Shower Energy (GeV)
0 2 4 6 8 10
Events
0 1000 2000
3000 Data
MC νe
Shower Energy (GeV)
0 2 4 6 8 10
Events
0 20000 40000 60000
80000 Cosmic Data
Cosmic MC e MC ν
Shower Energy (GeV)
0 2 4 6 8 10
Events
0 1000 2000
3000 Data
MC νe
Shower Energy (GeV)
0 2 4 6 8 10
Events
0 20000 40000
60000 Cosmic Data
Cosmic MC e MC ν
Figure 6.7: Left: Top plot shows the DiF data and MC comparison along withνe MC and bottom plot shows the DiF reweighted w.r.t energy ofνe. Right: Top plot shows the Brem data and MC comparison andνeand bottom plot shows the Brem after reweighed
w.r.tνe energy and angle.
6.3. Conclusions 143
θ cos
0.4 0.6 0.8 1
Events
0 1000 2000 3000 4000
5000 Data
MC νe
θ Cos
0.5 0.6 0.7 0.8 0.9 1
Events
20 40 60 80 100 120 140
103
×
Cosmic Data Cosmic MC
e MC ν
θ cos
0.4 0.6 0.8 1
Events
0 1000 2000 3000 4000
5000 Data
MC νe
θ Cos
0 0.2 0.4 0.6 0.8 1
Events
0 20 40 60 80 100
103
×
Cosmic Data Cosmic MC
e MC ν
Figure 6.8: Left: Top plot shows the DiF data and MC comparison along withνeMC and bottom plot shows the DiF reweighed w.r.t energy ofνe. Right: Top plot shows the Brem data and MC comparison andνeand bottom plot shows the Brem after reweighted
w.r.tνeenergy and angle.
Reweighing technique is used to mitigate the difference between cosmic EM shower and νe-CC shower as major difference between two showers is because of difference in energy and direction. Decay in flight shower is reweighed with respect to νe energy and it is found that after reweighing it behaves more like aνe-CC shower. The PID efficiencies are plotted as a function of vertex position and are found to be in good agreement between data and simulations which implies callibration effects to be in well controlled. The muon decay in flight initiated EM shower sample is found to be a better one compared to the Brem EM shower sample. However, the DiF EM shower sample is statistically limited currently.
Since every νe-appearance orνe-disappearance neutrino oscillation experiment in sub GeV range would have EM shower as its signal, therefore, similar studies immediately find its applicability in such experiments as a data driven method to validate the shower
Shower width
0 2 4 6
Events
0 200 400 600 800 1000
1200 Data
MC νe
Shower Radius
0 2 4 6 8 10
Events
0 10000 20000 30000 40000
50000 Cosmic Data
Cosmic MC e MC ν
Shower wiRWDTh
0 2 4 6
Events
0 200 400 600 800 1000 1200 1400
Data MC νe
Shower Radius
0 2 4 6 8 10
Events
0 5000 10000 15000 20000
Cosmic Data Cosmic MC
e MC ν
Figure 6.9: Left: Top plot shows the DiF data and MC comparison along withνe MC and bottom plot shows the DiF reweighed w.r.t energy ofνe. Right: Top plot shows the Brem data and MC comparison andνeand bottom plot shows the Brem after reweighed
w.r.tνe energy and angle.
modelling, understand the performance of the particle-ID algorithms and detector effi- ciency.
Using these samples, we also studies the detector performance as a function of EM shower position and data and MC is found to be in good agreement. Based on these studies, we recommend assigning an overall systematic uncertainty of about 4% on the detector performance. The largest systematic effect on the νe appearance analysis comes from cross-section models and it is estimated to be 7.7% on νe signal and 8.6% on beam background [98] and the corresponding statistical uncertainty is 15% and 22% onνesignal and beam background respectively.
