• Tidak ada hasil yang ditemukan

140

141

microscopy images under white and UV light (at an excitation wavelength of 350 nm) were recorded by OLYMPUS BX 51 microscope fitted with a digital camera. The pH of the dispersions of QDCs and Qdots was measured using a JENWAY 3510- pH meter.

Chapter 4. A Hitachi U-2900 spectrophotometer and a HORIBA-Fluorolog 3 spectrofluorometer were used to record the UV−vis and PL spectra. Quantum yield and photostabilty of samples were measured using standard solutions of quinine sulfate (in 0.1 M H2SO4) and rhodamine 6G, respectively. Time-resolved photoluminescence (TRPL) analyses were carried out using Life-Spec-II spectrofluorometer (Edinburgh Instrument, using Pico Quant 375 nm LASER source), and the decay curves were analyzed by FAST software. The pH of the dispersions of the sample was measured using a JENWAY 3510 pH meter. A PerkinElmer (Model: Spectrum One) spectrophotometer was used for recording the FT-IR spectra of solid samples. The transmission electron microscopic (TEM), high resolution TEM (HRTEM), and selected area electron diffraction (SAED) pattern of the samples deposited on formvar- carbon-coated copper grids were recorded in a JEOL JEM-2100 transmission electron microscope (operated at a maximum accelerating voltage of 200 kV). The particle size distribution and inverse fast Fourier transform (IFFT) images were obtained by using Gatan Digital Micrograph software. A Bruker D2 Phaser X-ray diffractometer (having Cu Kα radiation at 1.5418 Å) was used to measure the XRD patterns of the powder samples. Thermal gravimetric analysis (TGA) was recorded by using a Mettler Toledo TGA/SDTA851e thermal analyzer in a nitrogen atmosphere, with a heating rate of 7

°C/min.

Chapter 5. Photoluminescence spectra were recorded using HORIBA-Fluorolg3 spectrofluorimeter. UV-Vis spectra were recorded with Hitachi U-2900 spectrophotometer.The pH of the dispersions of QDCs and Qdots was measured using a JENWAY 3510- pH meter. Quantum yield (Q.Y.) of sample was calculated by using quinine sulphate (Q.Y.= 54% in 0.1 M H2SO4) as a reference sample. Time resolved PL studies were performed by using Life-Spec-II spectrofluorimeter (Edinburgh Instrument, using Pico Quant 375 nm LASER and 308 LED source) and the decay patterns of the samples were analyzed by FAST software with the same instruments.

Rhodamine 6G was used as a standard for time dependent (up to 500 sec) photo

142

irradiation experiments.4 ESR (Electron Spin Resonance) spectra of the powder samples were recorded using JEOL FA 200 ESR spectrophotometer. FT-IR spectrophotometer (model: Spectrum Two) was used to analyze the solid samples. Zeta potential measurements of the colloidal dispersion were done using Malvern Zetasizer Nano ZS instruments. The XRD patterns of solid samples were measured using Brucker D2 Phaser X-ray diffractometer (having CuKradiation at 1.5418Å). TEM, high resolution TEM and SAED (selected area electron diffraction) analyses were done with JEOL JEM-2100 transmission electron microscope (operated at a maximum accelerating voltage of 200 kV).Using Gatan Digital Micrograph software inverse fast Fourier transform (IFFT) images were obtained from the same sample used for TEM analysis. TGA and DSC were recorded by using Perkin Elmer 4000 and Perkin Elmer 6000 instruments, respectively. OLYMPUS BX 51 microscope fitted with a digital camera was used to capture the images of solid samples under white and UV (with 350 nm excitation wavelength) light.

