Ciprofloxacin Degradation: Kinetic Modelling, Reaction Pathways and Toxicity Assay
MONC 4 1.5 COD
4.5 Major Findings
Maximum CIP removal of 75.4, 78.4 and 52.7% were found at the optimal condition in FP, PFP and UVP, respectively. The corresponding TOC reduction was 37.9, 45.1 and 27.3%.
Only 3, 4 and 6% CIP, COD and TOC reduction took place due to sludge formation in FP.
Sludge didn’t form in PFP. Residual hydroxyl radical (HO•) concentrations of 11.67, 11.74 and 11.30 μM were determined using DMSO probe after 30 min of FP, PFP and UVP.
MONC increased to 1.68, 2.1 and 1.42 from the initial value of 1.28 in FP, PFP and UVP.
Thirteen, nineteen and seven numbers of daughter ions were originated upon degradation of CIP in FP, PFP and UVP through piperazine moiety degradation. A 2nd order kinetic model for the cleavage of both CIP and degradation products (DPs) exhibited excellent agreement to the experimental data. Rate constant of CIP and DPs oxidation varied between (2.19 to 5.07)×103 and (3.57 to 6.91)×103 1/M.s with the highest value in PFP. The growth of E. coli was almost completely withdrawn in CIP solution (15 mg/L). The cell death was reduced by 23, 27 and 8% after 45 min of treatment in FP, PFP and UVP.
References
Bautista, P., Mohedano, A. F., Gilarranz, M. A., Casas, J. A. and Rodriguez, J. J.,
“Application of Fenton oxidation to cosmetic wastewaters treatment”, J. Hazard.
Mater., 143(1-2), 128-134 (2007).
Christian, T., Schneider, R. J., Farber, H. A., Skutlarek, D., Meyer, M. T. and Goldbach, H.
E., “Determination of antibiotic residues in manure, soil, and surface waters”, Acta Hydroch. Hydrob., 31, 36-44 (2003).
Doll, T. E. and Frimmel, F. H., “Kinetic study of photo catalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2
materials determination of intermediates and reaction pathways”, Water Res., 38, 955- 964 (2004).
Vogel, F., Harf, J., Hug, J. and Rohar, P. R. V., “The mean oxidation number of carbon (MOC) - a useful concept for describing oxidation processes”, Water. Res., 34(10), 2689-2702 (2000).
Ghosh, P., Kelapure, P., Samanta, A. N. and Ray, S., “Determination of reaction rate constant for p-Chlorophenol and nitrobenzene reacting with HO. during oxidation by Fe(II)/H2O2 system”, Intern. J. Chem. Tech. Res., 4(1), 116-123 (2012).
Golet, E. M., Strehler, A., Alder, A. C. and Giger, W., “Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction”, Anal. Chem., 74, 5455-5462 (2002).
Gulkaya, G. A. and Dilek, F. B., “Importance of H2O2/Fe+2 ratio in Fenton’s treatment of a carpet dyeing waste water”, J. Hazard. Mater., 136(3), 763-769 (2006).
Gunnarsson, L., Kristiansson, E., Rutgersson, C., Sturve, J., Fick, J., Forlin, L. and Larsso, D.
G. J., “Pharmaceutical metabolites in the environment: Analytical challenges and ecological risks”, Environ. Toxicol. Chem., 28(12), 2639-2647 (2009).
Hesse, M., Meier, H. and Zeeh, B., “Spectroscopic methods in organic chemistry”, second ed., Thieme, New York (2008).
Kang, S. F., Liao, C. H. and Chen, M. C., “Pre-oxidation and coagulation of textile wastewater by the Fenton process”, Chemosphere, 46, 923-928 (2002).
Klauson, D., Babkina, J., Stepanova, K., Krichevskaya, M. and Preis, S., “Aqueous photocatalytic oxidation of amoxiline”, Catal. Today, 151, 39-45 (2010).
Klavarioti, M., Mantzavinos, D. and Kassinos, D., “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes”, Environ. Int., 35, 402-417 (2009).
Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M. and Buxton, H. T.,
“Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S.
streams, 1999-2000: A national reconnaissance”, Environ. Sci. Technol., 36, 1202- 1211 (2002).
Kugelmann, E., Albert, R. C., Bringmann, G. and Holzgrabe, U., “Fenton’s oxidation: A tool for the investigation of potential drug metabolites”, J. Pharm. Biomed. Anal., 54, 1047-1058 (2011).
Larsson, D. G. J., Pedro, C. de. And Paxeus, N., “Effluent from drug manufactures contains extremely high levels of pharmaceuticals”, J. Hazard. Mater., 148, 751-755 (2007).
Lester, Y., Avisar, D., Gozlan, I. and Mamane, H., “Removal of pharmaceuticals using combination of UV/H2O2/O3 advanced oxidation process”, Water Sci. Technol., 64, 2230-2238 (2011).
Li, X., Zhou, Q., Wei, S., Ren, W. and Sun, X., “Adsorption and desorption of carbendazim and cadmium in typical soils in northeastern China as affected by temperature”, Geoderma, 160, 347-354 (2011).
Liang, B., Cheng, H. Y., Kong, D. Y., Gao, S. H., Sun, F., Cui, D., Kong, F. Y., Zhou, A. J., Liu, W. Z., Ren, N. Q., Wu, W. M., Wang, A. J. and Lee, D. J. “Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathod”, Environ. Sci.
Technol., 47, 5353-5361 (2013).
Lindsey, E. M. and Tarr, A. M., “Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide”, Chemosphere, 41, 409-417 (2000).
Maezono, T., Tokumura, M., Sekine, M. and Kawase, Y., “Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II”, Chemosphere, 82, 1422-1430 (2011).
Mantzavinos, D., Livingstong, A. G. and Hellenbrand, R., “Wet air oxidation of polyethylene glycol; mechanisms, intermediates and implications for integrated chemical-biological waste water treatment”, Chem. Eng. Sci., 51(18), 4219-4235 (1996).
Martins, R. C., Rossi, A. F. and Quinta-Ferreira, R. M., “Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement. J. Hazard.
Mater., 180, 716-712 (2010).
Qiang, J., Chang, C. H. and Huang, C. P., “Electrochemical regeneration of Fe2+ in Fenton oxidation processes”, Water Res., 37, 1308-1319 (2003).
Paul, T., Dodd, M.C. and Strathmann, T. J., “Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity”, Water Res., 44, 3121-3132 (2010).
Saadatjou, M., Taghdiri, R. and Farrokhi, I., “Municipal solid waste landfill leachate treatment by fenton, photo-Fenton and Fenton-like processes: Effect of some variables”, J. Environ. Health Sci. Eng., 7(4), 345-352 (2010).
Schwabe, U. and Paffrath, D., “Arzneiverordnungs-report 2011”, Springer-Verlag, Berlin, Heidelberg, New York (2011).
Shrivastaval, K. S., Rathore1, N. S. and Solanki1, A. K., “Pharmaceutical science and technology today: evolving to reflect the modern industrial life-science environment”, J. Pharm. Sci. Tech., 2(3) 163-170 (2010).
Stepfan, M. I. and Williamson, C. T., “Advanced Oxidation Processes for Water and Wastewater Treatment, second ed., IWA Publishing, London (2004).
Stumm, W. and Morgan, J. J., “Aquatic chemistry, second ed., John Wiley, New York (1981).
Tekin, H., Bilkay, O., Selale, S. and Tolga, H., “Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater”, J. Hazard. Mater., 136, 258-265 (2006).
Ternes, A. T., Stuber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M. and Teiser, B., “Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater”, Water Res., 37, 1976-1982 (2003).
Vogel, F., Harf, J., Hug, A. and Von Rohr, P. R., “The mean oxidation number of carbon (MOC)-A useful concept for describing oxidation processes”, Water Res., 34, 2689- 2702 (2000).
Zhang, H. and Huang, C.H., “Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide”, Environ. Sci. Technol., 39, 4474-4483 (2005).