For simplicity, throughout this chapter, we consider the space of pencilsLpw(Cn×n,k · k) and assume that each components ofwis nonzero. This makesLpw(Cn×n,k · k) a normed space. We further assume that the normk · k onCn×n a subordinate norm and has the property thatkdiag(A1, A2)k= max(kA1k, kA2k).
First, we consider pseudospectra of scalar pencils which will be used in the subsequent development.
Proposition 4.2.1. Let L ∈ Lpw(C,| · |) be a scalar pencil given by L(z) := α −zβ.
Then the pseudospectrum of L is given by Λ²(L) :={(z ∈C: |α−zβ|
k(1, z)kw−1,q ≤²}. Now considering the homogeneous form L(c, s) := cα−sβ, the pseudospectrum is given by Λ²(L) :=
½
(c, s)∈C2\ {0}: |cα−sβ|
k(c, s)kw−1,q ≤²
¾ .
We now consider pseudospectra of diagonal and block diagonal pencils which will be crucial in the later development. We have the following result whose proof is immediate.
Theorem 4.2.2. Let L ∈ Lpw(Cn×n,k · k) be a regular pencil. Suppose that L is block diagonal and is given by L= diag(L1,L2). Then we have Λ²(L) = Λ²(L1)∪Λ²(L2).
In particular, suppose that L is a diagonal pencil and is given by L := diag(Li), where each Li is a scalar pencil. Then we have Λ²(L) = ∪ni=1Λ²(Li).
Let L∈Lpw(Cn×n,k · k) given by L(z) =A−zB and X ∈Cn×n. Then XL and LX denote the pencils given by XL(z) = XA−zXB and LX(z) = AX−zBX. Then for the backward error functionηw,p(z,L) we have the following.
Theorem 4.2.3. Let L∈Lpw(Cn×n,k · k) be regular. Then for ∆L∈Lpw(Cn×n,k · k)we have
ηw,p(λ,L)− |||∆L|||w,p ≤ηw,p(λ,L+∆L)≤ηw,p(λ,L) +|||∆L|||w,p.
Let X and Y be invertible matrices in Cn×n and cond(X, Y) := kX−1k kYk. Then ηw,p(λ,L)
cond(X, Y) ≤ηw,p(λ, Y−1LX)≤cond(Y, X)ηw,p(λ,L).
Similar result hold for homogeneous matrix pencils.
Proof: We have
ηw,p(λ,L+∆L) := inf{|||G|||w,p :λ∈Λ(L+∆L+G)}
= inf{|||(∆L+G)−∆L|||w,p :λ∈Λ(L+∆L+G)}.
This gives ηw,p(λ,L+∆L)≤ηw,p(λ,L) +|||∆L|||w,p and ηw,p(λ,L+∆L)≥ηw,p(λ,L)−
|||∆L|||w,p.Hence the result follows.
Next, we have
ηw,p(λ, Y−1LX) = inf{|||∆L|||w,p :λ∈Λ(Y−1LX+∆L)}
= inf{|||∆L|||w,p :λ∈Λ(L+Y∆LX−1)}
= inf{|||Y−1Y∆LX−1X|||w,p :λ∈Λ(L+Y∆LX−1)}
≤ cond(Y, X)ηw,p(λ,L) (4.1)
and
ηw,p(λ,L) = ηw,p(λ, Y Y−1LXX−1)
≤ kYkkX−1kηw,p(λ, Y−1LX) = cond(X, Y)ηw,p(λ, Y−1LX). (4.2) Hence the desired result follows. ¥
Now we have the following Bauer-Fike type inclusion theorems for pseudospectra.
Theorem 4.2.4. Let L∈Lpw(Cn×n,k · k) be regular. Then we have the following.
(a)Let X, Y ∈Cn×n be non-singular. Set κ1 :=kX−1kkYk andκ2 :=kY−1kkXk. Then Λ²(L)⊂Λκ2²(Y−1LX)andΛ²(Y−1LX)⊂Λκ1²(L).
