• Tidak ada hasil yang ditemukan

Fstimntion of Controller Parameters

. . , Fj„ 9 9 the PI-PD control structure is obtained. The

Settiim the relay height to zero m t^ig- -A

, ^Iiprc nre uiven in (2.22) and (2.23), respectively. At First, the forms of the PI and PD controlleis aic given . v ^

M . ic Hpsiancd based on the stability properties of the process

inner feedback PD controller is designca

.1 , irii-ntillcation procedure given in subsection 2.2.1.6.

model obtained by using the ideiititieatio i

n • . Hnsimied for the stabilized process model Gl{s) that is the Thereafter, the PI controller is dtsigncu

I I rv/iih ihe PD controller,

process model GJs) coupled with tnc

Design of PD controller

mnction model (Fig.2.9) can be written as

The stabilized process translei lunctioi

^:„(.v) = Ojs) ' (l + T.s)c' ±\

(4.21)

. + C,6;,(.v) T.s + KK,i\+

• V ,Kpd for the time delay term m the denominator of

The llrst order Pacle approMi";>P»" '

(4.21 ). L.et us choose

7- =«

■' 1

Then, (4.21) becomes

g:(.v)= Ke

(4.22)

(4.23)

' KK,D

T-

2 ;

sHKK,±\)

I. is „|,p,„cu IVom il"-- 'I---"'"""""" |. of (4 23) that C,,(.v) is capable of stabilizing an

tinstable FOPDT process model and i clocating the pole of a stable process model when

(4.24)

^'7 ^

and K

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

4.4 Controller Design lor SISO Processes

K,<^ («5)

KD

Combining (4.24) and (4.25), one obtains

1 < A- < 0.26)

K ' KD

Then, one enn u.se Ihc following proportional gain to design the feedback PD controller

I llf (4.27)

Design of" PI controller

.-...iption becomes C,,C;,(-^) and die basic equations of the Now, the outer loop transiei liinction ue

phase and gain margins criteria can be expicss

Kj</\ =(o/,{KK, ±1).

=| + tun-

^ + taji

where

KK,D^

T- r ^

KK. ±

(4.28) (4.29)

(4.30) (4.31)

1^' i(./%)<^7„(.A'^,.)|-t"

om

^ + arg( { j(o^)C7'„(./n^,«)) ~ + a rg (C. I (ja)^,) G'„, (J (O,,)) = ^

Using (2.6) and (4.23) in (4.28-4.31) g'vcs

(4.32)

W ^o)T,{KK,

(4.33)

(4.34)

(4.35)

(4.36)

88

TH-422_PKPadhy

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

4.4 Controller Design for SISO Processes

The .|,p..ox,n.„ion, ta,r'.v = f-i, for i<i, is "secl .o solve (4.34-435) and

44, r, .,or ,or arc assunKcl to be grcalcr lhan one. Now, using .he above appro.xima.ion,

•h / ' /' ' .1,'

I'lo cxpres.sions (4.32-4.35) becomes

KK =(0 T -KK, D

,ii,„KK =(t)

KK,D

r -

(f) =7 iti 71

<oJ, co^r

- Dco^

(4.37)

(4.38)

(4.39)

(4.40)

T—V- —

rM_3 7-4.40) gives

" '■"iiilly, the .siimillancoiis soiulion o

K =

r,

V KD j

\( KK,D]

T--

(4.41)

(4.42)

1 +

whcrc

c;

\i^j

O C\ Tf

c. - -A, + and C.' r, ,

u ■ ■ nr d, ), (4.41-4.42), (4.27) and

-1) speciricalioiii. (i'«"^""'' ^ ' ^^1" a given process n.pDconti-ol'ei P'"' paraiiieiei's (K,, T,, K f, 7),).

^'^•22) are used lo cstinniie ibe

^•'<•2.2 Shnulatlon Uesult-S ^,,,,onstraied by several examples. The PI-PD

I ...ni aPpi'O''"^'^ ' x.innd "iveii in subsection 2.2.1,6 is

diis subsection, the coni ^ the mv = , • i , , ,

models obtain eonsidered two typical stable

^"niroller for the procc-ss mo We Haw

,.iliics ol s

, , loi- l^'"^^^esscs aiul two unstable P

, ,oliiCS Ol

. „,ocess" -

ll tlielb

,^,,av The process models and the

"'^Nuned usin.u suitable valdv ,,udy.

^ j|.,, tabulated m Table 4.2.

n m-

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

4.4 Controller Design for SISO Processes

'rabic 4.2 Actual process, process nKKici parameters and Pl-PD controller parameters

b.xainplcs Processes

(.v + I)

(.v + l)-'

(5-1)

46^'

(4.V-I)

Process model parameters

K

1.0

2.0

1 .0

4.0 T

1 .0002

4.6127

0.9795

3.9997

D

0.4976

1.7726

0.3998

2.0013

Pl-PD Controller parameters K.-

0.3912

0.2815

0.4460

0.0848

T,

0.1543

0.7070

0.4124

1.8788

Kf

2.0050

1 .1407

2.2136

0.4998

T,

0.2488

0.8863

0.1999

1.0007

^■ample 4.4 ,vample 4.1. The process model parameters and the

msick-,- ,1,0 s,„blo rOPPT process o c.. ^ ^

-PD co„„ollei-paroniccs oblaioed us,.,t i.