Chapter 6. The digital photographs of the samples were taken under UV light (365 nm) using a UV-lamp (Spectroline). The UV-Vis and PL spectra were recorded using Perkin Elmer Lambda-750 spectrometer and HORIBA-Fluoromax4 spectrofluorimeter, respectively. The JENWAY 3510- pH meter was used to measure the pH of the samples. The XRD patterns of the powder samples were measured using Brucker D8Advance X-ray diffractometer. The TEM, HRTEM and SAED pattern of the samples were recorded in a JEOL JEM-2100 transmission electron microscope (operated at a maximum accelerating voltage of 200 kV) following deposition of the aqueous dispersion on formvar-carbon-coated copper grids. The inverse fast Fourier transform (IFFT) images and particle size distribution were obtained by using Gatan Digital Micrograph software. The photostability of the samples were measured in Perkin-Elmer spectrofluorimeter with continuous irradiation of light and 0.1 sec data intervals. Time-resolved photoluminescence (TRPL) analyses were performed using HORIBA-JOBIN YVON FLUOROLOG spectrofluorimeter and using 340 nm LED excitation source with pulse width <1ns. To capture the images of the solid samples under white and UV (with 350 nm excitation wavelength) light, OLYMPUS BX 51 microscope fitted with a digital camera was used. The atomic absorption spectrometer (Varian AA240FS model) was used for elemental analysis of the aqueous dispersion of

143

the samples following their acid digestion. The FTIR spectra of the solid samples were recorded using Perkin-Elmer (Model: Spectrum One) spectrophotometer. Magnetic measurement of the samples was performed using a vibrating sample magnetometer (VSM; Model No. 7410 series). HeLa cells incubated with samples were imaged under an epi-fluorescence microscope (Nikon Eclipse TS100, Tokyo) using a Qdot 525 nm filter. Using Leica TCS SP8 STED (405 nm diode laser; magnification-60x oil immersion objective) microscope the confocal images of the samples were recorded.

Quantum Yield Determination. The quantum yield (QY) of the samples were calculated using quinine sulphate (in 0.1 M H2SO4) as standard and following equation:

2 2

s R S

s R

R S R

I A Q Q

I A

    



Where, QS = sample’s QY; QR = standard’s QY (0.54 in 0.1 M H2SO4); IS = area under the emission curve of sample; IR = area the emission curve of standard; AR = standard’s absorbance; AS = sample’s absorbance; S = refractive index of solvent which is used for dispersion of sample; R = refractive index of solvent which is used for dispersion of standard. The concentration of all samples and the standard were fixed followed by adjusting their absorbance to 0.1 + 0.01 at 369 nm.

Life time calculation. The decay profile was fitted to a multi-exponential model using following equation



Where, single, bi and tri exponential functions were used to fit respective emission with obtaining close to. The averaged life times (av) in Table S2, determined from the

results of three exponential model using

Where,i and i are the pre-exponential factors and excited-state luminescence decay time associated with the i-th component, respectively.

  exp  

i

t i

i

I t   

(2)

2 i i i av

i i i

 

    

(3)

144

1) https://en.wikipedia.org/?title=Wassily_Kandinsky

2) http://blog.donorperfect.com/2009/08/everything-starts-from-a-dot/

3) Murphy, C. J.; Coffer, J. L. Quantum Dots: A Primer Applied Spectroscopy 2002, 56, 16A-27A.

4) Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots Science, 1996, 271, 933–937.

5) Ekimov A. I.; Onushchenko A. A. Quantum Size Effect in Three-dimensional Microscopic Semiconductor Crystals JETP Lett. 1981, 6, 345–349.

6) Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum Size Effects in the Redox Potentials, Resonance Raman Spectra, and Electronic Spectra of CdS Crystallites in Aqueous Solutions J. Chem. Phys. 1983, 79, 1086-1088.

7) Reed, M. A.; Randall, J. N.; Aggarwal, R. J.; Matyi, R. J.; Moore, T. M.; Wetsel, A.

E. Observation of Discrete Electronic States in a Zero-dimensional Semiconductor Nanostructure Phys Rev Lett. 1988, 60, 535–537.

8) Hines, D. A.; Kamat, P. V. Excited State Reactions at the Quantum Dot Surface University of Notre Dame PhD Thesis, 2015, 5-6.

9) Kippeny, T.; Swafford, L. A.; Rosenthal, S. J. Semiconductor nanocrystals: A Powerful Visual Aid for Introducing the Particle in a Box J. Chem. Ed. 2002, 79, 1094-1100.

10) Kambhampati, P. Fundamentals of the Quantum Confinement Effect, Book chapter in Handbook of Photoluminescent Semiconductor Materials – Taylor & Francis, 2011.

11) Kambhampati, P. Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots Acc. Chem. Res. 2011, 44, 1– 13.

