• Tidak ada hasil yang ditemukan

4.2 Minimum degree

4.2.1 Finite cyclic group

In this subsection, We observe that δpGpZnqq is the degree of one of the proper divisors of n (cf. Lemma 4.2.3). We show that φpnq `1 is a sharp lower bound for δpGpZnqq. Further, we obtain some inequalities involving degrees of various elements of Zn (cf. Proposition 4.2.6). Subsequently, we determineδpGpZnqqwhen n has two prime factors or n is a product of at most four distinct primes (cf. Theorem 4.2.7).

We conclude this subsection by giving two sharp upper bounds of δpGpZnqq.

Lemma 4.2.3. If n P N is a composite number, then there exists a proper divisor cą1 of n such that δpGpZnqq “degpcq.

Proof. Since n is a composite number, Z1n is non-empty. Note that degpaq ď n´1 for all aP Zn. Moreover, by Remark 1.5.14, degpbq “n´1 for all b P SpZnq. Thus there exists a P Z1n such that δpGpZnqq “ degpaq. Now take c “ gcdpa, nq. Then cn, 1 ă c ă n and from Theorem 1.3.22, we have xcy “ xay. Hence by Lemma 4.2.1, δpGpZnqq “ degpcq.

66 Minimum Degree and Connectivity

Theorem 4.2.4. For any integer ną1,

(i) Ifnis a composite number, thenδpGpZnqq “φpnq`1`δpG1pZnqq. Consequently, δpGpZnqq ěφpnq `1.

(ii) δpGpZnqq “φpnq `1 if and only if n “2p for some prime pě3.

Proof. (i) Let n PN be a composite number. In view of Lemma 4.2.3, it is enough to consider only elements of Z1n. Since each a P Z1n is adjacent to all elements of SpZnq and |SpZnq| “φpnq `1, we have degGpZnqpaq “ degG1pZnqpaq `φpnq `1. Thus the proof follows.

(ii) Let n “2p for some prime pě3. Then by Proposition 2.3.3, G1pZnq is discon- nected, and its component induced by xpy˚ has p as its only vertex. Consequently, δpG1pZnqq “0, and hence by (i), δpGpZnqq “φpnq `1.

Conversely, let δpGpZnqq “ φpnq `1. If n is a prime number, then δpGpZnqq “ n´1 ‰ φpnq `1. So n is a composite number. Then by (i), δpG1pZnqq “ 0, and hence G1pZnq is disconnected. Accordingly, by Proposition 2.3.3, n is a product of two distinct primes; say n “ pq. It is easy to see that subgraphs induced by xpy˚ and xqy˚ are the only components of G1pZnq. If both p and q are odd primes, then

|xpy˚|,|xqy˚| ě2 and hence δpG1pZnqq ě1. As this is a contradiction, exactly one of p orq is 2. Hence takingq “2, we get n“2p.

The following lemma gives us a formula to compute degrees of vertices ofZ1n in GpZnq.

Lemma 4.2.5 ([Moghaddamfar et al., 2014]). Suppose the integer n ą 1 is not a prime power and aP Z1n. If b“gcdpa, nq, then in GpZnq,

degpaq “ n

b ` ÿ

d|b,d‰b

φ

´n d

¯

´1.

We now establish some inequalities involving degrees of vertices ofGpZnq.

4.2 Minimum degree 67

Proposition 4.2.6. Suppose n“pα11pα22. . . pαrr where rě2, p1 ăp2 ă ¨ ¨ ¨ ăpr are primes and αi P N for 1ďiďr. Then the following inequalities hold in GpZnq.

(i) deg

´ pα11

¯

ědegppαrrq.

(ii) deg

´ pγi

¯ ědeg

´ pβi

¯

for any 1ďiďr and 1ďγ ăβ ďαi. (iii) deg

´ pβi

¯ ědeg

´ pβj

¯

for any 1ďiăj ďr and 1ďβ ďmintαi, αju.