. ...11,.,. nnrameters by Chidambaian

-■ The set-I

•c nhinincd usn^S

)ntroller paramcteis . , , ,

itrollei" parameters by Chidambaram s method [43] are

he .set-point weighted PID eontio ^ ^ T,= \,T,= 0.25

n r - n 098 with the set-poim

.6, T/ - 0.9, /,/ 1,^ .heir dominant pole placement ir '

n S4. ,-espocP«ly. by

' , ,, nnillt weiem -C- -.-r, 1,

1 T = 0 098 with the sct-p

1 .6, T/ - 0.9, 1.1 I j . tiominant pole placement method and

. u, 0 54 respectively, by

the set-point weigm • ■ loop performances of the proposed

iiinin*'

Jer and Nichols [.^oj ^ set-point change and the step load disturbance are

ChidambaranT.s methods I ^ lejects disturbance rapidly and shows good

I'ol performance in teiins

e.xample considcis «

. c... the idcntincd equivalent FOPDT model

= 30" are used to dcSic,n ^veichted PID eontroiler with the

\AT,\ designed a sei-p

e process. Chidambaram |4N r = ^ 5823, T,/= ' ^ ^ ^ ,^4^ fo,. q,,. higher order process

neters a; - 0.8el, T/

90

TH-422_PKPadhy

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

4.4 Controller Design for SISO Processes

using the I^CPD'r model G'„,(.s ) =

2c 15.

. Tlie conlrol peiibrmances oftiie proposed method (3.V + 1)

and C hidambaram's method are shown in Fig. 4.12. The results show that the proposed method can also be extended to design the PI-PD controller for higher order processes.

1 4

1.2

0.8

□ 6

0.4

Proposed

Chidambaram (Z-N)

Chidambaram (dominant pole)

f

ii

5 10

t (Second)

15

l ig. 4. 1 I . Closed loop responses to step input and load disturbance For example 4.4

1 4

Proposed

Chidambaram

1 -

0 8 -

0.6 -

0 4 -

\rV II

0 10 20 30 40 50 60 70 80 90 100

t (Second)

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

4.4 Controller Design for SISO Processes

h.uiinp/e 4.6

Conskicr an unslabic FOPDT process = PI-^D controller paranrctcrs arc

-()..) .V

i-'siiniatLxi using ihc gain margin of 4.6 and phase margin of 60". Table 4.2 shows the

, , Lisinc the method discussed in subsection 2.2.1.6 and 'dentilled process model paiamttcis usmg

, ,, Fnr the same process, Padma Sree and Chidambaram

tlie designed controller paramcteis. l oi mc v

,, , ,.,r,:„hied PID controllers using ISE and overshoot

[44] have proposed set-point weiglitea

Ti onntml Dcrformances of the proposed method for both the set-

'ninimi/.alion techniques. The conuoi

, A riicinrbance of maanitudc 0.5 are compared with that of

point chaime and the step load distuioanc

^ niPihods [44] as shown in Fig. 4.1 j. The proposed method I'adnia Sree and Chidambaram s mcthoa t j

or- in Iprms of the overshoot, speed oi response and

slutrv., excellent cotitrol pcrlbritiitncct. ft x, ,

r tMQ control method is that the inner leedback PD

^^ottling time. The main advantage of controller manipulates the stabilization p'O

• Proposed

. Padma Sree and Chidambaram (b=0.404) Padma Siee and Chidambaram (b=0.0)

Fiu. 4.13. Clo-scd loop responses tc

5 t (Second)

. , .,nd load disturbance for example 4.6

;p mpm

92

TH-422_PKPadhy

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

4.4 Controller Design for SISO i'rocesses

hlxiiniple 4. 7

I^CI Ihc unsuible FOPDT process be G(s) = ■ The eomroller paranrclers obtained by

lire proposed niclhod Ibr Ihc process model osing g. = 4.5 and = 60" arc given in Table 4 2 For .he .same pioeess, lire parame.o,-s of.he PID-P eont,■oiler suggested by Park et

ai. [42] are AV = 0.068. T, = 1.885, T, = 4.296 and A', - 0.35 and the Pi-PD controller

, . I „ Mm nre/f . = 0.131, 7) =2,/w= 0.5 and r</= 1. Fig. 4.14

parameters by Majlii and Atlieilon [ J' '

thp set-Doint input and the static load disturbance of

(a) shows the responses given by the sei p

I vnotimH nroDOsed by Majhi and Athcrton results in better

Dokumen terkait