. Minetti, M. A. D. Cesare, M. A.

Stasi, S. D. Serio, O. Ghirardi, O. Tinti and P. Carminati, J. Med. Chem., 2005, 48, 17051708.

3. S. Dhoun, I Kaur, P. Kaur and K. Singh, Dyes Pigments, 2017, 143, 361367.

4. K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem. Int. Ed., 2005, 44, 44424489.

5. R. Chinchilla and C. Nájera, Chem. Soc. Rev., 2011, 40, 50845121.

6. C. Torborg and M, Beller, Adv. Synth. Catal., 2009, 351, 30273043.

7. Q. Huang, Y. Zhou, Q. Zhang, E. Wang, Y. Min, H. Qiao, J. Zhang and T. Ma, Sens.

Actuators B: Chem., 2015, 208, 2229.

8. B. Zhu, C. Gao, Y. Zhu, C. Liu, Y. Li, Q. Wei, Z. Ma, B. Du and X. Zhang, Chem.

Commun., 2011, 47, 86568658.

9. M. Z. K. Baig, S. Pawar, R. N. P. Tulichala, A. Nag and M. Chakravarty, Sens.

Actuators B: Chem., 2017, 243, 226233.

10. U. R. G, F. Ali, N. Taye, S. Chattopadhyay and A. Das, Chem. Commun., 2015, 51, 36493652.

11. Y. Kawata, M. Shiota, H. Tsutsui, Y. Yoshida, H. Sasaki and Y. Kinouchi, J Dent Res., 1981, 60, 14031409.

12. T. Z. Liu, T. F. Lin, D. T. Y. Chiu, K. J. Tsai and A. Stern, Free Radic. Biol. Med., 1997, 23, 155161.

13. C. K. S. Pillai and U. S. Nandi, Biochim. Biophys. Acta, 1977, 474, 1116.

14. J. D. Spikes and C. F. Hodgson, Biochem. Biophys. Res. Commun., 1969, 35, 420422.

15. M. D. Shultz, J. P. Lassig, M. G. Gooch, B. R. Evans and J. Woodward, Biochem.

Biophys. Res. Commun., 1995, 209, 10461052.

16. C. E. Garrett and K. Prasad, Adv. Synth. Catal., 2004, 346, 889900.

17. S. Sun, B. Qiao, N. Jiang, J. Wang, S. Zhang, X. Peng, Org. Lett., 2014, 16, 11321135.

18. W. Shi, X. Sun, S. Zhao and Z. Xie, New J. Chem., 2015, 39, 85528559.

Chapter 2

51

19. Y. C. Wu and S. D. Huang, Anal. Chem., 1999, 71, 310318.

20. Z. T. Graber, W. Wangb, G. Singhc, I. Kuzmenkod, D. Vakninb, E. E. Kooijman, RSC Adv., 2015, 5, 106536106542.

21. V. Sharma, A. K. Saini and S. M. Mobin, J. Mater. Chem. B, 2016, 4, 24662476.

22. N. Behera and V. Manivannan, J. Photochem. Photobiol. A: Chem., 2018, 353, 7785.

23. P. Ravichandiran, S. A. Subramaniyan, A. P. Bella, P. M. Johnson, A. R. Kim, K. S.

Shim and D. J. Yoo, Anal. Chem., 2019, 91, 10095−10101.

24. J. Yan, X. Wang Q. Tan, P. Yao, J. Tan and L. Zhang, Analyst, 2016, 141, 23762379.

25. Z. Xu, X. Wang, J. Yan, J. Li, S. Guan and L. Zhang, RSC Adv., 2016, 6, 4353943542.

26. P. Ravichandiran, A. B. Czubara, M. Masłyk, A. P. Bella, S. A. Subramaniyan, P. M.

Johnson, K. S. Shim, H. G. Kim and D. J. Yoo, ACS Sustainable Chem. Eng., 2019, 7, 17210−17219.

27. S. Farshbaf and P. A. Jr, Chem. Commun., 2019, 55, 17701773.

28. E. Vaishnavi and R. Renganathana Analyst, 2014, 139, 225234.

29. M. Jin, L. Wei, Y. Yang, M. Runa and C. Yin, New J. Chem., 2019, 43, 548551.

30. M. Yang, Y. Bai, W. Meng, Z. Cheng, N. Su and B. Yang, Inorg. Chem. Commun., 2014, 46, 310314.

31. Y. Long, Y. Bai, J. Zhou and B. Yang, J. Photochem. Photobiol. A: Chem., 2017, 332, 422431.

32. A. K. Adak, R. Purkait, S. K. Manna, B. C. Ghosh, S. Pathak and C. Sinha, New J.

Chem., 2019, 43, 38993906.

