Doctoral Committee
Scheme 1.1. Commercially available Gd(III)‒based MRI CAs. The number of coordinated water molecule in all cases is one
1.4 High Relaxivity at High Field Strength
Chapter I
Page 15
According to SBM theory, the relaxivity of a contrast agent can be enhanced by the following:
1. increasing the number of water molecules coordinated to the metal centre (q), 2. reducing the tumbling rate of the contrast agent (1/τR), and
3. keeping the water exchange rate (1/τM) optimum (τM ~ 10 ns).
Relaxivities of current commercially available contrast agents based on poly(aminocarboxylate) ligands are small (r1 = 4.4–5.2 mM–1s–1) compared to what is theoretically possible.10b Theory reveals that by increasing the number of coordinated water molecules one can attain higher relaxivity irrespective of field strength. Relative to commercial agents, it is necessary to increase water exchange rates34 and slow molecular tumbling,35 with higher number of inner sphere water molecules36 as possible to achieve high relaxivities predicted by theory. The electronic relaxation time of the metal centre also has an important role to play while designing a chelate. Once all the other parameters are optimised, still this parameter remains as a limiting factor in achieving high relaxivity values. While it is the most difficult parameter to rationally influence, theory says that longer T1e values can be achieved through increasing the symmetry at the metal centre, as well as rigidity of the complex.37
Chapter I
Page 16
References
1. (a) P. C. Lauterbur, Nature, 1973, 242, 190; (b) M. J. Dawson, Paul Lauterbur and the Invention of MRI, The MIT Press, 2013.
2. R. Salzer, Biomedical Imaging: Principles and Applications, a Jhon Wiley and Sons, Inc., 2012.
3. (a) R. A. Pooly, RadioGraphics, 2005, 25, 1087; (b) S. Currie, N. Haggard, I. J. Craven, M. Hadjivassiliou and I. D. Wilkinson, Postgrad. Med. J., 2013, 89, 209; (c) K. L.
Mcmahon, G. Cowin and G. Galloway, J. Orthop. Sports Phys. Ther., 2011, 41, 806.
4. http://mgh-images.s3.amazonaws.com/9780077824976/11940-6-1ICS1.png
5. H. H. Mitchell, T. S. Hamilton, F. R. Steggerda and H. W. Bean, J. Biol. Chem., 1945, 158, 625.
6. R. Damadian, K. Zaner, D. Hor and T. DrMaio, Proc. Nat. Acad. Sci. USA, 1974, 71, 1471.
7. https://goo.gl/images/b8cl1w
8. (a) R. B. Lauffer, Chem. Rev., 1987, 87, 901; (b) M. H. Mendonça-Dias, E. Gaggelli and P.
C. Lauterbur, Semin. Nucl. Med., 1983, 13, 364.
9. (a) P. Caravan, Chem. Soc. Rev., 2006, 35, 512; (b) P. Hermann, J. Kotek, V. Kubíček and I. Lukeš, Dalton Trans., 2008, 23, 3027; (c) S. Laus, R. Ruloff, E. Tóth and A. E. Merbach, Chem. Eur. J., 2003, 9, 3555; (d) K. N. Raymond and V. C. Pierre, Bioconjugate Chem., 2005, 16, 3; (e) J. M. Major and T. J. Meade, Acc. Chem. Res., 2009, 42, 893; (f) E. J.
Werner, A. Datta, C. J. Jocher and K. N. Raymond, Angew. Chem., Int. Ed., 2008, 47, 8568; (g) E. L. Que and C. J. Chang, Chem. Soc. Rev., 2010, 39, 51.
10. (a) G. J. Strijkers, W. J. Mulder, G. A. F. van Tilborg and K. Nicolay, Anticancer Agents Med. Chem., 2007, 7, 291; (b) A. Merbach, L. Helm and . Toth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Second Edition. Wiley, New York, 2001.
11. (a) B. Drahoš, I. Lukeš and E. Tóth, Eur. J. Inorg. Chem., 2012, 1975; (b) S. Aime, M.
Botta, M. Fasano and E. Terreno, Chem. Soc. Rev., 1998, 27, 19; (c) A. J. L. Villaraja, A.
Bumb, M. W. Brechbiel. Chem. Rev., 2010, 110, 2921.
12. (a) P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem. Rev., 1999, 99, 2293;
(b) M. Bottrill, L. Kwok and N. J. Long, Chem. Soc. Rev., 2006, 35, 557.