6.3. Conclusions 145
Shower length (cm)
0 100 200 300 400 500 600
Events
0 200 400 600 800
1000 Data
MC νe
Shower Length
0 200 400 600 800 1000
Events
10000 20000 30000
40000 Cosmic Data
Cosmic MC e MC ν
Shower length (cm)
0 100 200 300 400 500 600
Events
0 200 400 600 800
1000 Data
MC νe
Shower Length
0 200 400 600 800 1000
Events
0 5000 10000 15000 20000
Cosmic Data Cosmic MC
e MC ν
Figure 6.10: Left: Top plot shows the DiF data and MC comparison along withnueMC and bottom plot shows the DiF reweighed w.r.t energy ofνe. Right: Top plot shows the Brem data and MC comparison andνeand bottom plot shows the Brem after reweighed
w.r.tνeenergy and angle.
LID
0 0.5 1
Events
0 1000 2000 3000
4000 Data
MC νe
Shower Lid
0 0.5 1
Events
50 100 150
103
×
Cosmic Data Cosmic MC
e MC ν
LID
0 0.5 1
Events
0 1000 2000 3000
4000 Data
MC νe
Shower Lid
0 0.5 1
Events
0 20000 40000
60000 Cosmic Data Cosmic MC
e MC ν
Figure 6.11: Left: Top plot shows the DiF data and MC comparison along withνeMC and bottom plot shows the DiF reweighed w.r.t energy ofνe. Right: Top plot shows the Brem data and MC comparison andνeand bottom plot shows the Brem after reweighed
w.r.tνeenergy and angle..
6.3. Conclusions 147
Vertex position X (cm)
−600 −400 −200 0 200 400 600
Efficiency
0 0.2 0.4 0.6 0.8 1
Data MC
Vertex Position X (cm)
−500 0 500
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 9.09 / 10
p0 0.9817 ± 0.0051 p1 −4.019e−05 ± 1.596e−05
Vertex position X (cm)
−600 −400 −200 0 200 400 600
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 9.09 / 10
p0 0.9817 ± 0.0051 p1 −4.019e−05 ± 1.596e−05
Data/MC Fit pol1
/ ndf
χ2 292.3 / 14
p0 1.001 ± 0.000 p1 −7.038e−06 ± 8.648e−07
Vertex Position X (cm)
−500 0 500
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 292.3 / 14
p0 1.001 ± 0.000 p1 −7.038e−06 ± 8.648e−07
Data/MC Fit pol1
Figure 6.12: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position X and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position X and bottom plot shows the
ratio of data/MC.
Vertex position Y (cm)
−600 −400 −200 0 200 400 600
Efficiency
0 0.2 0.4 0.6 0.8 1
Data MC
Vertex Position Y (cm)
−600 −400 −200 0 200 400 600
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 25.77 / 10
p0 0.9927 ± 0.0086 p1 −5.27e−05 ± 2.26e−05
Vertex position Y (cm)
−600 −400 −200 0 200 400 600
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 25.77 / 10
p0 0.9927 ± 0.0086 p1 −5.27e−05 ± 2.26e−05
Data/MC Fit pol1
/ ndf
χ2 344.2 / 14
p0 1.002 ± 0.000 p1 −1.012e−05 ± 9.374e−07
Vertex Position Y (cm)
−500 0 500
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 344.2 / 14
p0 1.002 ± 0.000 p1 −1.012e−05 ± 9.374e−07
/ ndf
χ2 344.2 / 14
p0 1.002 ± 0.000 p1 −1.012e−05 ± 9.374e−07
Data/MC Fit pol1
Figure 6.13: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Y and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Y and bottom plot shows the
ratio of data/MC.
