• Tidak ada hasil yang ditemukan

5.3 Fundamental studies

5.3.1 Convergence analysis

Consider equation (5.1) with the convective coefficients p. q and r and the reactive coefficient eas constants. To perform the convergence analysis of the schemes assume a= 1 subject to the initial condition

φ(x, y, z,0) =φ0(x, y, z), (x, y, z)∈Ω∪∂Ω (5.18) and with the boundary condition

φ(x, y, z, t) = constant, (x, y, z)∈∂Ω, t >0, (5.19) where φ0(x, y, z) is a known smooth function and ∂Ω is the boundary of the finite domain Ω.

Thence as discussed in the previous section, our finite difference scheme for this problem is the one given by (5.8) but with constant coefficients.

Lemma 5.3.1. There exists a lower bound C to all the coefficients appearing in equation (5.8) at all grid points, where C is a real number.

Equivalently, there exists a real constant C such that C .V, where V may be any of the coefficients appearing in equation (5.8).

5.3. Fundamental studies 103

Proof. Since all of the coefficients A, B, C, P, Q, R, D, E, F, H, K, L, M, N, O,S, T,U, G and W, appearing in equation (5.8) are real numbers, they have finite values, so the proof of the above lemma follows.

Next, let us introduce some useful notations.

For the sake of our discussions in the current section, let us assume that h =

△x =△y = △z and τ = △t.

Denote the grid points as (xi, yj, zk), where xi = xa + ih, yj = ya + jh, zk

=za +kh and [xa, xb] × [ya,yb] ×[za, zb] is the domain under consideration with the index sets given as

Ix = {i|i = 0,1,2, . . . , I}, Ixo = {i|i = 1,2, . . . , I −1}, where I = (xb − xa)/h+ 1,

Iy ={j|j = 0,1,2, . . . , J},

Iyo ={j|j = 1,2, . . . , J−1}, where J = (yb−ya)/h+ 1, Iz ={k|k= 0,1,2, . . . , K},

Izo ={k|k= 1,2, . . . , K−1}, where K = (zb−za)/h+ 1.

For grid functions of the formφ ={φnijk|(i, j, k)∈Ix×Iy×Iz, n = 0,1,2, . . . , N} (N is the total number of time steps), we have the following finite difference operators:

δxφnijk = 2h1ni+1jk−φni−1jk), i6=I;

δx2φnijk = 1

h2ni+1jk−2φnijkni−1jk), i∈Ixo; δyφnijk = 2h1nij+1k−φnij−1k), j 6=J;

δy2φnijk = 1

h2nij+1k−2φnijknij−1k), j ∈Iyo; δzφnijk = 2h1nijk+1−φnijk−1), k6=K;

δz2φnijk = 1

h2nijk+1−2φnijknijk−1), k∈Izo;

hφnijk = (δx, δy, δznijk, ∇h2φnijk = (δx2, δ2y, δz2nijk, i6=I, j 6=J, k 6=K;

2h2φnijk = (δx2δ2y, δy2δ2z, δz2δ2xnijk, i6=I, j 6=J, k 6=K;

δt+φnijk = 1τn+1ijk −φnijk), n6=N; δtφnijk = 1n+1ijk −φn−1ijk ), n6= 0, N;

δt2φnijk = 1

τ2n+1ijk −2φnijkn−1ijk ), n6= 0, N;

Ahφnijk ={1 +h122x2−pδxy2−qδy2z−rδz)}φnijk; i∈ Ixo, j ∈Iyo, k∈Izo.

104 HOC schemes for the transient 3D convection-diffusion-reaction equations

Further, let Φnijk be the numerical approximation ofφ(xi, yj, zk, tn), then utiliz- ing the average parameterς in equation (5.8), coefficients of the formAδx2φnijk

can be replaced by ςAδx2φn+1ijk + (1−ς)Aδx2φnijk. Likewise, we replace for the other terms as well.