(b) Let κ:= inf{kY−1k kXk: Y−1 LX = diag(L1, L2)}. Then we have Λ²(L)⊆Λκ²(L1)∪Λκ²(L2).
(c) Let X and Y be non-singular such that Y−1LX = diag(L1,L2). Let X :=£
X1 X2¤ and (Y−1)∗ :=£
Y1 Y2¤
be conformal partitions. Setκ:=kX1kkY1∗k+kX2kkY2∗k. Then we have
Λ²(L)⊆Λκ²(L1)∪Λκ²(L2).
(d) Let X and Y be non-singular such that Y−1LX = diag(L1, . . . ,Lk). Let X :=
£X1 · · · Xk¤
and (Y−1)∗ := £
Y1 · · · Yk¤
be conformal partitions. Set φj(²) :=
kkXjk kYj∗k². Then we have
Λ²(L)⊆ ∪kj=1Λφj(²)(Lj).
Proof: Without loss of generality we prove the results for non-homogeneous pencils.
The proof of (a) follows from the fact thatηw,p(λ, Y−1LX)≤ kY−1k kXkηw,p(λ,L) and ηw,p(λ,L)≤ kYk kX−1kηw,p(λ, Y−1LX).
By (a),we have that Λ²(L)⊆Λκ²(Y−1LX), whereκ=kY−1k kXk.Now from Theorem 4.2.2, we have Λκ²(Y−1LX) = Λκ²(L1)∪Λκ²(L2). Thus Λ²(L)⊆Λκ²(L1)∪Λκ²(L2).
Next, we haveL(z) = Ydiag(L1(z), L2(z))X−1 ⇒L(z)−1 =Xdiag(L1(z)−1,L2(z)−1)Y−1
=X1L1(z)−1Y1∗+X2L2(z)−1Y2∗ ⇒ kL(z)−1k ≤max(kL1(z)−1k,kL2(z)−1k)(kX1kkY1∗k+ kX2kkY2∗k) = max(kL1(z)−1k,kL2(z)−1k)κ. Hence the proof follows .
Finally, L(z)−1 = Pk
j=1XjLj(z)−1Yj∗ ⇒ kL(z)−1k ≤ k max
1≤j≤kkXjkkYj∗kkLj(z)−1k. This implies that Λ²(L)⊆Λφj(²)(L), where φj(²) =kkXjk kYj∗k. ¥
For the special case when L is simple, we have the following result.
Corollary 4.2.5. Let L ∈ Lpw(Cn×n,k · k) be given by L(z) = A −zB or L(c, s) = cA−sB. Suppose that Y∗AX = diag(αi) and Y∗BX = diag(βi). Set yi := Y ei and xi :=Xei. Then (αi/βi, yi, xi) is an eigentriple of L(z) = A−zB and ((βi, αi), yi, xi) is an eigentriple of L(c, s) =cA−sB. Further, we have
Λ²(L)⊆ ∪ni=1Λκ²(Li) and Λ²(L)⊆ ∪ni=1Λnκi²(Li),
where Li(z) = αi−zβi or L(c, s) = cαi−sβi and κ:=kY∗kkXk, κi :=kxikkyik.
If L(z) = A−zB is diagonalizable and B is non-singular then we can choose X and Y such that Y∗BX =I and Y∗AX = diag(λ1, . . . , λn). Consequently, we have the following special case.
Corollary 4.2.6. Let L ∈ Lpw(Cn×n,k · k) be given by L(z) = A−zB. Suppose that B is non-singular. Let Y and X be such that Y∗BX = I and Y∗AX = diag(λi). Let yi :=Y ei and xi :=Xei. Then (λi, xi, yi) is an eigentriple of L. Further, we have
Λ²(L)⊆ ∪ni=1Λκ²(Li) and Λ²(L)⊆ ∪ni=1Λnκi²(Li), where Li(z) = z−λi, κ:=kY∗k kXk and κi :=kxik kyik.
To obtain further inclusions for pseudospectra, we need the following result.