12) Dabbousi, B. O.; RodriguezViejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.;

Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS Core−Shell Quantum Dots: 

Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites J. Phys. Chem. B 1997, 101, 9463-9475.

13) Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites J. Am. Chem. Soc. 1993, 115, 8706-8715.

14) Somers, R. C.; Bawendi, M. G.; Nocera, D. G. CdSe Nanocrystal based Chem-/Bio- Sensors Chem. Soc. Rev. 2007, 36, 579-591.

15) Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size- Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study ACS Nano 2011, 5,2004– 2012.

16) Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J. C.;

Vanhaecke,F.; Vantomme, A.; Delerue, C.; Allan, G.; Hens, Z.Size-Dependent Optical Properties of Colloidal PbS Quantum Dots ACS Nano 2009, 3, 3023– 3030 17) Ho, M. Q.; Alan Esteves, R. J.; Kedarnath, G.; Arachchige, I. U. Size-Dependent

Optical Properties of Luminescent Zn3P2 Quantum Dots J. Phys. Chem.

C, 2015, 119, 10576–10584.

18) Nag, A.; Cherian, R.; Mahadevan, P.; Gopal, A. V.; Hazarika, A.; Mohan, A.;

Vengurlekar,A.; Sarma, D. Size-Dependent Tuning of Mn2+ d Emission in Mn2+- Doped CdS Nanocrystals: Bulk vs Surface J. Phys. Chem. C 2010, 114, 18323–

18329.

146

19) El-Sayed, M. A. Small Is Different: Shape-, Size-, and Composition-Dependent Properties of Some Colloidal Semiconductor Nanocrystals Acc. Chem. Res. 2004, 37, 326– 333.

20) Boatman, E. M.; Lisensky, G. C.; Nordell, K. J. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals J. Chem. Educ. 2005, 82, 1697-1699.

21) Brus, L. Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory J. Phys. Chem., 1986, 90, 2555–2560.

22) Kamat, P. V. Semiconductor Nanocrystals: To Dope or Not to Dope J. Phys. Chem.

Lett., 2011, 2, 2832–2833.

23) Vlaskin, V. A.; Janssen, N.; van Rijssel, J.; Beaulac, R. m.; Gamelin, D. R. Tunable Dual Emission in Doped Semiconductor Nanocrystals Nano Lett. 2010, 10, 3670–

3674.

24) Karan, N. S.; Sarma, D. D.; Kadam, R. M.; Pradhan, N. Doping Transition Metal (Mn or Cu) Ions in Semiconductor Nanocrystals J. Phys. Chem. Lett. 2010, 1, 2863–

2866.

25) Srivastava, B. B.; Jana, S.; Pradhan, N. Doping Cu in Semiconductor Nanocrystals:

Some Old and Some New Physical Insights J. Am. Chem. Soc. 2011, 133, 1007–

1015.

26) Srivastava, B. B.; Jana, S.; Karan, N. S.; Paria, S.; Jana, N. R.; Sarma, D. D.;

Pradhan, N. Highly Luminescent Mn-Doped ZnS Nanocrystals: Gram-Scale Synthesis J. Phys. Chem. Lett. 2010, 1, 1454– 1458.

27) Hazarika, A.; Pandey, A.; Sarma, D. D. Rainbow Emission from an Atomic Transition in Doped Quantum Dots J. Phys. Chem. Lett. 2014, 5, 2208– 2213.

28) Pradhan, N.; Sarma, D. D. Advances in Light-Emitting Doped Semiconductor Nanocrystals J. Phys. Chem. Lett. 2011, 2, 2818– 2826.

29) Nag, A.; Sarma, D. White Light from Mn2+-doped CdS Nanocrystals: A New Approach J. Phys. Chem. C 2007, 111, 13641– 13644.

30) Santra, P. K.; Kamat, P. V. Mn-Doped Quantum Dot Sensitized Solar Cells. A Strategy to Boost Efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508–2511.

31) Nag, A.; Chakraborty, S.; Sarma, D. D. To Dope Mn2+ in a Semiconducting Nanocrystal J. Am. Chem. Soc. 2008, 130, 10605– 10611.

32) Grandhi, G. K.; Viswanatha, R. Tunable Infrared Phosphors Using Cu Doping in Semiconductor Nanocrystals: Surface Electronic Structure Evaluation J. Phys.