With these replacements, the finite difference scheme can now be written as Ahδt+Φnijk+ (−ςA)δ2xΦn+1ijk − {(1−ς)A}δx2Φnijk+ (−ςB)δy2Φn+1ijk

− {(1−ς)B}δy2Φnijk+ (−ςC)δz2Φn+1ijk − {(1−ς)C}δ2zΦnijk+ (ςP)δxΦn+1ijk

− {(ς −1)P}δxΦnijk+ (ςQ)δyΦn+1ijk − {(ς −1)Q}δyΦnijk+ (ςR)δzΦn+1ijk

− {(ς −1)R}δzΦnijk+ (−ςD)δxδyΦn+1ijk − {(1−ς)D}δxδyΦnijk + (−ςE)δyδzΦn+1ijk − {(1−ς)E}δyδzΦnijk+ (−ςF)δzδxΦn+1ijk

− {(1−ς)F}δzδxΦnijk+ (ςH)δxδy2Φn+1ijk − {(ς −1)H}δxδy2Φnijk + (ςK)δx2δyΦn+1ijk − {(ς−1)K}δx2δyΦnijk+ (−ςL)δx2δy2Φn+1ijk

− {(1−ς)L}δ2xδy2Φnijk+ (ςM)δyδ2zΦn+1ijk − {(ς−1)M}δyδ2zΦnijk + (ςN)δy2δzΦn+1ijk − {(ς −1)N}δy2δzΦnijk+ (−ςO)δy2δz2Φn+1ijk

− {(1−ς)O}δy2δz2Φnijk+ (ςS)δx2δzΦn+1ijk − {(ς −1)S}δx2δzΦnijk

+ (ςT)δxδ2zΦn+1ijk − {(ς −1)T}δxδ2zΦnijk+ (−ςU)δz2δx2Φn+1ijk

− {(1−ς)U}δz2δx2Φnijk+ (ςG)Φn+1ijk − {(ς−1)G}Φnijk =W

(5.20)

Define the initial approximations as

Φ0ijk0(xi, yj, zk), (5.21) where i∈Ix, j∈Iy, k∈Iz and φ0(xi, yj, zk) =φ(xi, yj, zk,0)

Also consider that,

Φ1ijk0(xi, yj, zk) +τ φ1(xi, yj, zk), (i, j, k)∈Ix×Iy×Iz, (5.22) where φnijk =φ(xi, yj, zk, tn) and φ1(xi, yj, zk) = φt(xi, yj, zk,0).

5.3. Fundamental studies 105

Remark 5.3.2. By virtue of lemma 5.3.1, it follows that there exists a real constantKsuch thatK.|ς|ξn+1 andK.|ς−1|ξn, whereξijk can be either of the coefficients A, B, C, P, Q, R, D, E, F, H, K, L, M, N, O, S, T, U orG.

Now, let us consider the space, S := {φ = φijk|(i, j, k) ∈ Ix ×Iy × Iz} ⊆ R(I+1)×(J+1)×(K+1) and the inner product and discrete norms defined overS as hφ1, φ2i=h3

