• Tidak ada hasil yang ditemukan

1.

(a+x)n=

n k=0

 n k

xkank (A.88)

2.

φx(jω) =

0

fx(x)ejωxdx (A.89)

3.

fx(x) = 1 2π

φx(jω)ejωxdω (A.90)

4.

0

xn−1eβxdx=Γ(m−n,n>0 (A.91) 5.

−ix)veipxdx=2πpv−1eβp

Γ(v) ,p>0 (A.92)

6.

y=ax,fy(y) = 1 afx

(y a

)

(A.93) 7.

Γ(z) =

0

ettz1dt (A.94)

8.

u

0

xβ1e−µxdx=µβν(β,µu),β>0 (A.95) 9.

ν(α,x) =

x

0

e−ttα1dt,α>1 (A.96) 10.

ν(1+n,x) =n!

[ 1−ex

n m=0

xm m!

]

,n= [0,1, . . .] (A.97) 11.

Γ(x) = (x−1)! (A.98)

12.

Q(√

2gγ) = 1 π

π2

0

exp (

gγ sin2θ

)

dθ (A.99)

13.

Iv(z) = (z

2 )v

k=0

(z2/2)k

k!Γ(v+k+1) (A.100)

14.

0

xv−1eβx2γxdx= (2β)−v/2Γ(v)exp (γ2

8β )

D−v (√γ

2β )

[Re{β}>0,Re{v}>0]

(A.101) 15.

Dp(z) =22pez

2 4



π Γ(1

p 2

)Φ [

−p 2,1

2,z2 2

]

z Γ(

2p

[1−p 2 ,3

2,z2 2

]}

(A.102)

16.

y=xn,fy(y) = 1

ny(1nn)fx

( y1n

)

y>0 (A.103)

17.

y=cosx,fy(y) = 2

√1−y2fx(x) (A.104)

18.

z=xy,fz(z) =

0

1

xfx(x)fy(z/x)dx (A.105) 19.

Γ(nx) = (2π)12nnnx−12

n−1

k=0

Γ (

x+k n

)

(A.106)

Bibliography

[1] T. S. Rappaport,Wireless Communications Principles and Practice. Prentice Hall, 2007.

[2] G. L. Stuber,Principles of Mobile Communications, 2nd ed. Norwell MA: Kluwer Academic Publish- ers, 2001.

[3] M. K. Simon and M. S. Alouni,Digital Communication Over Fading Channels: A Unified Approach.

2nd ed., Wiley, 2005.

[4] M. Nakagami, “Them-distribution: A general formula of intensity distribution of rapid fading,”Statis- tical Methods of Radio Wave Propagation, pp. 3–36, 1960.

[5] P. S. Bithas, N. C. Sagias, and P. T. Mathiopoulos, “The bivariate generalized-KKGdistribution and its application to diversity receivers,”IEEE Trans. on Commun., vol. 57, no. 9, pp. 2655–2662, Sep. 2009.

[6] P. Bithas, N. Sagias, and T. Tsiftsis, “Performance analysis of dual-diversity receivers over correlated generalised Gamma fading channels,”IET Commun., vol. 2, no. 1, pp. 174–178, 2008.

[7] E. W. Stacy, “A generalization of the gamma distribution,”Ann. Math. Stat., vol. 33, no. 3, p. 1187?1192, Sep. 1962.

[8] N. C. Sagias, G. K. Karagiannidis, P. T. Mathiopoulos, and T. A. Tsiftsis, “On the performance anal- ysis of equal-gain diversity receivers over Generalized Gamma fading channels,” IEEE Trans. Wirel.

Commun., vol. 5, no. 18, pp. 2967–2975, Oct. 2006.

[9] P. S. Bithas, N. C. Sagias, P. T. Mathiopoulos, G. K. Karagiannidis, and A. A. Rontogiannis, “On the performance analysis of digital communications over Generalized-K fading channels,”IEEE Commun.

Lett., vol. 10, no. 5, pp. 353–355, Oct. 2006.

[10] I. S. Gradshteyn and I. M. Rhyzik,Table of Integrals, Series and Products. San Diego, CA: Academic, 2000.

[11] M. D. Yacoub, “Theκ−µdistribution: A general fading distribution,”IEEE Atlantic City Fall Vehicular Technology Conf., pp. 1427–1432, Oct. 2001.

[12] ——, “The κ−µ distribution and the η−µ distribution,” IEEE Ant. Prop. Mag., vol. 49, no. 1, pp.

68–81, Feb. 2007.

[13] ——, “Theη−µdistribution: A general fading distribution,”IEEE Boston Fall Vehicular Technology Conf., pp. 872–877, Sep. 2000.

[14] D. G. Bernnan, “Linear diversity combining techniques,”IRE, vol. 47, pp. 1075–1102, 1959.

