• Tidak ada hasil yang ditemukan

Shower Energy (GeV)

0 2 4 6 8 10

Events

0 1000 2000

3000 Data

MC νe

Shower Energy (GeV)

0 2 4 6 8 10

Events

0 20000 40000 60000

80000 Cosmic Data

Cosmic MC e MC ν

Shower Energy (GeV)

0 2 4 6 8 10

Events

0 1000 2000

3000 Data

MC νe

Shower Energy (GeV)

0 2 4 6 8 10

Events

0 20000 40000

60000 Cosmic Data

Cosmic MC e MC ν

Figure 6.7: Left: Top plot shows the DiF data and MC comparison along withνe MC and bottom plot shows the DiF reweighted w.r.t energy ofνe. Right: Top plot shows the Brem data and MC comparison andνeand bottom plot shows the Brem after reweighed

w.r.tνe energy and angle.

6.3. Conclusions 143

θ cos

0.4 0.6 0.8 1

Events

0 1000 2000 3000 4000

5000 Data

MC νe

θ Cos

0.5 0.6 0.7 0.8 0.9 1

Events

20 40 60 80 100 120 140

103

×

Cosmic Data Cosmic MC

e MC ν

θ cos

0.4 0.6 0.8 1

Events

0 1000 2000 3000 4000

5000 Data

MC νe

θ Cos

0 0.2 0.4 0.6 0.8 1

Events

0 20 40 60 80 100

103

×

Cosmic Data Cosmic MC

e MC ν

Figure 6.8: Left: Top plot shows the DiF data and MC comparison along withνeMC and bottom plot shows the DiF reweighed w.r.t energy ofνe. Right: Top plot shows the Brem data and MC comparison andνeand bottom plot shows the Brem after reweighted

w.r.tνeenergy and angle.

Reweighing technique is used to mitigate the difference between cosmic EM shower and νe-CC shower as major difference between two showers is because of difference in energy and direction. Decay in flight shower is reweighed with respect to νe energy and it is found that after reweighing it behaves more like aνe-CC shower. The PID efficiencies are plotted as a function of vertex position and are found to be in good agreement between data and simulations which implies callibration effects to be in well controlled. The muon decay in flight initiated EM shower sample is found to be a better one compared to the Brem EM shower sample. However, the DiF EM shower sample is statistically limited currently.

Since every νe-appearance orνe-disappearance neutrino oscillation experiment in sub GeV range would have EM shower as its signal, therefore, similar studies immediately find its applicability in such experiments as a data driven method to validate the shower

Shower width

0 2 4 6

Events

0 200 400 600 800 1000

1200 Data

MC νe

Shower Radius

0 2 4 6 8 10

Events

0 10000 20000 30000 40000

50000 Cosmic Data

Cosmic MC e MC ν

Shower wiRWDTh

0 2 4 6

Events

0 200 400 600 800 1000 1200 1400

Data MC νe

Shower Radius

0 2 4 6 8 10

Events

0 5000 10000 15000 20000

Cosmic Data Cosmic MC

e MC ν

Figure 6.9: Left: Top plot shows the DiF data and MC comparison along withνe MC and bottom plot shows the DiF reweighed w.r.t energy ofνe. Right: Top plot shows the Brem data and MC comparison andνeand bottom plot shows the Brem after reweighed

w.r.tνe energy and angle.

modelling, understand the performance of the particle-ID algorithms and detector effi- ciency.

Using these samples, we also studies the detector performance as a function of EM shower position and data and MC is found to be in good agreement. Based on these studies, we recommend assigning an overall systematic uncertainty of about 4% on the detector performance. The largest systematic effect on the νe appearance analysis comes from cross-section models and it is estimated to be 7.7% on νe signal and 8.6% on beam background [98] and the corresponding statistical uncertainty is 15% and 22% onνesignal and beam background respectively.

6.3. Conclusions 145

Shower length (cm)

0 100 200 300 400 500 600

Events

0 200 400 600 800

1000 Data

MC νe

Shower Length

0 200 400 600 800 1000

Events

10000 20000 30000

40000 Cosmic Data

Cosmic MC e MC ν

Shower length (cm)

0 100 200 300 400 500 600

Events

0 200 400 600 800

1000 Data

MC νe

Shower Length

0 200 400 600 800 1000

Events

0 5000 10000 15000 20000

Cosmic Data Cosmic MC

e MC ν

Figure 6.10: Left: Top plot shows the DiF data and MC comparison along withnueMC and bottom plot shows the DiF reweighed w.r.t energy ofνe. Right: Top plot shows the Brem data and MC comparison andνeand bottom plot shows the Brem after reweighed

w.r.tνeenergy and angle.