I−1P

i=1 J−1P

j=1 K−1P

k=1

1)ijk2)ijk, where φ1, φ2∈ S,

kφk=hφ, φi12, kδxφk= 8h3

XI−1

i=0

XJ−1

j=1 K−1X

k=1

xφijk|2

!12 ,

zφk= 8h3 XI−1

i=1

XJ−1

j=1 K−1X

k=0

zφijk|2

!12 ,

x2φk= h6

I−1

X

i=0

XJ−1

j=1 K−1X

k=1

x2φijk|2

!12 ,

z2φk= h6

I1

X

i=1 J−1

X

j=1 K−X1

k=0

z2φijk|2

!12 ,

x2δy2φk= h12 XI−1

i=0

XJ−1

j=1 K−1X

k=1

x2δy2φijk|2

!12 ,

z2δx2φk= h12 XI−1

i=1

XJ−1

j=1 K−1X

k=0

z2δ2xφijk|2

!12 ,

kφk= max

(i,j,k)∈Ix×Iy×Izijk|, kδyφk= 8h3

I−1

X

i=1 J−1

X

j=0 K−X1

k=1

yφijk|2

!12 , k∇hφk= kδxφk2+kδyφk2 +kδzφk212

, kδy2φk= h6

XI−1

i=1

XJ−1

j=0 K−1X

k=1

2yφijk|2

!12 , k∇h2φk=

x2φk2+kδy2φk2+kδ2zφk212 , kδ2yδz2φk= h12

I1

X

i=1 J−1

X

j=0 K−X1

k=1

y2δz2φijk|2

!12 , k∇2h2φk=

x2δy2φk2+kδ2yδz2φk2+kδ2zδx2φk212 .

Lemma 5.3.3. If φn−1, φn, φn+1 ∈ S, then we have 1

τ(hAhφn+1, φn+1i − hAhφn, φni)≤ hAhδt+φn, δt+φni (5.23)

106 HOC schemes for the transient 3D convection-diffusion-reaction equations

Proof. Since,

hAhδt+φn, δt+φni=hAh

φn+1−φn

τ , φn+1−φn

τ i

= 1

τ2hAhn+1−φn), (φn+1−φn)i[∵Ah is linear]

= 1

τ2{hAhφn+1, φn+1i − hAhφn+1, φni

− hAhφn, φn+1i+hAhφn, φni}

Similarly, we have

hAhδt+φn−1, δt+φn−1i = 1

τ2{hAhφn, φni − hAhφn, φn−1i

− hAhφn−1, φni+hAhφn−1, φn−1i}

Therefore, using the definition ofAh, property of symmetry ofhφn, φn+1iand considering the unit vectors as φ

kφk2, the proof of the lemma follows.

In order to analyse convergence of the difference scheme, let us define the local truncation error rn ∈ S as follows

rnijk = Ahδ+t φnijk+ (−ςA)δx2φn+1ijk − {(1−ς)A}δx2φnijk+ (−ςB)δy2φn+1ijk

− {(1−ς)B}δ2yφnijk+ (−ςC)δz2φn+1ijk − {(1−ς)C}δ2zφnijk+ (ςP)δxφn+1ijk (5.24)

− {(ς−1)P}δxφnijk+ (ςQ)δyφn+1ijk − {(ς −1)Q}δyφnijk+ (ςR)δzφn+1ijk

− {(ς−1)R}δzφnijk+ (−ςD)δxδyφn+1ijk − {(1−ς)D}δxδyφnijk+ (−ςE)δyδzφn+1ijk

− {(1−ς)E}δyδzφnijk+ (−ςF)δzδxφn+1ijk − {(1−ς)F}δzδxφnijk+ (ςH)δxδ2yφn+1ijk

− {(ς−1)H}δxδy2φnijk+ (ςK)δx2δyφn+1ijk − {(ς −1)K}δx2δyφnijk+ (−ςL)δx2δy2φn+1ijk

− {(1−ς)L}δx2δy2φnijk+ (ςM)δyδz2φn+1ijk − {(ς−1)M}δyδ2zφnijk+ (ςN)δy2δzφn+1ijk

− {(ς−1)N}δy2δzφnijk+ (−ςO)δy2δ2zφn+1ijk − {(1−ς)O}δy2δ2zφnijk+ (ςS)δx2δzφn+1ijk

− {(ς−1)S}δx2δzφnijk+ (ςT)δxδ2zφn+1ijk − {(ς −1)T}δxδ2zφnijk+ (−ςU)δz2δ2xφn+1ijk

− {(1−ς)U}δz2δ2xφnijk+ (ςG)φn+1ijk − {(ς−1)G}φnijk+W, where (i, j, k)∈Ixo×Iyo×Izo, and 1≤n≤N −1.