Chem. Lett. 2013, 4, 409-415.

33) Pradhan, N.; Peng, X. Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry J. Am.

Chem. Soc. 2007, 129, 3339– 3347.

34) Bol, A. A.; Meijerink, A. Luminescence Quantum Efficiency of Nanocrystalline ZnS: Mn2+.1.Surface Passivation and Mn2+ Concentration J. Phys. Chem.

B 2001, 105, 10197– 10202.

35) Zhang, W.; Zhou, X.; Zhong, X. One-Pot Noninjection Synthesis of Cu-Doped ZnxCd1-xS Nanocrystals with Emission Color Tunable over Entire Visible Spectrum Inorg. Chem. 2012, 51, 3579– 3587.

36) Begum, R.; Chattopadhyay, A. Redox-Tuned Three-Color Emission in Double (Mn and Cu) Doped Zinc Sulfide Quantum Dots J. Phys. Chem. Lett. 2014, 5, 126– 130.

37) Nag, A.; Sapra, S.; Nagamani, C.; Sharma, A.; Pradhan, N.; Bhat, S. V.; Sarma, D.

D. A Study of Mn2+ Doping in CdS Nanocrystals Chem. Mater. 2007, 19, 3252–

3259.

147

38) Hines, D. A.; Kamat, P. V. Recent Advances in Quantum Dot Surface Chemistry ACS Appl. Mater. Interfaces 2014, 6, 3041– 3057.

39) Owen, J. The Coordination Chemistry of Nanocrystal Surfaces. Science 2015, 347, 615-616.

40) Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding J. Am. Chem.

Soc. 2013, 135, 18536– 18548.

41) Bae, W. K.; Joo, J.; Padilha, L. a; Won, J.; Lee, D. C.; Lin, Q.; Koh, W.; Luo, H.;

Klimov, V. I.; Pietryga, J. M. Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine J. Am. Chem.

Soc. 2012, 134, 20160–20168.

42) Wheeler, L. M.; Levij, L. M.; Kortshagen, U. R. Tunable Band Gap Emission and Surface Passivation of Germanium Nanocrystals Synthesized in the Gas Phase. J.

Phys. Chem. Lett. 2013, 4, 3392.

43) Teunis, M. B.; Dolai, S.; Sardar, R. Effects of Surface-Passivating Ligands and Ultrasmall CdSe Nanocrystal Size on the Delocalization of Exciton Confinement.

Langmuir 2014, 30, 7851– 7858.

44) Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.;

Salmeron, M.; Alivisatos, P.; Wang, L. W. Hydroxylation of the Surface of PbS Nanocrystals Passivated with Oleic Acid Science 2014, 344, 1380-1384.

45) Jin, T.; Fuji, F.; Yamada, E.; Nodasaka, Y.; Kinjo, M. Control of the optical properties of quantum dots by surface coating with calix[n]arene carboxylic acids J.

Am. Chem. Soc.2006, 128, 9288– 9289.

46) Baker, D. R.; Kamat, P. V. Tuning the Emission of CdSe Quantum Dots by Controlled Trap Enhancement Langmuir 2010, 26, 11272– 11276.

47) Wang, G.; Ji, J.; Zhang, X.; Zhang, Y.; Wang, Q.; You, X.; Xu, X. Colloidal Nanocrystals Fluoresced by Surface Coordination Complexes Sci. Rep. 2014, 4, 5084-5092.

48) Tang, J.; Kemp, K.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.;

Wang, X.; Debnath, R.; Cha, D.; Chou, K. W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent, E. H. Colloidal-Quantum-Dot Photovoltaics using Atomic-Ligand Passivation Nature Materials 2011, 10, 765-771.

49) Kim, S.; Bawendi, M. G. Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots J. Am. Chem. Soc. 2003, 125, 14652– 14653.

50) Karakoti, A. S.; Shukla, R.; Shanker, R.; Singh, S.Surface functionalization of quantum dots for biological applications Adv. Colloid Interface Sci. 2015, 215, 28–

45.

51) Palui, G.; Avellini, T.; Zhan, N.; Pan, F.; Gray, D.; Alabugin, I.; Mattoussi, H.