LID

0 0.5 1

Events

0 1000 2000 3000

4000 Data

MC νe

Shower Lid

0 0.5 1

Events

50 100 150

103

×

Cosmic Data Cosmic MC

e MC ν

LID

0 0.5 1

Events

0 1000 2000 3000

4000 Data

MC νe

Shower Lid

0 0.5 1

Events

0 20000 40000

60000 Cosmic Data Cosmic MC

e MC ν

Figure 6.11: Left: Top plot shows the DiF data and MC comparison along withνeMC and bottom plot shows the DiF reweighed w.r.t energy ofνe. Right: Top plot shows the Brem data and MC comparison andνeand bottom plot shows the Brem after reweighed

w.r.tνeenergy and angle..

6.3. Conclusions 147

Vertex position X (cm)

600 400 200 0 200 400 600

Efficiency

0 0.2 0.4 0.6 0.8 1

Data MC

Vertex Position X (cm)

500 0 500

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 9.09 / 10

p0 0.9817 ± 0.0051 p1 4.019e05 ± 1.596e05

Vertex position X (cm)

600 400 200 0 200 400 600

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 9.09 / 10

p0 0.9817 ± 0.0051 p1 4.019e05 ± 1.596e05

Data/MC Fit pol1

/ ndf

χ2 292.3 / 14

p0 1.001 ± 0.000 p1 7.038e06 ± 8.648e07

Vertex Position X (cm)

500 0 500

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 292.3 / 14

p0 1.001 ± 0.000 p1 7.038e06 ± 8.648e07

Data/MC Fit pol1

Figure 6.12: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position X and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position X and bottom plot shows the

ratio of data/MC.

Vertex position Y (cm)

600 400 200 0 200 400 600

Efficiency

0 0.2 0.4 0.6 0.8 1

Data MC

Vertex Position Y (cm)

600 400 200 0 200 400 600

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 25.77 / 10

p0 0.9927 ± 0.0086 p1 5.27e05 ± 2.26e05

Vertex position Y (cm)

600 400 200 0 200 400 600

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 25.77 / 10

p0 0.9927 ± 0.0086 p1 5.27e05 ± 2.26e05

Data/MC Fit pol1

/ ndf

χ2 344.2 / 14

p0 1.002 ± 0.000 p1 1.012e05 ± 9.374e07

Vertex Position Y (cm)

500 0 500

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 344.2 / 14

p0 1.002 ± 0.000 p1 1.012e05 ± 9.374e07

/ ndf

χ2 344.2 / 14

p0 1.002 ± 0.000 p1 1.012e05 ± 9.374e07

Data/MC Fit pol1

Figure 6.13: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Y and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Y and bottom plot shows the

ratio of data/MC.

6.3. Conclusions 149

Vertex position Z (cm)

0 1000 2000 3000 4000 5000

Efficiency

0 0.2 0.4 0.6 0.8 1

Data MC

Vertex Position Z (cm)

0 1000 2000 3000 4000 5000

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 14.5 / 9

p0 0.9664 ± 0.0101 p1 5.625e06 ± 3.576e06

Vertex position Z (cm)

0 1000 2000 3000 4000 5000

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 14.5 / 9

p0 0.9664 ± 0.0101 p1 5.625e06 ± 3.576e06

Data/MC Fit pol1

/ ndf

χ2 540 / 24

p0 0.999 ± 0.001 p1 5.768e07 ± 2.301e07

Vertex Position Z (cm)

0 1000 2000 3000 4000 5000

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 540 / 24

p0 0.999 ± 0.001 p1 5.768e07 ± 2.301e07

/ ndf

χ2 540 / 24

p0 0.999 ± 0.001 p1 5.768e07 ± 2.301e07

Data/MC Fit pol1

Figure 6.14: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Z and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Z and bottom plot shows the

ratio of data/MC.

Vertex position X (cm)

600 400 200 0 200 400 600

Efficiency

0 0.2 0.4 0.6 0.8

1 Data

MC

Vertex Position X (cm)

500 0 500

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 15.76 / 10

p0 0.9671 ± 0.0181 p1 2.632e05 ± 5.655e05

Vertex position X (cm)

600 400 200 0 200 400 600

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 15.76 / 10

p0 0.9671 ± 0.0181 p1 2.632e05 ± 5.655e05

Data/MC Fit pol1

/ ndf

χ2 332 / 14

p0 1.001 ± 0.001 p1 1.271e05 ± 1.530e06

Vertex Position X (cm)

500 0 500

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 332 / 14

p0 1.001 ± 0.001 p1 1.271e05 ± 1.530e06

/ ndf

χ2 332 / 14

p0 1.001 ± 0.001 p1 1.271e05 ± 1.530e06

Data/MC Fit pol1

Figure 6.15: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position X and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position X and bottom plot shows the

ratio of data/MC.