Lemma 4.2.7. [28, 24] Let
·I1 M 0 I2
¸
∈Cn×n, where I1 and I2 are the identity matrices of size k and n−k, respectively, and M ∈Ck×(n−k). Then
°°
°°
·I1 M 0 I2
¸ °°°
°2
= r
1 + 1
2(kMk22 + q
kMk42+ 4kMk22).
We now generalize this result and obtain the following.
Lemma 4.2.8. LetZ =
·αI1 M 0 βI2
¸
∈Cn×n,where I1 andI2 are the identity matrices of sizek andn−k, respectively,M ∈Ck×(n−k) and α, β are nonzero positive real numbers.
Then
σmax(Z) = s
(α2 +β2+kMk22) +p
(α2+β2+kMk22)2−4α2β2
2 ,
σmin(Z) = s
(α2+β2+kMk22)−p
(α2+β2+kMk22)2−4α2β2
2 ,
cond(Z) = σmax(Z)
σmin(Z) = (α2+β2+kMk22) +p
(α2+β2+kMk22)2−4α2β2
2αβ and
σmax(Z)σmin(Z) =αβ, where σmin(Z) and σmax(Z) are the smallest and the largest sin- gular values of Z, respectively.
Proof: We have kZk22 =ρ(Z∗Z),where ρ(Z∗Z) = sup
k(x,y)k2=1
½£
x∗ y∗¤ Z∗Z
·x y
¸
; x∈Rk, y ∈Rn−k
¾
.Now,
£x∗ y∗¤ Z∗Z
·x y
¸
= £
x∗ y∗¤·
α2 α M
α M β2 +M∗M
¸ ·x y
¸
= £
x∗ y∗¤·
α2x+αM y αM∗x+ (β2+M∗M)y
¸
= α2kxk22+ β2kyk22+ αx∗My+αy∗M∗y+αy∗M∗x+y∗M∗My
= α2kxk22+β2kyk22+ 2Re(α x∗M y) +kyk22kMk22.
Note that there exists vectorsxandysuch thatkxk2 = 1 =kyk2 andx∗My =kMyk2 = kMk2. Let (x1, x2) :=
· x
√2, y
√2
¸
. Then k(x1, x2)k2 = 1 and £
x∗1 x∗2¤ Z∗Z
·x1 x2
¸
=
{α2kx1k22+β2kx2k22+ 2αkx1k2kMk2kx2k2 +kx2k22kMk22}. Consequently, we have ρ(Z∗Z) = sup
k(x,y)k2=1
{α2kxk22+β2kyk22+ 2αkxk2kMk2kyk2 +kyk22kMk22}
= ρ
· α2 αkMk2 αkMk2 kMk22 +β2
¸
= (α2+β2+kMk22) +p
(α2+β2+kMk22)2−4α2β2 2
⇒ρ(Z∗Z) = (α2+β2+kMk22) +p
(α2+β2+kMk22)2−4α2β2 2
⇒σmax(Z) = kZk2 = s
(α2+β2+kMk22) +p
(α2+β2+kMk22)2−4α2β2
2 .(4.3)
Now, we have σmin(Z) = 1
σmax(Z−1), where Z−1 =
·α−1I1 −α−1Mβ−1 0 β−1I2
¸
. Thus
σmax(Z−1) =
√2 q
(α2+β2 +kMk22)−p
(α2+β2 +kMk22)2−4α2β2 .
Therefore, we have σmin(Z) =
s
(α2+β2+kMk22)−p
(α2+β2+kMk22)2−4α2β2
2 . (4.4)
From (4.3) and (4.4) we haveσmin(Z)σmax(Z) = αβ. Hence the proof. ¥
Now, we have the following result which will be useful in deriving pseudospectra inclusions.