33. W. Luo, M. Lei, Y. Wang, H. Gao, Y. Wang, Q. Zhou, Z. Xu and F. Yang, Anal.

Methods, 2019, 11, 58865892.

34. A. Helal, H. L. Nguyen, A. Al-Ahmed, K. E. Cordova and Z. H. Yamani, Inorg.

Chem., 2019, 58, 17381741.

35. V. Sharma, A. K. Saini and S. M. Mobin, J. Mater. Chem. B, 2016, 4, 24662476.

36. W. Feng, L. Bai, S. Jia and G Feng, Sens. Actuators B: Chem., 2018, 260, 554562.

37. Z. Xu, X. Wang, J. Yan, J. Li, S. Guan and L. Zhang, RSC Adv., 2016, 6, 4353943542.

38. P. Kumar, V. Kumar and R. Gupta, RSC Adv., 2017, 7, 77347741.

39. Q. Xia, S. Feng, D. Liu and G. Feng, Sens. Actuators B: Chem., 2018, 258, 98104.

TH-2682_166122020

40. S. Suresh, N. Bhuvanesh, A. Raman, P. Sugumar, D. Padmanabhan, S.

Easwaramoorthi, M. N. Ponnuswamy, S. Kavitha and R. Nandhakumar, J.

Photochem. Photobiol. A: Chem., 2019, 385, 112092.

41. J. P. Kumar and B. B. Mandal, Food Chem. Toxicol., 2019, 123, 275–287.

42. P. Ravichandiran, A. B. Czubara, M. Masłyk, A. P. Bella, P. M. Johnson, S. A.

Subramaniyan, K. S. Shim and D. J. Yoo, Dyes Pigments, 2020, 172, 107828.

43. X. Z. Chen, X. D. Ma, H. M. Wang, M. Wang, Y. Y. Zhang, G. Gao, J. J. Liu and S.

C. Hou, New J. Chem., 2017, 41, 8026–8030.

44. J. Bori, N. Behera, S. Mahata and V. Manivannan, ChemistrySelect, 2017, 2, 1172711731.

45. International Programme on Chemical Safety, Palladium; Environmental Health Criteria Series 226, World Health Organization, Geneva, 2002.

Appendix:

Table A1 Comparison of recent fluorescent probes for Pd2+ ion.

Probe λem(nm) LOD Application Solvent Ref.

580

Turn-on

0.200μ M

In PC12 cells.

Tris–HCl aqueous

buffer solutions with 1% ethanol as co-solvent.

9

480

Ratiometric 0.07μM

In live RAW 264.7 macrophage

cells.

20 mM phosphate buffer saline

(PBS), pH 7.4).

11

567

Turn - on

0.1 ppm

In Hct 116 cells.

aq. HEPES buffer–

acetonitrile (1 : 1, v/v; pH

7.2)

14

Chapter 2

53 530

Turn - off

0.34 ppm

In living HeLa cells.

aqueous acetonitrile

solution (CH3CN : H2O = 4 : 1,

v/v).

30

406

Turn - off

0.93 μM

In HEK-293 and L929

cell.

HEPES buffer containing 1% DMF (10

mM, pH = 7.2)

38

370

Turn - off” 13.3μM

In Artemiasali

na.

CH3CN/

H2O (1/1 (v/v) HEPES=50 mM, pH=7.4

40

454

Turn - off

0.210

μM In Hela and L929 cells.

MeOH / HEPES buffered aqueous solution (5 mM, pH = 7.4, 6:4, v/v)

This work

TH-2682_166122020

Fig. A1 Experimental mass spectrum of [Pd(L1)Cl(CH3CN)]+ complex ion.

Fig. A2 Theoretical mass spectrum of [Pd(L1)Cl(CH3CN)]+ complex ion using mMass software.

Chapter 2

55

Fig. A3 Experimental and simulated UV-Vis absorption spectra of L1 and its complex with Pd2+ ion.

L1 L1 + PdCl2

Fig. A4 Images TLC plate test under longer UV light.

TH-2682_166122020

Chapter 3

Chapter 3

56

3-(2-Hydroxyphenyl)imidazo[5, 1-a]isoquinoline as Cu(II)