(iv) deg

´

pβ11pβ22. . . pβrr

¯

ě deg

´

pβ22. . . pβrr

¯ for

r

ÿ

i“1

βi ă

r

ÿ

i“1

αi, where 1 ď βi ď αi for any 1ďiďr.

Proof. (i) Let m “ n pα11pαrr.

deg

´ pα11

¯

´degppαrrq “ n pα11 `

α1´1

ÿ

k“0

φ ˆn

pk1

˙

´

# n pαrr `

αr´1

ÿ

k“0

φ ˆn

pkr

˙+

“φpmq

# φppαrrq

α1´1

ÿ

k“0

φ` pα11´k˘

´φppα11q

αr´1

ÿ

k“0

φ` pαrr´k˘

+

`mppαrr ´pα11q

“φpmq ppαrr ´pαrr´1qppα11´1q ´ ppα11 ´pα11´1qppαrr ´1q(

`mtpα11ppαrr ´1q ´pαrrppα11 ´1qu

“ ppαrr ´1q“

pα11´1φpmq `pα11tm´φpmqu‰

´ ppα11 ´1q“

pαrr´1φpmq `pαrrtm´φpmqu‰ ě ppαrr ´1q“

pα11´1φpmq `pα11tm´φpmqu‰

´pα11

pαrr´1φpmq `pαrrtm´φpmqu‰

“ ppαrrpα11´1´pα11pαrr´1qφpmq ´“

pα11´1φpmq `pα11tm´φpmqu‰

“pα11´1

pαrr´1ppr´p1qφpmq ´ rφpmq `p1tm´φpmqus‰ ěpα11´1rppr´p1qφpmq ´ rφpmq `p1tm´φpmquss

“pα11´1tppr´1qφpmq ´p1mu. (4.1)

68 Minimum Degree and Connectivity

Now, if r“2, thenm“ n

pα11pα22 “1. Hence from (4.1), we get deg

´ pα11

¯

´degppαrrq ěpα11´1ppr´1´p1q ě0.

Ifr ą2, then m“ n pα11pαrr

r´1

ź

i“2

pαii. Again, from (4.1), we get

deg

´ pα11

¯

´degppαrrq ě

r´1

ź

i“1

pαii´1

# r ź

i“2

ppi´1q ´

r´1

ź

i“1

pi +

ě0, since pi`1 ´1ěpi for all 1ďiďr´1.

(ii) deg

´ pγi

¯

´deg

´ pβi

¯

“ n pγi `

γ´1

ÿ

k“0

φ ˆn

pki

˙

´ n pβi ´

β´1

ÿ

k“0

φ ˆn

pki

˙

“ n pγi ´ n

pβi ´

β´1

ÿ

k“γ

φ ˆn

pki

˙

“ n pαii

´

pαii´γ´pαii´β

¯

´φ ˆ n

pαii

˙β´1

ÿ

k“γ

φ` pαii´k˘

“ n pαii

´

pαii´γ´pαii´β

¯

´φ ˆ n

pαii

˙´

pαii´γ´pαii´β

¯

´

pαii´γ´pαii´β

¯"

n pαii ´φ

ˆ n pαii

˙*

ě0,since γ ăβ.

(iii) deg

´ pβi

¯

´deg

´ pβj

¯

“ n pβi ´ n

pβj `

β´1

ř

k“0

# φ

ˆn pki

˙

´φ

˜ n pkj

¸+

.

Sincepi ăpj, we have n pβi ą n

pβj . Furtherαi, αj ěβ, so that for all 0ďk ďβ´1, we haveφ

ˆn pki

˙

´φ

˜ n pkj

¸

˜ n pki ´ n

pkj

¸ r

ś

l“1

ˆ 1´ 1

pl

˙

ě0. Hence the proof follows.