Photoinduced Phase Transfer of Luminescent Quantum Dots to Polar and Aqueous Media J. Am. Chem. Soc. 2012, 134, 16370– 16378.

52) Zhan, N.; Palui, G.; Grise, H.; Tang, H.; Alabugin, I.; Mattoussi, H.Combining Ligand Design with Photoligation to Provide Compact, Colloidally Stable, and Easy to Conjugate Quantum Dots ACS Appl. Mater. Interfaces 2013, 5, 2861– 2869.

53) Zhan, N.; Palui, G.; Safi, M.; Mattoussi, H. Multidentate Zwitterionic Ligands Provide Compact and highly biocompatible Quantum Dots J. Am. Chem. Soc. 2013, 135, 13786-13795.

148

54) Zhan, N.; Palui, G.; Grise, H.; Tang, H.; Alabugin, I.; Mattoussi, H. Combining Ligand Design with Photo-ligation to Provide Compact, Colloidally Stable and Easy to Conjugate Quantum Dots ACS Appl. Mater. Interfaces 2013, 5, 2861-2869.

55) Dennis, A. M.; Sotto, D.; Mei, B. C.; Medintz, I. L.; Mattoussi, H.; Bao, G. Surface Ligand Effects on Metal-affinity Coordination to Quantum Dots: Implications for Nanoprobe Self-Assembly Bioconjugate Chem. 2010, 21, 1160-1170.

56) Fanizza, E.; Urso, C.; Pinto, V.; Cardone, A.; Ragni, R.; Depalo, N.; Curri, M. L.;

Agostiano,A.; Farinola, G. M.; Striccoli, M.Single White Light Emitting Hybrid Nanoarchitectures Based on Functionalized Quantum Dots J. Mater. Chem.

C 2014, 2, 5286–5291.

57) Depalo, N.; Comparelli, R.; Huskens, J.; Ludden, M. J. W.; Perl, A.; Agostiano, A.;

Striccoli,M.; Curri, M. L. Phase Transfer of CdS Nanocrystals Mediated by Heptamine β-Cyclodextrin Langmuir 2012, 28, 8711– 8720.

58) Zezza, F.; Comparelli, R.; Striccoli, M.; Curri, M. L.; Tommasi, R.; Agostiano, A.;

Della Monica, M. High quality CdS nanocrystals: Surface Effects Synth.

Met. 2003, 139, 597–600.

59) Depalo, N.; Comparelli, R.; Curri, M. L.; Striccoli, M.; Agostiano, A. Cyclodextrin Mediated Phase Transfer in Water of Organic Capped CdS Nanocrystals Synth.

Met. 2005, 148, 43–46.

60) Fini, P.; Depalo, N.; Comparelli, R.; Curri, M. L.; Striccoli, M.; Castagnolo, M.;

Agostiano,A. Interactions Between Surfactant Capped CdS Nanocrystals And Organic Solvent J. Therm. Anal. Calorim. 2008, 92, 271– 277.

61) Jara, D. H.;Yoon, S.; Stamplecoskie, K. G.; Kamat, P. V. Size-Dependent Photovoltaic Performance of CuInS2 Quantum Dots Sensitized Solar Cells Chem.

Mater. 2014, 26, 7221–7228.

62) P.V. Kamat, Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces. Chem. Rev. 1993, 93, 267-300.

63) Hines, D. A.; Kamat, P. V. Quantum Dot Surface Chemistry: Ligand Effects and Electron Transfer Reactions. J. Phys. Chem. C 2013, 117, 14418–14426.

64) Hines, D. A.; Becker, M. A.; Kamat, P. V. Photoinduced Surface Oxidation and Its Effect on the Exciton Dynamics of CdSe Quantum Dots J. Phys. Chem. C 2012, 116,13452–13457.

65) Krause, M. M.; Mooney, J.; Kambhampati, P. Chemical and Thermodynamic Control of the Surface of Semiconductor Nanocrystals for Designer White Light Emitters ACS Nano 2013, 7, 5922-5929.

66) Nag, A.; Kovalenko, M. V.; Lee, J.-S.; Liu, W.; Spokoyny, B.; Talapin, D. V.