6.3. Conclusions 149
Vertex position Z (cm)
0 1000 2000 3000 4000 5000
Efficiency
0 0.2 0.4 0.6 0.8 1
Data MC
Vertex Position Z (cm)
0 1000 2000 3000 4000 5000
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 14.5 / 9
p0 0.9664 ± 0.0101 p1 5.625e−06 ± 3.576e−06
Vertex position Z (cm)
0 1000 2000 3000 4000 5000
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 14.5 / 9
p0 0.9664 ± 0.0101 p1 5.625e−06 ± 3.576e−06
Data/MC Fit pol1
/ ndf
χ2 540 / 24
p0 0.999 ± 0.001 p1 5.768e−07 ± 2.301e−07
Vertex Position Z (cm)
0 1000 2000 3000 4000 5000
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 540 / 24
p0 0.999 ± 0.001 p1 5.768e−07 ± 2.301e−07
/ ndf
χ2 540 / 24
p0 0.999 ± 0.001 p1 5.768e−07 ± 2.301e−07
Data/MC Fit pol1
Figure 6.14: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Z and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Z and bottom plot shows the
ratio of data/MC.
Vertex position X (cm)
−600 −400 −200 0 200 400 600
Efficiency
0 0.2 0.4 0.6 0.8
1 Data
MC
Vertex Position X (cm)
−500 0 500
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 15.76 / 10
p0 0.9671 ± 0.0181 p1 2.632e−05 ± 5.655e−05
Vertex position X (cm)
−600 −400 −200 0 200 400 600
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 15.76 / 10
p0 0.9671 ± 0.0181 p1 2.632e−05 ± 5.655e−05
Data/MC Fit pol1
/ ndf
χ2 332 / 14
p0 1.001 ± 0.001 p1 −1.271e−05 ± 1.530e−06
Vertex Position X (cm)
−500 0 500
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 332 / 14
p0 1.001 ± 0.001 p1 −1.271e−05 ± 1.530e−06
/ ndf
χ2 332 / 14
p0 1.001 ± 0.001 p1 −1.271e−05 ± 1.530e−06
Data/MC Fit pol1
Figure 6.15: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position X and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position X and bottom plot shows the
ratio of data/MC.
6.3. Conclusions 151
Vertex position Y (cm)
−600 −400 −200 0 200 400 600
Efficiency
0 0.2 0.4 0.6 0.8
1 Data
MC
Vertex Position Y (cm)
−500 0 500
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 24 / 10
p0 1.013 ± 0.028 p1 −4.816e−05 ± 7.809e−05
Vertex position Y (cm)
−600 −400 −200 0 200 400 600
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 24 / 10
p0 1.013 ± 0.028 p1 −4.816e−05 ± 7.809e−05
Data/MC Fit pol1
/ ndf
χ2 316.4 / 14
p0 1.001 ± 0.001 p1 −1.474e−05 ± 1.757e−06
Vertex Position Y (cm)
−500 0 500
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 316.4 / 14
p0 1.001 ± 0.001 p1 −1.474e−05 ± 1.757e−06
/ ndf
χ2 316.4 / 14
p0 1.001 ± 0.001 p1 −1.474e−05 ± 1.757e−06
Data/MC Fit pol1
Figure 6.16: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Y and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Y and bottom plot shows the
ratio of data/MC.
Vertex position Z (cm)
0 1000 2000 3000 4000 5000
Efficiency
0 0.2 0.4 0.6 0.8
1 Data
MC
Vertex Position Z (cm)
0 1000 2000 3000 4000 5000
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 15.35 / 9
p0 0.9998 ± 0.0389 p1 −5.781e−06 ± 1.293e−05
Vertex position Z (cm)
0 1000 2000 3000 4000 5000
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 15.35 / 9
p0 0.9998 ± 0.0389 p1 −5.781e−06 ± 1.293e−05
Data/MC Fit pol1
/ ndf
χ2 574.9 / 24
p0 0.9921 ± 0.0012 p1 2.23e−06 ± 4.23e−07
Vertex Position Z (cm)
0 1000 2000 3000 4000 5000
Data/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 574.9 / 24
p0 0.9921 ± 0.0012 p1 2.23e−06 ± 4.23e−07
/ ndf
χ2 574.9 / 24
p0 0.9921 ± 0.0012 p1 2.23e−06 ± 4.23e−07
Data/MC Fit pol1
Figure 6.17: Left: Top plot shows the DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Z and bottom plot shows the ratio of data/MC. Right: Top plot shows the Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Z and bottom plot shows the
ratio of data/MC.