6.3. Conclusions 151

Vertex position Y (cm)

600 400 200 0 200 400 600

Efficiency

0 0.2 0.4 0.6 0.8

1 Data

MC

Vertex Position Y (cm)

500 0 500

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 24 / 10

p0 1.013 ± 0.028 p1 4.816e05 ± 7.809e05

Vertex position Y (cm)

600 400 200 0 200 400 600

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 24 / 10

p0 1.013 ± 0.028 p1 4.816e05 ± 7.809e05

Data/MC Fit pol1

/ ndf

χ2 316.4 / 14

p0 1.001 ± 0.001 p1 1.474e05 ± 1.757e06

Vertex Position Y (cm)

500 0 500

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 316.4 / 14

p0 1.001 ± 0.001 p1 1.474e05 ± 1.757e06

/ ndf

χ2 316.4 / 14

p0 1.001 ± 0.001 p1 1.474e05 ± 1.757e06

Data/MC Fit pol1

Figure 6.16: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Y and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Y and bottom plot shows the

ratio of data/MC.

Vertex position Z (cm)

0 1000 2000 3000 4000 5000

Efficiency

0 0.2 0.4 0.6 0.8

1 Data

MC

Vertex Position Z (cm)

0 1000 2000 3000 4000 5000

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 15.35 / 9

p0 0.9998 ± 0.0389 p1 5.781e06 ± 1.293e05

Vertex position Z (cm)

0 1000 2000 3000 4000 5000

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 15.35 / 9

p0 0.9998 ± 0.0389 p1 5.781e06 ± 1.293e05

Data/MC Fit pol1

/ ndf

χ2 574.9 / 24

p0 0.9921 ± 0.0012 p1 2.23e06 ± 4.23e07

Vertex Position Z (cm)

0 1000 2000 3000 4000 5000

Data/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 574.9 / 24

p0 0.9921 ± 0.0012 p1 2.23e06 ± 4.23e07

/ ndf

χ2 574.9 / 24

p0 0.9921 ± 0.0012 p1 2.23e06 ± 4.23e07

Data/MC Fit pol1

Figure 6.17: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Z and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Z and bottom plot shows the

ratio of data/MC.

6.3. Conclusions 153

Vertex position X (cm)

600 400 200 0 200 400 600

Efficiency

0 0.2 0.4 0.6 0.8 1

Data MC

Vertex Position X (cm)

500 0 500

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 12.99 / 10

p0 0.9848 ± 0.0045 p1 3.618e05 ± 1.333e05

Vertex position X (cm)

600 400 200 0 200 400 600

Data/RWMC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 12.99 / 10

p0 0.9848 ± 0.0045 p1 3.618e05 ± 1.333e05

Data/MC Fit pol1

/ ndf

χ2 130.1 / 14

p0 0.9922 ± 0.0017 p1 5.799e06 ± 3.043e06

Vertex Position X (cm)

500 0 500

DT/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 130.1 / 14

p0 0.9922 ± 0.0017 p1 5.799e06 ± 3.043e06

/ ndf

χ2 130.1 / 14

p0 0.9922 ± 0.0017 p1 5.799e06 ± 3.043e06

Data/MC Fit pol1

Figure 6.18: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position X and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position X and

bottom plot shows the ratio of data/MC.

Vertex position Y (cm)

600 400 200 0 200 400 600

Efficiency

0 0.2 0.4 0.6 0.8 1

Data MC

Vertex Position Y (cm)

500 0 500

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 25.74 / 10

p0 0.9959 ± 0.0083 p1 8.616e05 ± 1.894e05

Vertex position Y (cm)

600 400 200 0 200 400 600

Data/RWMC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 25.74 / 10

p0 0.9959 ± 0.0083 p1 8.616e05 ± 1.894e05

Data/MC Fit pol1

/ ndf

χ2 119.8 / 14

p0 0.992 ± 0.002 p1 1.275e05 ± 3.667e06

Vertex Position Y (cm)

500 0 500

DT/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 119.8 / 14

p0 0.992 ± 0.002 p1 1.275e05 ± 3.667e06

/ ndf

χ2 119.8 / 14

p0 0.992 ± 0.002 p1 1.275e05 ± 3.667e06

Data/MC Fit pol1

Figure 6.19: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Y and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Y and

bottom plot shows the ratio of data/MC.