Metal-Free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS, Se2–, HSe, Te2–

, HTe, TeS32–

, OH and NH2

as Surface Ligands J. Am. Chem.

Soc. 2011, 133, 10612– 10620.

67) Zhang, H.; Jang, J.; Liu, W.; Talapin, D. V. Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands ACS Nano 2014, 8, 7359– 7369.

68) Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; Simon, S. M.; Mattoussi, H. Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores J. Am. Chem. Soc. 2005, 127, 3870– 3878.

69) Begum, R.; Chattopadhyay, A. In Situ Reversible Tuning of Photoluminescence of Mn2+Doped ZnS Quantum Dots by Redox Chemistry Langmuir 2011, 27, 6433–

6439.

70) Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.;

Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; Chou, K. W.; Fischer, A.;

149

Amassian, A.; Asbury, J. B.; Sargent, E. H. Colloidal-Quantum-Dot Photovoltaics using Atomic-Ligand Passivation Nat. Mater. 2011, 10, 765– 771.

71) Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T.

Quantum Dots versus Organic Dyes as Fluorescent Labels Nature Methods 2008, 5, 763 – 775.

72) Klostranec, J. M.; Chan, W. C. W. Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges Adv. Mater. 2006, 18, 1953–

1964

73) Alivisatos, P. The Use of Nanocrystals in Biological Detection. Nature Biotechnology 2004, 22, 47-52.

74) Alivisatos, A. P.; Gu, W. W.; Larabell, C., Quantum dots as cellular probes. Annual Review of Biomedical Engineering 2005, 7, 55-76.

75) Michalet, X.; Pinaud, F.; Lacoste, T. D.; Dahan, M.; Bruchez, M. P.; Alivisatos, A.

P.; Weiss, S., Properties of Fluorescent Semiconductor Nanocrystals and Their Application to Biological Labeling. Single Molecules 2001, 2, 261-276.

76) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.;

Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538-544.

77) Mattoussi, H.; Palui, G.; Na, H. B. Luminescent Quantum Dots as Platforms for Probing In Vitro and In Vivo Biological Processes Adv. Drug Delivery Rev. 2012, 64, 138–166.

78) Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L.W.; Nie, S. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nat Biotechnol. 2004, 22, 969- 976.

79) Mandal, A.; Dandapat, A.; De, G. Magic Sized ZnS Quantum Dots as a Highly Sensitive and Selective Fluorescence Sensor Probe for Ag+ Ions.Analyst 2012, 137, 765-772.

80) Kamat, P. V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvestors J. Phys. Chem. C 2008, 112, 18737-18753.

81) Kamat, P. V.; Christians, J. A.; Radich, J. G. Quantum Dot Solar Cells. Hole Transfer as a Limiting Factor in Boosting Photoconversion Efficiency. Langmuir 2014, 30, 5716-5725.

82) Bang, J. H.; Kamat, P. V. Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe ACS Nano 2009, 3, 1467-1476.

83) Gimbert-Surinach, C.; Albero, J.; Stoll, T.; Fortage, J.; Collomb, M.-N.;

Deronzier, A.; Palomares, E.; Llobet, A. Efficient and Limiting Reactions in Aqueous Light-Induced Hydrogen Evolution Systems Using Molecular Catalysts and Quantum Dots J. Am. Chem. Soc. 2014, 136, 7655– 7661.

84) Basu, M.; Garg, N.; Ganguli, A. K. A Type-II Semiconductor (ZnO/CuS heterostructure) for Visible Light Photocatalysis J. Mater. Chem. A 2014, 2, 7517- 7525.

85) Dubois, F.; Mahler, B.; Dubertret, B.; Doris, E.; Mioskowski, C. A Versatile Strategy for Quantum Dot Ligand Exchange J. Am. Chem. Soc. 2007, 129, 482–

483.

86) Palui, G.; Avellini, T.; Zhan, N.; Feng, P.; Gray, D.L.; Alabugin, I.; Mattoussi, H.

Photo-induced Ligand Exchange and Phase Transfer of Luminescent Quantum Dots to Aqueous Media J. Am. Chem. Soc. 2012, 134, 16370–16378.