[15] J. G. Proakis,Digital Communications. Mc-Graw-Hill, 2005.

[16] M. A. Najib and V. K. Prabhu, “Analysis of EGC with partially coherent fading signals,”IEEE Trans.

on Veh. Tech., vol. 49, no. 3, pp. 783–791, May 2000.

[17] W. Lindsey and C. Chie,Phase Locked Loops. IEEE Press, 1986.

[18] A. J. Viterbi,Principles of Coherent Communication. Mc-Graw-Hill, 1966.

[19] N. C. Sagias and G. K. Karagiannidis, “Effects of phase error on EGC receivers in correlated Nakagami- mfading,”IEEE Commun. Lett., vol. 9, no. 7, pp. 580–582, July 2005.

[20] S. A. Rhodes, “Effect of noisy phase reference on coherent detection of offset-QPSK signals,” IEEE Trans. on Commun., vol. 22, pp. 1046–1055, Aug. 1974.

[21] M. A. Smadi and V. K. Prabhu, “Performance analysis of generalized-faded coherent PSK channels with equal-gain combining and carrier phase error,” IEEE Trans. on Wireless Commun., vol. 5, no. 3, pp. 509–513, Mar. 2006.

[22] N. C. Beaulieu and A. A. Abu-Dayya, “Bandwidth efficient QPSK in cochannel interference and fading,”

IEEE Trans. on Commun., vol. 43, no. 9, pp. 2464–2474, Sep. 1995.

[23] A. A. Abu-Dayya and N. C. Beaulieu, “Outage probabilities of diversity cellular systems with cochannel interference in Nakagami fading,”IEEE Trans. Veh. Technol., vol. 41, no. 4, pp. 343–355, Nov. 1992.

[24] Y. Song, S. D. Blostein, and J. Cheng, “Exact outage probability for equal gain combining with cochan- nel interference in rayleigh fading,”IEEE Trans. on Wireless. Commun., vol. 2, no. 5, pp. 865–870, Sep.

2003.

[25] K. S. Ahn and R. W. Heath, “Performance analysis of maximum ratio combining with imperfect channel estimation in the presence of cochannel interferences,”IEEE Trans. on Wireless Commun., vol. 8, no. 3, pp. 1080–1085, Mar. 2009.

[26] Y. Tokgoz and B. D. Rao, “The effect of imperfect channel estimation on the performance of maximum ratio combining in the presence of cochannel interference,”IEEE Trans. on Veh. Tech., vol. 55, no. 5, pp. 1527–1534, Sep. 2006.

[27] Z. Hadzi-Velkov, “Level crossing rate and average fade duration of EGC systems with cochannel inter- ference in Rayleigh fading,”IEEE Trans. on Commun., vol. 55, no. 11, pp. 2104–2113, Nov. 2007.

[28] A. Shah and A. M. Haimovich, “Performance analysis of maximal ratio combining and comparison with optimum combining for mobile radio communications with cochannel interference,”IEEE Trans.

on Veh. Tech., vol. 49, no. 4, pp. 1454–1463, Jul. 2000.

[29] P. D. Rahimzadeh and N. C. Beaulieu, “Novel simpler expressions for the BER of MRC BPSK in correlated rayleigh fading and CCI,”IEEE Int. Conf. on Commun., pp. 1370 – 1376, May 2008.

[30] J. F. Paris and D. M. Jimenez, “Outage probability analysis for Nakagami-q (Hoyt) fading channels under Rayleigh interference,” IEEE Trans. on Wireless Commun., vol. 9, no. 4, pp. 1272–1276, April 2010.

[31] D. M. Jimenez, J. F. Paris, and A. Lozano, “Outage probability analysis for MRC inη-µfading channels with co-channel interference,”IEEE Commun. Lett., vol. 16, no. 5, pp. 674–677, May 2012.

[32] H. Leib and S. Pasupathy, “The phase of a vector perturbed by Gaussian noise and differentially constant receivers,”IEEE Trans. on Information Theory., vol. 34, pp. 1491–1501, Nov. 1988.

[33] N. C. Beaulieu and C. Julian, “Precise error rate analysis of bandwidth efficient BPSK to Nakagami fading and co-channel interference,”IEEE Trans. on Wirel. Commun., vol. 52, pp. 149–188, jan 2004.

[34] G. K. Karagiannidis, “Moment based approach to the performance analysis of equal gain diversity in Nakagami-mfading,”IEEE Trans. on Commun., vol. 52, no. 5, pp. 685 – 690, May 2004.

[35] J. R. Mendes, M. D. Yacoub, and G. Fraidenraich, “Closed-form generalized power correlation coeffi- cient of the Hoyt fading signal,”IEEE Commun. Lett., vol. 10, no. 2, pp. 94–96, Feb. 2006.