6.3. Conclusions 153
Vertex position X (cm)
−600 −400 −200 0 200 400 600
Efficiency
0 0.2 0.4 0.6 0.8 1
Data MC
Vertex Position X (cm)
−500 0 500
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 12.99 / 10
p0 0.9848 ± 0.0045 p1 −3.618e−05 ± 1.333e−05
Vertex position X (cm)
−600 −400 −200 0 200 400 600
Data/RWMC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 12.99 / 10
p0 0.9848 ± 0.0045 p1 −3.618e−05 ± 1.333e−05
Data/MC Fit pol1
/ ndf
χ2 130.1 / 14
p0 0.9922 ± 0.0017 p1 −5.799e−06 ± 3.043e−06
Vertex Position X (cm)
−500 0 500
DT/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 130.1 / 14
p0 0.9922 ± 0.0017 p1 −5.799e−06 ± 3.043e−06
/ ndf
χ2 130.1 / 14
p0 0.9922 ± 0.0017 p1 −5.799e−06 ± 3.043e−06
Data/MC Fit pol1
Figure 6.18: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position X and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position X and
bottom plot shows the ratio of data/MC.
Vertex position Y (cm)
−600 −400 −200 0 200 400 600
Efficiency
0 0.2 0.4 0.6 0.8 1
Data MC
Vertex Position Y (cm)
−500 0 500
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 25.74 / 10
p0 0.9959 ± 0.0083 p1 −8.616e−05 ± 1.894e−05
Vertex position Y (cm)
−600 −400 −200 0 200 400 600
Data/RWMC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 25.74 / 10
p0 0.9959 ± 0.0083 p1 −8.616e−05 ± 1.894e−05
Data/MC Fit pol1
/ ndf
χ2 119.8 / 14
p0 0.992 ± 0.002 p1 −1.275e−05 ± 3.667e−06
Vertex Position Y (cm)
−500 0 500
DT/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 119.8 / 14
p0 0.992 ± 0.002 p1 −1.275e−05 ± 3.667e−06
/ ndf
χ2 119.8 / 14
p0 0.992 ± 0.002 p1 −1.275e−05 ± 3.667e−06
Data/MC Fit pol1
Figure 6.19: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Y and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Y and
bottom plot shows the ratio of data/MC.
6.3. Conclusions 155
Vertex position Z (cm)
0 1000 2000 3000 4000 5000
Efficiency
0 0.2 0.4 0.6 0.8 1
Data MC
Vertex Position Z (cm)
0 1000 2000 3000 4000 5000
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 14.29 / 9
p0 0.9865 ± 0.0100 p1 −5.674e−07 ± 3.280e−06
Vertex position Z (cm)
0 1000 2000 3000 4000 5000
Data/RWMC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 14.29 / 9
p0 0.9865 ± 0.0100 p1 −5.674e−07 ± 3.280e−06
Data/MC Fit pol1
/ ndf
χ2 117.5 / 24
p0 0.9657 ± 0.0019 p1 9.528e−06 ± 8.131e−07
Vertex Position Z (cm)
0 1000 2000 3000 4000 5000
DT/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 117.5 / 24
p0 0.9657 ± 0.0019 p1 9.528e−06 ± 8.131e−07
/ ndf
χ2 117.5 / 24
p0 0.9657 ± 0.0019 p1 9.528e−06 ± 8.131e−07
Data/MC Fit pol1
Figure 6.20: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Z and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.7, as a function of vertex position Z and
bottom plot shows the ratio of data/MC.