150

87) Aldeek, F.; Hawkins, D.; Safi, M.; Palomo, V.; Palui, G.; Dawson, P. E.; Alabugin, I.; Mattoussi, H. UV and Sunlight Driven Photochemical Reduction of Lipoic Acid- Based Ligands to Promote Cap Exchange on Luminescent Quantum Dots J. Am.

Chem. Soc. 2015, 137, 2704-2714.

88) Comparelli, R.; Zezza, F.; Striccoli, M.; Curri, M. L.; Tommasi, R.; Agostiano, A.

Improved Optical Properties of CdS Quantum Dots by Ligand Exchange Mater. Sci.

Eng., C 2003, 23, 1083– 1086.

89) Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.;

Bulović, V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange ACS Nano 2014, 8, 5863– 5872.

90) Dai, M.-Q.; Yung, L.-Y. L. Ethylenediamine-Assisted Ligand Exchange and Phase Transfer of Oleophilic Quantum Dots: Stripping of Original Ligands and Preservation of Photoluminescence Chem. Mater. 2013, 25, 2193– 2201.

91) Liu, D.; Snee, P. T. Water-Soluble Semiconductor Nanocrystals Cap Exchanged with Metalated Ligands ACS Nano 2011, 5, 546– 550.

92) Owen, J. S.; Park, J.; Trudeau, P. E.; Alivisatos, A. P. Reaction Chemistry and Ligand Exchange at Cadmium-Selenide Nanocrystal Surfaces J. Am. Chem.

Soc. 2008, 130, 12279– 12281.

93) Dong, A. G.; Ye, X. C.; Chen, J.; Kang, Y. J.; Gordon, T.; Kikkawa, J. M.;

Murray, C. B. A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals J. Am. Chem. Soc. 2011, 133, 998– 1006.

94) Lingley, Z.; Lu, S.; Madhukar, A. A High Quantum Efficiency Preserving Approach to Ligand Exchange on Lead Sulfide Quantum Dots and Interdot Resonant Energy Transfer Nano Lett. 2011, 11, 2887– 2891.

95) Lu, C.; Gao, J.; Fu, Y.; Du, Y.; Shi, Y.; Su, Z. A Ligand Exchange Route to Highly Luminescent Surface-Functionalized ZnS Nanoparticles and Their Transparent Polymer Nanocomposites Adv. Funct. Mater. 2008, 18, 3070– 3079.

96) Bohle, D. S.; C. Spina, J. Chelating the Surface of Zinc in Zinc Oxide Nanocrystals:

Spectroscopic Characterization of ZnO Surface-Bound Eriochrome Black T and 8- Hydroxyquinoline J. Phys. Chem. C 2009, 113, 14435– 14439.

97) Feng, L.; Wang, C.; Ma, Z.; Lu, C. 8-Hydroxyquinoline Functionalized ZnS Nanoparticles Capped with Amine Groups: A Fluorescent Nano Sensor for the Facile and Sensitive Detection of TNT Through Fluorescence Resonance Energy Transfer Dyes Pigm. 2013, 97, 84– 91.

98) Liu, B.; Lu, X.; Tong, C.; Wang, C.; Feng, L.; He, Y.; Lu, C. 8-Hydroxyquinoline and Its Derivatives Functionalized Cd1–xZnxSe1–ySy Alloyed NCs: Optical and Photophysical Properties RSC Adv. 2013, 3, 21298– 21301.

99) Lu, X.; Yang, J.; Fu, Y.; Liu, Q.; Qi, B.; Lu, C.; Su, Z. White Light Emission from Mn2+Doped ZnS Nanocrystals Through The Surface Chelating of 8- Hydroxyquinoline-5-sulfonic acid Nanotechnology. 2010, 21, 115702– 115712.

100) Ma, W.; Qin, L.; Liu, F.; Gu, Z.; Wang, J.; Pan, Z. G.; James, T. D.; Long, Y.

Ubiquinone-Quantum Dot Bioconjugates for In Vitro and Intracellular Complex I Sensing Sci. Rep.2013, 3, 1537– 1544.

101) Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing, Nat. Mater. 2005, 4, 435-446.

102) Zrazhevskiy, P.; Sena, M.; Gao, X. H. Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery Chem. Soc. Rev. 2010, 39, 4326–4354.