4.2 Minimum degree 69

(iv) deg

´

pβ11pβ22. . . pβrr

¯

´deg

´

pβ22. . . pβrr

¯

“ n

pβ11pβ22. . . pβrr

`

ÿ

r

ř

i“1

γiă

r

ř

i“1

βi, 0ďγiďβi@1ďiďr

φ

ˆ n

pγ11pγ22. . . pγrr

˙

´

$

’’

’’

’&

’’

’’

’% n pβ22. . . pβrr

`

ÿ

řr

i“2

γiă řr

i“2

βi, 0ďγiďβi@2ďiďr

φ

ˆ n pγ22. . . pγrr

˙ , // // /. // // /-

“ n

pβ11pβ22. . . pβrr

`

ÿ

0ďγiďβi@1ďiďr

φ

ˆ n

pγ11pγ22. . . pγrr

˙

´φ

ˆ n

pβ11pβ22. . . pβrr

˙

´

# n pβ22. . . pβrr

`

ÿ

0ďγiďβi@2ďiďr

φ

ˆ n pγ22. . . pγrr

˙

´φ

ˆ n pβ22. . . pβrr

˙+

ÿ

1ďγ1ďβ1, 0ďγiďβi@2ďiďr

φ

ˆ n

pγ11pγ22. . . pγrr

˙

`φpmq

!

φppα11q ´φppα11´β1q )

`m

´

pα11´β1 ´pα11

¯ ´

by setting m “pα22´β2. . . pαrr´βr

¯

ě

#

ÿ

0ďγiďβi@2ďiďr

φ`

pα22´γ2. . . pαrr´γr˘ +

ÿ

1ďγ1ďβ1

φ`

pα11´γ1˘

`m

´

pα11´β1 ´pα11

¯

ěφppα22. . . pαrrq ÿ

1ďγ1ďβ1

φ`

pα11´γ1˘

`m

´

pα11´β1 ´pα11

¯

r

ź

i“2

pαii´1ppi´1q( ÿ

1ďγ1ďβ1

φ`

pα11´γ1˘

´m

´

pα11 ´pα11´β1

¯

ěm

# r ź

i“2

ppi´1q ÿ

1ďγ1ďβ1

φ`

pα11´γ1˘

´

´

pα11 ´pα11´β1

¯ +

.

Thus it is enough to show that ρ:“

r

ź

i“2

ppi ´1q ÿ

1ďγ1ďβ1

φ`

pα11´γ1˘

´

´

pα11 ´pα11´β1

¯ ě0.

We have β1 ďα1. First take α1 “β1. Then ř

1ďγ1ďβ1

φ`

pα11´γ1˘

“pα11´1, so that

70 Minimum Degree and Connectivity

ρ“

r

ź

i“2

ppi´1qpα11´1´ ppα11 ´1q ě pp2´1qpα11´1´pα11 `1 ěpα11 ´pα11 `1ą0.

Now we takeα1 ąβ1. In this case, ř

1ďγ1ďβ1

φ`

pα11´γ1˘

“pα11´1´pα11´β1´1, so that

ρ“ pp2´1q. . .ppr´1q

´

pα11´1´pα11´β1´1

¯

´

´

pα11 ´pα11´β1

¯

´

pα11´1 ´pα11´β1´1

¯

tpp2´1q. . .ppr´1q ´p1u ě0.

Theorem 4.2.7. Let nPN and p1 ăp2 ăp3 ăp4 be prime numbers.

(i) If n“pα11pα22, α1, α2 PN, then pα22 has the minimum degree among all vertices in GpZnq, and δpGpZnqq “ ppα22 ´1qφppα11q `pα11 ´1.

(ii) If n “ p1p2p3, then p3 has the minimum degree among all vertices in GpZnq, and δpGpZnqq “φpnq `p1p2´1.

(iii) Let n “ p1p2p3p4. If n is odd or p4 ě p3 ` 2pp3´1q

p2´1 , then p4 has the mini- mum degree among all vertices in GpZnq, and δpGpZnqq “ φpnq `p1p2p3 ´1.