5.3. Fundamental studies 107

Using Taylor Series expansion, we have

rijko = φ1ijk−φ0(xi, yj, zk)

τ −φ1(xi, yj, zk), ∀(i, j, k)∈Ixo×Iyo×Izo (5.25) Also we have the following

x+rijk0 |.τ2, |δy+rijk0 |.τ2, |δz+r0ijk|.τ2, |rnijk|.τ2, (5.26) where (i, j, k)∈Ixo×Iyo×Izo and 0≤n≤N.

Let the error function en ∈ S be defined as

enijknijk−Φnijk, (i, j, k)∈Ix×Iy ×Iz, 0≤n ≤N. (5.27)

Lemma 5.3.4. For any grid function φ∈ S, we have

|hAhφ, φi| ≤ kφk2 (5.28) Proof. From the defintion of Ahφ and use of diiferential operators, it follows that

|hAhφ, φi| ≤ |hφ, φi|

Now, the proof of the above lemma follows from the definition of inner product and Cauchy-Schwarz inequality.

Theorem 5.3.5. If φ ∈ C6,6,6,3([xa, xb]×[ya, yb]×[za, zb]×[0, T]), and if h and τ are sufficiently small, then the solution of the finite difference problem (5.20)-(5.21)-(5.22) converges to the solution of the initial continuous problem (5.1)-(5.18)-(5.19) with order O(τ2+h4) in the discreteL2 norm for Φn, i.e.

kenk+k∇henk+k∇h2enk+k∇2h2enk.τ2+h4, 0≤n≤N. (5.29) Proof. Let us adopt an induction argument to proof that (5.29) holds for every

108 HOC schemes for the transient 3D convection-diffusion-reaction equations

non-negative integer less thanN. From equation (5.20) and remark (5.3.2), it is obvious that (5.29) holds for n= 0. For (i, j, k)∈Ixo×Iyo×Izo, we have

|e1ijk|=|φ1ijk−Φ1ijk|=|τ rijk0 |.τ3, |δt+e0ijk|=|r0ijk|.τ2, and (5.30a)

x+e1ijk|.τ|δx+r0ijk|. τ32, (5.30b) Likewise, we have

y+e1ijk|.τ2 and |δ+ze1ijk|.τ2 (5.30c) Equation (5.30) clearly implies that (5.29) holds forn = 1. Using the triangle inequality, when τ and h are sufficiently small, we have

1ijk| ≤ |φ1ijk|+|e1ijk| ≤Co+C(τ2+h2)≤1 +Co, (i, j, k)∈Ix×Iy×Iz (5.31) where Co = max

0≤t≤T kφ(·,·,·, t)kL(Ω).

We assume that (5.29) is valid for 0≤n ≤m−1< N−1, then we will show that it is still valid for n = m. Now, adding (5.20) and (5.24), we have the following error equation for the error functionen∈ S

Ahδt+enijk+ (−ςA)δx2en+1ijk − {(1−ς)A}δx2enijk+ (−ςB)δ2yen+1ijk

− {(1−ς)B}δy2enijk+ (−ςC)δz2en+1ijk − {(1−ς)C}δz2enijk+ (ςP)δxen+1ijk

− {(ς−1)P}δxenijk+ (ςQ)δyen+1ijk − {(ς −1)Q}δyenijk+ (ςR)δzen+1ijk

− {(ς−1)R}δzenijk+ (−ςD)δxδyen+1ijk − {(1−ς)D}δxδyenijk+ (−ςE)δyδzen+1ijk

− {(1−ς)E}δyδzenijk+ (−ςF)δzδxen+1ijk − {(1−ς)F}δzδxenijk+ (ςH)δxδy2en+1ijk

− {(ς−1)H}δxδy2enijk+ (ςK)δx2δyen+1ijk − {(ς −1)K}δx2δyenijk+ (−ςL)δ2xδ2yen+1ijk

− {(1−ς)Lnijkx2δy2enijk+ (ςM)δyδz2en+1ijk − {(ς −1)M}δyδz2enijk+ (ςN)δ2yδzen+1ijk