151

103) Delehanty, J. B.; Medintz, I. L.; Pons, T.; Brunel, F. M.; Dawson, P. E.;

Mattoussi, H. Self-Assembled Quantum Dot-Peptide Bioconjugates for Selective Intracellular Delivery Bioconjugate Chem. 2006, 17, 920– 927.

104) Medintz, I. L.; Stewart, M. H.; Trammell, S. A.; Susumu, K.; Delehanty, J. B.;

Mei, B. C.; Melinger, J. S.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H.

Quantum-Dot/Dopamine Bioconjugates Function as Redox Coupled Assemblies for in Vitro and Intracellular pH Sensing Nat. Mater. 2010, 9, 676– 684.

105) Erogbogbo, F.; Yong, K.-T.; Roy, I.; Hu, R.; Law, W.-C.; Zhao, W.; Ding, H.;

Wu, F.; Kumar,R.; Swihart, M. T.; Prasad, P. N. In Vivo Targeted Cancer Imaging, Sentinel Lymph Node Mapping and Multi-Channel Imaging with Biocompatible Silicon Nanocrystals ACS Nano 2011, 5, 413– 423.

106) Susumu, K.; Uyeda, H. T.; Medintz, I. L.; Pons, T.; Delehanty, J. B.; Mattoussi,H.

Enhancing the Stability and Biological Functionalities of Quantum Dots via Compact Multifunctional Ligands J. Am. Chem. Soc. 2007, 129, 13987–

13996.

107) Clapp, A. R.; Goldman, E. R.; Mattoussi, H. Capping of CdSe-ZnS Quantum Dots with DHLA and Subsequent Conjugation with Proteins Nat. Protoc. 2006, 1, 1258–

1266.

108) Depalo, N.; Carrieri, P.; Comparelli, R.; Striccoli, M.; Agostiano, A.; Bertinetti, L.;

Innocenti,C.; Sangregorio, C.; Curri, M. L. Bio-functionalization of Anisotropic

Nanocrystalline Semiconductor-Magnetic

Heterostructures Langmuir 2011, 27, 6962– 6970.

109) Wang, W.; Kapur, A.; Ji, X.; Safi, M.; Palui, G.; Palomo, V.; Dawson, P.

E.; Mattoussi, H. Photoligation of an Amphiphilic Polymer with Mixed Coordination Provides Compact and Reactive Quantum Dots," J. Am. Chem.

Soc. 2015, 137, 5438-5451.

110) Palui, G.; Aldeek, F.; Wang, W.; Mattoussi, H. Strategies for Interfacing Inorganic Nanocrystals with Biological Systems based on Polymer-Coating Chem. Soc.

Rev., 2015, 44, 193-227.

111) Mukthavaram, R.; Wrasidlo, W.; Hall, D.; Kesari, S.; Makale, M. Assembly and Targeting of Liposomal Nanoparticles Encapsulating Quantum Dots Bioconjugate Chem. 2011, 22, 1638– 1644.

112) Wang, W.; Aldeek, F.; Ji, X.; Zeng, B.; Mattoussi, H. A Multifunctional Amphiphilic Polymer as a Platform for Surface-Functionalizing Metallic and Other Inorganic Nanostructures Faraday Discussions 2014, 175, 137-151.

113) Foda, M. F.; Huang, L.; Shao, F.; Han, H. Biocompatible and Highly Luminescent Near-Infrared CuInS2/ZnS Quantum Dots Embedded Silica Beads for Cancer Cell Imaging ACS Appl. Mater. Interfaces, 2014, 6, 2011–2017.

114) Sohn, I. S.; Unithrattil, S.; Im, W. B. Stacked Quantum Dot Embedded Silica Film on a Phosphor Plate for Superior Performance of White Light-Emitting Diodes ACS Appl. Mater. Interfaces 2014, 6, 5744– 5748.

115) Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.;

Alivisatos, A. P.Synthesis and Properties of Biocompatible Water-Soluble Silica- Coated CdSe/ZnS Semiconductor Quantum Dots J. Phys. Chem.

B 2001, 105, 8861– 8871.

116) Rawalekar, S.; Kaniyankandy, S.; Verma, S.; Ghosh, H. N. Effect of Surface States on Charge-Transfer Dynamics in Type II CdTe/ZnTe Core–Shell Quantum Dots: A