13. Zheng-R. Lu, A. M. Mohs, Y. Zong and Y. Feng, Int. J. Nanomedicine, 2006, 1, 31.
14. A. D. Sherry, P. Caravan and R. E. Lenkinski, J. Magn. Reson. Imaging, 2009, 30, 1240.
TH- 1669_126122013
Chapter I
Page 17
15. (a) K. Wai-Y. Chan, S. Barra, M. Botta and Wing-T. Wong, J. Inorg. Biochem., 2004, 98, 677; (b) S. Gu, Hee-K. Kim, G. H. Lee, Bong-S. Kang, Y. Chang and Tae-J. Kim, J. Med.
Chem., 2011, 54, 143; (c) A. Takács, R. Napolitano, M. Purgel, A. C. Bényei, L. Zékány, E. Brücher, I. Tóth, Z. Baranyai and S. Aime, Inorg. Chem., 2014, 53, 2858; (d) B.
Jebasningh and V. Alexander, Inorg. Chem., 2005, 44, 9434.
16. (a) S. Laurent, Jean-L. Bridot, L. V. Elst and R. N. Muller, Future Med. Chem., 2010, 2, 427; (b) N. Lee and T. Hyeon, Chem. Soc. Rev., 2012, 41, 2575; (c) F. Sousa, B. Sanavio, A. Saccani, Y. Tang, I. Zucca, T. M. Carney, A. Mastropietro, P. H. J. Silva, R. P. Carney, K. Schenk, A. O. Omrani, P. Huang, L. Yang, H. M. Ronnow, F. Stellacci and S. Krol, Bioconjugate Chem., 2017, 28, 161; (d) Z. Zhen and J. Xie, Theranostics, 2012, 2, 45.
17. R. Qiao, C. Yang and M. Gao, J. Mater. Chem., 2009, 19, 6274.
18. C. C. Hanot, Y. S. Choi, T. B. Anani, D. Soundarrajan and A. E. David, Int. J. Mol. Sci., 2016, 17, 54.
19. A. Bianchi, L. Calabi, F. Corana, S. Fontana, P. Losi, A. Maiocchi, L. Paleari and B.
Valtancoli, Coord. Chem. Rev., 2000, 204, 309.
20. A. L. Baert, Encyclopedia of Imaging, Springer, 2008, 2, 481.
21. T. Grobner, Nephrol. Dial. Transplant., 2006, 21, 1104.
22. (a) H. S. Thomsen, Eur. Radiol., 2007, 17, 2692; (b) N. Nainani and M. Panesar, Am. J.
Nephrol., 2009, 29, 1; (c) D. R. Martin, Pediatr. Radiol., 2008, 38, S125; (d) E. A.
Sadowski, L. K. Bennet, M. R. Chan, A. L. Wentland, A. L. Garrett, R. W. Garrett and A.
Djamali, Radiology, 2007, 243, 148; (e) M. Sieber, P. Lengsfeld, J. Walter, H. Schirmer, T.
Frenzel, F. Siegmund, H. Weinmann and H. Pietsch, J. Magn. Reson. Imaging, 2008, 27, 955; (f) D. J. Todd and J. Kay, Curr. Rheumatol. Rep., 2008, 10, 195; (g) S. E. Cowper, Adv. Dermatol., 2007, 23, 131.
23. M. R. Bashir, L. Bhatti, D. Marin and R. C. Nelson, J. Magn. Reson. Imaging, 2015, 41, 884.
24. S. Aime, D. D. Castelli, S. Geninatti, E. Gianolio and E. Terreno, Acc. Chem. Res., 2009, 42, 822.
25. (a) B. Drahoš, M. Pniok, J. Havlíčková, J. Kotek, I. Císařová, P. Hermann, I. Lukeš and É.
Tóth, Dalton Trans., 2011, 40, 10131; (b) J. S. Troughton, M. T. Greenfield, J. M.
Greenwood, S. Dumas, A. J. Wiethoff, J. Wang, M. Spiller, T. J. McCurry and P. Caravan, Inorg. Chem., 2004, 43, 6313.
26. D. W. Christianson, Prog. Biophys. Mol. Biol., 1997, 67, 217.
TH- 1669_126122013
Chapter I
Page 18
27. S. M. Rocklage, W. P. Cacheris, S. C. Quay, F. E. Hahn and K. N. Raymond, Inorg.
Chem., 1989, 28, 477.