Otherwise, p3p4 has the minimum degree among all vertices in GpZnq, and δpGpZnqq “ pp2´1qpp3p4`1q `1.

Proof. In view of Lemma 4.2.3, to determine δpGpZnqq, it is sufficient to compare the degrees of vertices of the form c, wherecą1 is a proper divisor of n.

(i) Consider β1, β2 P N satisfying 1 ď βi ď αi for i “1,2. Using Proposition 4.2.6, we have

4.2 Minimum degree 71

(a) deg

´ pβ11

¯ ědeg

´ pα11

¯ ědeg

´ pα22

¯ .

(b) deg

´ pβ22

¯ ědeg

´ pα22

¯ .

(c) deg

´ pβ11pβ22

¯ ědeg

´ pβ22

¯ ědeg

´ pα22

¯ .

Hence pα22 has the minimum degree among all vertices in GpZnqand by Lemma 4.2.5, δpGpZnqq “ ppα22 ´1qφppα11q `pα11 ´1.

(ii) If i, j, k is a permutation of 1,2,3 with iăj, we have degppipjq ´degppjq “pk`φppipkq `φppjpkq ´pipk

“ ppi´1qppk´1q ` ppj ´1qppk´1q ´pkppi´1q

“ ppj ´1qppk´1q ´ ppi´1q ě 0, since pi ăpj.

Further, by Proposition 4.2.6(iii), degpp1q ě degpp2q ě degpp3q. Hence p3 has the minimum degree among all vertices in GpZnq. Consequently, by Lemma 4.2.5, δpGpZnqq “ degpp3q “ φpnq `p1p2´1.

(iii) Let i, j, k, l be a permutation of 1,2,3,4.

Foriăj ăk, we have

degppipjpkq ´degppjpkq

“pl` ÿ

dpipjpk

d‰pipjpk

φ

´n d

¯

´

$

’’

&

’’

%

pipl` ÿ

dpjpk

d‰pjpk

φ

´n d

¯ , // . // -

“pl`φ ˆ n

pipj

˙

`φ ˆ n

pipk

˙

`φ ˆ n

pjpk

˙

`φ ˆn

pi

˙

´pipl

72 Minimum Degree and Connectivity

“ ppl´1q tppk´1q ` ppj ´1q ` ppi´1q ` ppj´1qppk´1qu ´plppi´1q

“ ppl´1q tppk´1q ` ppj ´1q ` ppj ´1qppk´1qu ´ ppi´1q ě ppl´1qppj ´1q ´ ppi´1q ě0, since pi ăpj.

Now take iăj with no condition on k and l.

degppipjq ´degppjq “pkpl`φppipkplq `φppjpkplq ´pipkpl

“ ppi´1qppk´1qppl´1q ` ppj ´1qppk´1qppl´1q ´plpkppi´1q

“ ppj´1qppk´1qppl´1q ´ ppi´1qppk`pl´1q. (4.2)

Since k and l can be interchanged in (4.2), without loss of generality, let pk ăpl. Ifn is odd, then pk ą2, so that

degppipjq ´degppjq

ě ppi´1qtppk´1qppl´1q ´ ppk`pl´1qu psince pi ăpjq

“ ppi´1qtppk´2qppl´1q ´pku

ě ppi´1qtppl´1q ´pku ě 0, since pk ą2 and pkăpl.

Now letnbe even, that is,p1 “2. Ifpką2, then from (4.2), degppipjq ědegppjq as shown above. So take pk “2. From (4.2), we have

degppipjq ´degppjq “ ppj ´1qppl´1q ´ ppi´1qppl`1q. (4.3)

In (4.3), letpi ‰p3. Since iăj,pi cannot be p4. Moreover, pk “p1 “2, so we have pi “p2. As a result, pl ąp2. Then from (4.3),

4.2 Minimum degree 73

degppipjq ´degppjq “ ppl´1qtppj ´1q ´ pp2´1qu ´2pp2´1q ě2ppl´1q ´2pp2´1q (since pj´p2 ě2q

“2ppl´p2q ą0, since pląp2.