Vertex position X (cm)
−600 −400 −200 0 200 400 600
Efficiency
0 0.2 0.4 0.6 0.8
1 Data
MC
Vertex Position X (cm)
−500 0 500
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 17.49 / 10
p0 0.9595 ± 0.0185 p1 2.307e−05 ± 5.820e−05
Vertex position X (cm)
−600 −400 −200 0 200 400 600
Data/RWMC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 17.49 / 10
p0 0.9595 ± 0.0185 p1 2.307e−05 ± 5.820e−05
Data/MC Fit pol1
/ ndf
χ2 204.1 / 14
p0 0.9992 ± 0.0019 p1 −2.006e−05 ± 3.465e−06
Vertex Position X (cm)
−500 0 500
DT/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 204.1 / 14
p0 0.9992 ± 0.0019 p1 −2.006e−05 ± 3.465e−06
/ ndf
χ2 204.1 / 14
p0 0.9992 ± 0.0019 p1 −2.006e−05 ± 3.465e−06
Data/MC Fit pol1
Figure 6.21: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position X and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position X and
bottom plot shows the ratio of data/MC.
6.3. Conclusions 157
Vertex position Y (cm)
−600 −400 −200 0 200 400 600
Efficiency
0 0.2 0.4 0.6 0.8
1 Data
MC
Vertex Position Y (cm)
−500 0 500
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 20.71 / 10
p0 1.011 ± 0.029 p1 −8.198e−05 ± 7.690e−05
Vertex position Y (cm)
−600 −400 −200 0 200 400 600
Data/RWMC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 20.71 / 10
p0 1.011 ± 0.029 p1 −8.198e−05 ± 7.690e−05
Data/MC Fit pol1
/ ndf
χ2 159.1 / 14
p0 0.9956 ± 0.0019 p1 −3.274e−05 ± 4.329e−06
Vertex Position Y (cm)
−500 0 500
DT/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 159.1 / 14
p0 0.9956 ± 0.0019 p1 −3.274e−05 ± 4.329e−06
/ ndf
χ2 159.1 / 14
p0 0.9956 ± 0.0019 p1 −3.274e−05 ± 4.329e−06
Data/MC Fit pol1
Figure 6.22: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Y and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Y and
bottom plot shows the ratio of data/MC.
Vertex position Z (cm)
0 1000 2000 3000 4000 5000
Efficiency
0 0.2 0.4 0.6 0.8
1 Data
MC
Vertex Position Z (cm)
0 1000 2000 3000 4000 5000
Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Data MC
/ ndf
χ2 19 / 9
p0 1.015 ± 0.039 p1 −1.486e−05 ± 1.291e−05
Vertex position Z (cm)
0 1000 2000 3000 4000 5000
Data/RWMC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 19 / 9
p0 1.015 ± 0.039 p1 −1.486e−05 ± 1.291e−05
Data/MC Fit pol1
/ ndf
χ2 310.2 / 24
p0 0.9855 ± 0.0033 p1 9.452e−06 ± 1.214e−06
Vertex Position Z (cm)
0 1000 2000 3000 4000 5000
DT/MC
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/ ndf
χ2 310.2 / 24
p0 0.9855 ± 0.0033 p1 9.452e−06 ± 1.214e−06
/ ndf
χ2 310.2 / 24
p0 0.9855 ± 0.0033 p1 9.452e−06 ± 1.214e−06
Data/MC Fit pol1
Figure 6.23: Left: Top plot shows the reweighed DiF data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Z and bottom plot shows the ratio of data/MC. Right: Top plot shows the reweighed Brem data and MC comparison of detector efficiency, for LID >0.9, as a function of vertex position Z and
bottom plot shows the ratio of data/MC.
Appendix A
Acronyms and Abbreviations
NOνA: NuMI Off-Axis νe Appearance NuMI: Neutrino from the Main Injector νµ: Muon Neutrino
νe: Electron Neutrino
π0: Pion with zero EM charge µ: Muon
e: Electron
δCP: Dirac CP-Violating Phase
CCQE: Charged-Current Quasi Elastic CC: Charged-Current
N C: Neutral-Current EM: Electromagnetic Brem: Bremsstrahlung DiF: Decay in Flight MR: Muon Removal
ADC : Analogue-to-Digital Converter
ASIC: Application Specific Integrated Circuit FPGA: Field Programmable Gate Array APD: Avalanche Photodiode