6.3. Conclusions 155

Vertex position Z (cm)

0 1000 2000 3000 4000 5000

Efficiency

0 0.2 0.4 0.6 0.8 1

Data MC

Vertex Position Z (cm)

0 1000 2000 3000 4000 5000

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 14.29 / 9

p0 0.9865 ± 0.0100 p1 5.674e07 ± 3.280e06

Vertex position Z (cm)

0 1000 2000 3000 4000 5000

Data/RWMC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 14.29 / 9

p0 0.9865 ± 0.0100 p1 5.674e07 ± 3.280e06

Data/MC Fit pol1

/ ndf

χ2 117.5 / 24

p0 0.9657 ± 0.0019 p1 9.528e06 ± 8.131e07

Vertex Position Z (cm)

0 1000 2000 3000 4000 5000

DT/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 117.5 / 24

p0 0.9657 ± 0.0019 p1 9.528e06 ± 8.131e07

/ ndf

χ2 117.5 / 24

p0 0.9657 ± 0.0019 p1 9.528e06 ± 8.131e07

Data/MC Fit pol1

Figure 6.20: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Z and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Z and

bottom plot shows the ratio of data/MC.

Vertex position X (cm)

600 400 200 0 200 400 600

Efficiency

0 0.2 0.4 0.6 0.8

1 Data

MC

Vertex Position X (cm)

500 0 500

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 17.49 / 10

p0 0.9595 ± 0.0185 p1 2.307e05 ± 5.820e05

Vertex position X (cm)

600 400 200 0 200 400 600

Data/RWMC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 17.49 / 10

p0 0.9595 ± 0.0185 p1 2.307e05 ± 5.820e05

Data/MC Fit pol1

/ ndf

χ2 204.1 / 14

p0 0.9992 ± 0.0019 p1 2.006e05 ± 3.465e06

Vertex Position X (cm)

500 0 500

DT/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 204.1 / 14

p0 0.9992 ± 0.0019 p1 2.006e05 ± 3.465e06

/ ndf

χ2 204.1 / 14

p0 0.9992 ± 0.0019 p1 2.006e05 ± 3.465e06

Data/MC Fit pol1

Figure 6.21: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position X and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position X and

bottom plot shows the ratio of data/MC.

6.3. Conclusions 157

Vertex position Y (cm)

600 400 200 0 200 400 600

Efficiency

0 0.2 0.4 0.6 0.8

1 Data

MC

Vertex Position Y (cm)

500 0 500

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 20.71 / 10

p0 1.011 ± 0.029 p1 8.198e05 ± 7.690e05

Vertex position Y (cm)

600 400 200 0 200 400 600

Data/RWMC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 20.71 / 10

p0 1.011 ± 0.029 p1 8.198e05 ± 7.690e05

Data/MC Fit pol1

/ ndf

χ2 159.1 / 14

p0 0.9956 ± 0.0019 p1 3.274e05 ± 4.329e06

Vertex Position Y (cm)

500 0 500

DT/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 159.1 / 14

p0 0.9956 ± 0.0019 p1 3.274e05 ± 4.329e06

/ ndf

χ2 159.1 / 14

p0 0.9956 ± 0.0019 p1 3.274e05 ± 4.329e06

Data/MC Fit pol1

Figure 6.22: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Y and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Y and

bottom plot shows the ratio of data/MC.

Vertex position Z (cm)

0 1000 2000 3000 4000 5000

Efficiency

0 0.2 0.4 0.6 0.8

1 Data

MC

Vertex Position Z (cm)

0 1000 2000 3000 4000 5000

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Data MC

/ ndf

χ2 19 / 9

p0 1.015 ± 0.039 p1 1.486e05 ± 1.291e05

Vertex position Z (cm)

0 1000 2000 3000 4000 5000

Data/RWMC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 19 / 9

p0 1.015 ± 0.039 p1 1.486e05 ± 1.291e05

Data/MC Fit pol1

/ ndf

χ2 310.2 / 24

p0 0.9855 ± 0.0033 p1 9.452e06 ± 1.214e06

Vertex Position Z (cm)

0 1000 2000 3000 4000 5000

DT/MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

/ ndf

χ2 310.2 / 24

p0 0.9855 ± 0.0033 p1 9.452e06 ± 1.214e06

/ ndf

χ2 310.2 / 24

p0 0.9855 ± 0.0033 p1 9.452e06 ± 1.214e06

Data/MC Fit pol1

Figure 6.23: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Z and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Z and

bottom plot shows the ratio of data/MC.

Appendix A

Acronyms and Abbreviations

NOνA: NuMI Off-Axis νe Appearance NuMI: Neutrino from the Main Injector νµ: Muon Neutrino

νe: Electron Neutrino

π0: Pion with zero EM charge µ: Muon

e: Electron

δCP: Dirac CP-Violating Phase

CCQE: Charged-Current Quasi Elastic CC: Charged-Current

N C: Neutral-Current EM: Electromagnetic Brem: Bremsstrahlung DiF: Decay in Flight MR: Muon Removal

ADC : Analogue-to-Digital Converter

ASIC: Application Specific Integrated Circuit FPGA: Field Programmable Gate Array APD: Avalanche Photodiode