28. J. T. Jorgensen, M. Rief, T. B. Brismar, M. Wagner and N. Albeiin, Acta Radiol., 2012, 53, 707.
29. (a) H. U. Ahmed, A. Kirkham, M. Arya, R. Illing, A. Freeman, C. Allen and M. Emberton, Nat. Rev. Clin. Oncol., 2009, 6, 197; (b) J. W. M. Bulte and D. L. Kraitchman, NMR Biomed., 2004, 17, 484.
30. C. A. Helms, Am. J. Roentgenol., 1999, 173, 234.
31. (a) T. H. Sin, J. S. Choi, S. Yun, I. S. Kim, H. T. Song, Y. Kim, K. I. Park and J. Cheon, ACS Nano., 2014, 8, 3393; (b) N. A. Keasberry, M. Banobre-López, C. Wood, G. J.
Stasiuk, J. Gallo and N. J. Long, Nanoscale, 2015, 7, 16119.
32. (a) H. Yang, Y. Zhuang, Y. Sun, A. Dai, X. Shi, D. Wu, F. Li, H. Hu and S. Yang, Biomaterials, 2013, 32, 4584; (b) A. Szpak, S. Fiejdasz, W. Prendota, T. Straczek, C.
Kapusta, J. Szmyd, M. Nowakowska and S. Zapotoczny, J. Nanopart. Res., 2014, 16, 2678; (c) G. H. Im, S. M. Kim, Dong-G. Lee, W. J. Lee, J. H. Lee and I. S. Lee, Biomaterials, 2013, 34, 2069.
33. I. Solomon and N. Bloembergen, J. Chem. Phys., 1956, 25, 261.
34. (a) M. F. Ferreira, A. F. Martins, J. A. Martins, P. M. Ferreira, É. Tóth and C. F. G. C.
Geraldes, Chem. Commun., 2009, 6477; (b) M. Woods, S. Aime, M. Botta, J. A. K.
Howard, J. M. Moloney, M. Navet, D. Parker, M. Port and O. Rousseaux, J. Am. Chem.
Soc., 2000, 122, 9781; (c) N. Iki, E. Boros, M. Nakamura, R. Baba and P. Caravan, Inorg.
Chem., 2016, 55, 4000.
35. (a) P. Caravan, Acc. Chem. Res., 2009, 42, 851; (b) A. Datta and K. N. Raymond, Acc.
Chem. Res., 2009, 42, 938.
36. (a) E. M. Gale, N. Kenton and P. Caravan, Chem. Commun., 2013, 49, 8060; (b) V. C.
Pierre, M. Botta, S. Aime and K. N. Raymond, Inorg. Chem., 2006, 45, 8355; (c) D. T.
Puerta, M. Botta, C. J. Jocher, E. J. Warner, S. Avendano, K. N. Raymond and S. M.
Cohen, J. Am Chem. Soc., 2006, 126, 2222.
37. (a) P. H. Fries, C. Gateau and M. Mazzanti, J. Am Chem. Soc., 2005, 127, 15801; (b) A.
Nonat, M. Giraud, C. Gateau, P. H. Fries, L. Helm and M. Mazzanti, Dalton Trans., 2009, 8033; (c) N. Chatterton, C. Gateau, M. Mazzanti, J. Pécaut, A. Borel, L. Helm and A.
Merbach, Dalton Trans., 2005, 1129.
38. (a) P. Caravan, C. T. Farrar, L. Frullano and R. Uppal, Contrast Media Mol. Imaging, 2009, 4, 89; (b) M. Takahashi, H. Uematsu and H. Hatabu, Eur. J. Radiol., 2003, 46, 45;
TH- 1669_126122013
Chapter I
Page 19
(c) P. Marzola, F. Osculi and A. Sbarbati, Eur. J. Radiol., 2003, 48, 165; (d) K. Uğurbil, G.
Adriany, P. Andersen, W. Chen, M. Garwood, R. Gruetter, Pierre-G. Henry, Seong-G.
Kim, H. Lieu, I. Tkac, T. Vaughan, Pierre-F. V. D. Moortele, E. Yacoub and Xiao-H. Zhu, Magn. Reson. Imaging, 2003, 21, 1263.
39. M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt and H. J. Weinmann, Invest. Radiol., 2005, 40, 715.
TH- 1669_126122013
Chapter I
Page 20 TH- 1669_126122013
Chapter II
A New Picolinate Based High Relaxivity Gd(III) Complex as MRI Contrast Agent
TH- 1669_126122013
TH- 1669_126122013
Chapter II
Page 23