Theorem 4.2.9. Set P :=p
1 +kZ1k22, Q:=p
1 +kZ2k22 and let X :=
·I1 Z2 0 I2
¸ ·Q1/2 0 0 P−1/2
¸ , Y :=
·I1 Z1 0 I2
¸ ·Q1/2 0 0 P−1/2
¸
.Then
kXk2 =p Q/P
q
(P+Q)+√
(P+Q)2−4P/Q
2 , kX−1k2 =
q
(P+Q)+√
(P+Q)2−4P/Q
2 ,
kYk2 = q
(P+Q)+√
(P+Q)2−4Q/P
2 , kY−1k2 =p
P/Q q
(P+Q)+√
(P+Q)2−4Q/P
2 and
cond(X) =p
Q/P(P+Q)+
√(P+Q)2−4P/Q
2 , cond(Y) =p
P/Q(P+Q)+
√(P+Q)2−4Q/P
2 .
Further, we have cond(Y, X) = cond(X, Y) = p
cond(X)cond(Y)≤P +Q.
Proof: We have X =
·Q1/2I1 P−1/2Z2
0 P−1/2I2
¸
. Then for α = Q1/2, β = P−1/2, M = P−1/2Z2, by Lemma 4.2.8 we obtain cond(X) = p
Q/P(P+Q)+
√(P+Q)2−4P/Q
2 , kXk2 =
pQ/P q
(P+Q)+√
(P+Q)2−4P/Q
2 and kX−1k2 =
q
(P+Q)+√
(P+Q)2−4P/Q
2 .
Similarly, for Y =
·Q1/2I1 P−1/2Z1
0 P−1/2I2
¸
,by Lemma 4.2.8 we obtain cond(Y) =p
P/Q(P+Q)+
√(P+Q)2−4Q/P
2 ,kYk2 =
q
(P+Q)+√
(P+Q)2−4Q/P
2 and
kY−1k2 =p P/Q
s
(P +Q) +p
(P +Q)2−4Q/P
2 .
Again by Lemma 4.2.8, we haveσmin(X)σmax(X) = σmin(Y)σmax(Y) =αβ = qQ
P ⇒
kXk2 kY−1k2 =kYk2 kX−1k2 ⇒cond(Y, X) = cond(X, Y). Now cond(X, Y) = p
cond(X, Y)cond(Y, X)
= p
kX−1k2kYk2kY−1k2kXk2
= p
cond(X)cond(Y).
Now we show that cond(X, Y)≤P +Q. We have cond(X, Y) =
s
(P +Q) +p
(P +Q)2−4Q/P 2
s
(P +Q) +p
(P +Q)2−4P/Q 2
≤ (P +Q) +p
(P +Q)2−4Q/P
4 + (P +Q) +p
(P +Q)2−4P/Q 4
≤ (P +Q)
2 +P +Q
4 +P +Q
4 =P +Q.
Hence the proof. ¥
LetL∈Lpw(Cn×n,k·k2) be a regular pencil given byL =
·L1 L12 0 L2
¸
,whereL1,L2,L12 are pencils of size m, n−m and m×n−m, respectively, and Λ(L1)∩Λ(L2) = ∅.Now, consider the Sylvester operator
S :Cm×n−m×Cm×n−m →Lpw(Cm×n−m,k · k)
defined by S(Z1, Z2) := L1Z1 − Z2L2. Then as we shall see, S(Z1, Z2) = −L12 has a unique solution. So let Z1 and Z2 be unique solution of S(Z1, Z2) = −L12. Set P :=p
1 +kZ1k2 and Q:=p
1 +kZ2k2. Define X :=
·Q1/2I1 P−1/2Z2 0 P−1/2I2
¸
and Y :=
·Q1/2I1 P−1/2Z1 0 P−1/2I2
¸
. (4.5)
Then we have Y−1LX = diag(L1,L2).
Theorem 4.2.10. LetL∈Lpw(Cn×n,k · k2)be a regular pencil given by L=
·L1 L12 0 L2
¸ , whereΛ(L1)∩Λ(L2) = ∅.LetZ1 andZ2 be solution of the generalized Sylvester equation L1Z1−Z2L2 =−L12. Set P :=p
1 +kZ1k2 and Q:=p
1 +kZ2k2. Define κ1 :=
s
(P +Q) +p
(P +Q)2−4Q/P 2
s
(P +Q) +p
(P +Q)2−4P/Q 2
and κ2 :=P +Q. Then we have
Λ²(L)⊆Λκ1²(L1)∪Λκ1²(L2)⊆Λκ2²(L1)∪Λκ2²(L2).