Now take pi “ p3 in (4.3). Then pj “ p4. We already have pk “ 2, and since pk ăpl, we have pl “p2. Then from (4.3),

degppipjq ´degppjq “degpp3p4q ´degpp4q “ pp4´1qpp2´1q ´ pp3´1qpp2`1q, and hence

degpp3p4q ě degpp4q ôp4 ěp3`2pp3´1q

p2´1 . (4.4)

Case 1: n is odd or p4 ěp3` 2pp3´1q p2´1

As shown above, for all 1ďiăj ăkď4,

degppipjpkq ědegppjpkq ě degppkq. (4.5) Further, it follows from Proposition 4.2.6(iii) that

degpp1q ědegpp2q ě degpp3q ě degpp4q. (4.6) So we conclude that p4 has the minimum degree among all vertices in GpZnq. Con- sequently, by Lemma 4.2.5, we get δpGpZnqq “degpp4q “ φpnq `p1p2p3´1.

Case 2: n is even and p4 ăp3` 2pp3´1q p2´1

Then from (4.4), degpp3p4q ădegpp4q, whereas all other inequalities in (4.5) and (4.6) hold. Thus p3p4 has the minimum degree among all vertices in GpZnq. Thus

74 Minimum Degree and Connectivity

by Lemma 4.2.5, we get

δpGpZnqq “2p2` pp2´1qtpp3´1qpp4´1q ` pp3´1q ` pp4´1qu ´1

“ pp2´1qpp3p4`1q `1.

Corollary 4.2.8. Let n “ pα11pα22. . . pαrr, r ě 2, p1 ă p2 ă ¨ ¨ ¨ ă pr be prime numbers and αi P N for 1ďiďr. Let

η1pnq “ n

pαrr ` ppαrr ´1qφ ˆ n

pαrr

˙

´1, (4.7)

and

η2pnq “ n

pr´1pr `φpnq `φ ˆn

pr

˙

`φ ˆ n

pr´1

˙

´1. (4.8)

Then η1pnq and η2pnq are sharp upper bounds of δpGpZnqq.

Proof. By Lemma 4.2.5,

degppαrrq “ η1pnq, (4.9)

and

degppr´1prq “η2pnq, (4.10) so that η1pnq and η2pnq are upper bounds of δpGpZnqq. Moreover, as shown in Theorem 4.2.7, δpGpZnqqattainsη1pnqfor some values ofn andη2pnqfor some other values of n, and hence the bounds are sharp.

In view of Lemma 4.2.1 and Lemma 4.1.3, we have the following corollary of Theorem 4.2.7.

Corollary 4.2.9. Let nP N and p1 ăp2 ăp3 ăp4 be prime numbers.

(i) If n “pα11pα22, α1, α2 PN, then for any a P

” pα22

ı , E

„ a,

A pα22

E Y

α2´1

Ť

i“0

” pi2

ı

´a

is a minimum disconnecting set of GpZnq.

4.2 Minimum degree 75

(ii) If n “ p1p2p3, then for any a P rp3s, E“

a,xp3y Y“ 1‰

´a‰

is a minimum dis- connecting set of GpZnq.

(iii) Let n “ p1p2p3p4. If n is odd or p4 ě p3 ` 2pp3´1q

p2´1 , then for any a P rp4s, E“

a,xp4y Y“ 1‰

´a‰

is a minimum disconnecting set of GpZnq. Otherwise, for anyb P rp3p4s,E“

b,xp3p4y Y rp3s Y rp4s Y“ 1‰

´b‰

is a minimum disconnecting set of GpZnq.