− {(ς−1)N}δ2yδzenijk+ (−ςO)δy2δz2en+1ijk − {(1−ς)O}δy2δz2enijk+ (ςS)δx2δzen+1ijk

− {(ς−1)S}δ2xδzenijk+ (ςT)δxδ2zen+1ijk − {(ς −1)T}δxδz2enijk+ (−ςU)δ2zδx2en+1ijk

− {(1−ς)U}δz2δx2enijk+ (ςG)en+1ijk − {(ς −1)G}enijk=rnijk, (i, j, k)∈Ixo×Iyo×Izo

Assuming τ and h to be sufficiently small and considering (5.29) for 1≤n ≤

5.3. Fundamental studies 109

m−1, we have the following estimate

nk ≤ kφnk+kenk≤Co+ 1, 1≤n≤m−1. (5.32) Let us consider the case when ς = 0.5. Throughout this section, we will con- sider the case only where ς = 0.5.

Now, computing the inner product of (5.32) withδt+enand considering remark (5.3.2) and lemma (5.3.3), we have

1

τ(hAhen+1, en+1i − 1

τhAhen, eni+Kh(δx2y22zxyzxδyyδz

zδxxδy2x2δy2xδy2yδ2zy2δzy2δ2zzδ2xz2δxz2δx2+ 1)en+1, δt+eni ≤ hrn, δ+t eni+Kh(δ2xy2z2xyzxδyyδzzδx (5.33) +δxδ2yx2δyx2δy2yδz22yδz2yδz2zδx22zδx2zδx2+ 1)en, δ+t eni Upon simplifying and transposing, we have

(hAhen+1, en+1i+Kτ2(kδ2xen+1k2 +kδy2en+1k2+kδ2zen+1k2+kδxen+1k2 +kδyen+1k2+kδzen+1k2+kδxδyen+1k2+kδyδzen+1k2+kδzδxen+1k2 +kδxδy2en+1k2+kδx2δyen+1k2+kδ2xδy2en+1k2+kδyδ2zen+1k2+kδ2yδzen+1k2 +kδy2δz2en+1k2+kδzδx2en+1k2+kδz2δxen+1k2+kδz2δx2en+1k2+ken+1k2)

≤ τ2(krnk2− ken+1k2+kenk2) +Kτ2(kδx2enk2+kδy2enk2

+kδz2enk2+kδxenk2+kδyenk2+kδzenk2 +kδxδyenk2+kδyδzenk2+kδzδxenk2 +kδxδy2enk2+kδx2δyenk2+kδx2δy2enk2+kδyδ2zenk2+kδ2yδzenk2+kδy2δz2enk2 +kδzδx2enk2+kδz2δxenk2 +kδz2δx2enk2+kenk2) + (hAhen, eni (5.34) Define Gn as follows:

Gn = (hAhen, eni+τ2kenk2+Kτ2(kδx2enk2 +kδy2enk2+kδ2zenk2+kδxenk2 + kδyenk2+kδzenk2+kδxδyenk2+kδyδzenk2+kδzδxenk2+kδxδy2enk2 + kδ2xδyenk2+kδ2xδy2enk2+kδyδz2enk2+kδy2δzenk2+kδy2δz2enk2+kδzδx2enk2 + kδ2zδxenk2+kδz2δ2xenk2+kenk2), 0≤n≤m−1 (5.35)

110 HOC schemes for the transient 3D convection-diffusion-reaction equations

Then equation (5.34) can be written as

Gn+1−Gn2(krnk2) +Kτ2(Gn+1+Gn), 0≤n < m−1. (5.36) This together with Gronwall’s inequality [22, 38] gives

Gn+1 .[G02 Xn+1

l=1

(krlk2)]e4CT. (5.37)

Equation (5.37), concurrently with lemma 5.3.4 and equation (5.30) gives the following estimates

kemk+k∇hemk+k∇h2emk+k∇2h2emk+ some other terms .τ2+h4. (5.38) which ultimately shows that, by principle of mathematical induction, we have

kenk+k∇henk+k∇h2enk+k∇2h2enk.τ2+h4, 0≤n≤N. (5.39) This completes the proof.