[36] P. Patel, P. R. Sahu, and A. K. Chaturvedi, “ABER of dual predetection EGC in correlated Nakagami-m fading channels with arbitrarym.”IEEE Commun. Letters, vol. 12, no. 7, pp. 487–489, Jul. 2008.

[37] D. A. Zogas, G. K. Karagiannidis, and S. A. Kotsopoulos, “Equal gain combining over Nakagami-n (Rice) and Nakagami-q(Hoyt) generalized fading channels,”IEEE Trans. on Wireless Commun., vol. 4, pp. 374–379, Mar. 2005.

[38] G. K. Karagiannidis, D. A. Zogas, , and S. A. Kotsopoulos, “BER performance of dual predetection EGC in correlative Nakagami-mfading,”IEEE Trans. on Commun., vol. 52, no. 1, pp. 50–53, Jan. 2004.

[39] R. Hoyt, “Probability functions for the modulus and angle of the normal complex variate,” Bell Syst.

Tech. J., vol. 26, pp. 318–359, 1947.

[40] A. A. Abu-Dayya and N. C. Beaulieu, “Diversityπ/4-dqpsk on microcellular interference channels,”

IEEE Trans. on Commun., vol. 44, no. 10, pp. 1289–1297, Nov. 1996.

[41] S. Zhang, P. Y. Kam, and P. Ho, “Performance of differentially detected dpsk over nonselective Rayleigh fading channels with maximal ratio combining and multiple cochannel interferers,” IEEE Trans. on Commun., vol. 55, no. 1, pp. 133–141, Jan. 2007.

[42] K. Sivanesan and N. C. Beaulieu, “Exact BER analyses of Nakagami/Nakagami CCI BPSK and Nak- agami/Rayleigh CCI QPSK systems in slow fading,” IEEE Commun. Lett., vol. 8, no. 1, pp. 45–47, 2004.

[43] ——, “Precise bit error rate analysis of bandlimited BPSK with EGC and SC diversity in CCI and Nakagami fading,”Vehicular Technology Conference, 2004. VTC2004-Fall., vol. 3, pp. 1811 – 1814, Sept. 2004.

[44] V. A. Aalo and J. Zhang, “Performance analysis of maximal ratio combining in the presence of multiple equal-power cochannel interferers in a Nakagami fading channel,”IEEE Trans. on Veh. Tech., vol. 50, no. 2, pp. 497–503, Mar. 2001.

[45] C. Chayawan and V. A. Aalo, “Average error probability of digital cellular radio systems using MRC diversity in the presence of multiple interferers,”IEEE Trans. on Wireless Commun., vol. 2, no. 5, pp.

860–864, Sep. 2003.

[46] H. Cramer, Random Variables and Probability Distributions. Cambridge: Cambridge Univ. Press, 1970.

[47] A. Goldsmith,Wireless Communication. Cambridge Univ. Press, 2005.

[48] P. S. Bithas, P. T. Mathiopoulos, and S. A. Kotsopoulos, “Diversity reception over generalized-k (kg) fading channels,”IEEE Trans. on Wireless Commun., vol. 6, no. 12, pp. 4238–4243, December 2007.

[49] A. Annamalai, C. Tellambura, and V. Bhargava, “Equal-gain diversity receiver performance in wireless channels,”IEEE Trans. Commun., vol. 48, no. 10, pp. 1732–1745, Oct. 2000.

[50] T. Piboongungon, V. Aalo, C. Iskander, and G. Efthymoglou, “Bivariate generalised gamma distribution with arbitrary fading parameters,”IEE Electronics Lett., vol. 41, no. 12, 9th June 2005.

[51] P. S. Bithas, N. C. Sagias, P. T. Mathiopoulos, S. A. Kotsopoulos, and A. M. Maras, “On the correlated K-distribution with arbitrary fading parameters,”IEEE Sig. Proc. Lett., vol. 15, pp. 541 – 544, 2008.

[52] A. M. Rabiei, N. C. Beaulieu, and K. Sivanesan, “Cochannel interference whitening receiver designs for BPSK in Nakagami-m/Rayleigh fading,”IEEE International Conference on Communication, ICC ’07., pp. 803 – 808, June 2007.

[53] S. Souissi and E. F. Meihofer, “Performance evaluation of a bluetooth network in the presence of adja- cent and co-channel interference,”IEEE Conf. on Emerging Technologies Symposium: Wireless Internet Access Broadband., April 2000.

[54] S. Haykin,Communication Systems, 4th ed. John Wiley and Sons, India., 2001.

[55] H. Stark and J. Woods, Probability And Random Processes With Applications To Signal Processing, 3rd ed. Prentice-Hall, 2002.

[56] H. Amindavar and J. A. Ritcey, “Pad´e approximations of probability density functions,”IEEE Trans. on Aerospace and Electronic Systems, vol. 30, no. 2, pp. 416–424, Apr. 1994.

Dokumen terkait