Proof: DefiningXandY as in (4.5), we haveY−1LX = diag(L1,L2).By Theorem 4.2.9, we have cond(X, Y) =κ1 ≤κ2.Hence the result follows from Theorem 4.2.4. ¥
Now, consider the matrix A :=
·A1 A12
0 A2
¸
, where A1 ∈ Cm×m, A2 ∈ C(n−m)×(n−m). SetR(z) := k(A−zI)−1k2, R1(z) :=k(A1−zI)−1k2 andR2(z) :=k(A2−zI)−1k2.Then the following holds.
Proposition 4.2.11. [24] Let a12:=kA12k2, rm(z) := min (R1(z), R2(z))andrM(z) :=
max (R1(z), R2(z)). Then we have kR(z)k2 ≤
r
1 + a12rm(z)
2 ((a212rm(z)2+ 4)1/2+a12rm(z)).
Then we have following pseudospectra inclusion. Recall that hw,p(z) = k(1, z)kw,p. Theorem 4.2.12. Let L∈Lpw(Cn×n,k · k2) be given by L:=
·L1 L12
0 L2
¸
, where Λ(L1)∩ Λ(L2) =∅. Set g1(²) :=²
r 1 + κ
² and κ:=|||L12|||w,p. Then for all ² >0 we have Λ²(L)⊂Λg1(²)(L1)∪Λg1(²)(L2).
Proof: Without loss of generality, we consider L to be nonhomogeneous. So, let rM(λ) = max (kL1(λ)−1k,kL2(λ)−1k), rm(λ) = min (kL1(λ)−1k,kL2(λ)−1k). Then by Proposition 4.2.11,
kL(λ)−1k ≤rM(λ) r
1 + kL12(λ)krm(λ) 2
³
(kL12(λ)k2rm(λ)2+ 4)1/2+kL12(λ)krm(λ)
´ . Now, (kL(λ)−1k)≥ 1
²hw−1,q(λ) gives 1
²2hw−1,q(λ)2 ≤rM(λ)2 µ
1 + kL12(λ)krm(λ) 2
³
(kL12(λ)k2rm(λ)2 + 4)1/2 +kL12(λ)krm(λ)
´¶
≤rM(λ)2 µ
1 + kL12(λ)krM(λ) 2
³
(kL12(λ)k2rM(λ)2+ 4)1/2+kL12(λ)krM(λ)
´¶
≤rM(λ)2+ κhw−1,q(λ)rM(λ)3
2 (κ2hw−1,q(λ)2rM(λ)2+ 4)1/2+ κ2hw−1,q(λ)2rM(λ)4
2 . Thus we have 1
²2hw−1,q(λ)2 −rM(λ)2 µ
1 + κ2hw−1,q(λ)2rM(λ)2 2
¶
≤ κhw−1,q(λ)rM(λ)3 2
¡κ2hw−1,q(λ)2rM(λ)2 + 4¢1/2 .
For simplicity of notations, set d := hw−1,q(λ), rM := rM(λ) and recall that κ =
|||∆L12|||w,p. Then we have 1
²2d2 −rM2 µ
1 + κ2d2r2M 2
¶
≤ κdrM3 2
µq
κ2d2r2M + 4
¶
. (4.6)
Now two choices arise, namely.
(a) 1
²2d2 −r2M µ
1 + κ2d2rM2 2
¶
≥0 and (b) 1
²2d2 −rM2 µ
1 + κ2d2r2M 2
¶
≤0.
Now under the case (a) squaring both sides of (4.6) we get 1
²4d4+r4M µ
1 + κ2d2rM2 2
¶2
− 2
²2d2rM2 µ
1 + κ2d2r2M 2
¶
≤ κ2d2r6M
4 (κ2d2r2M + 4)⇒ 1
²4d4 +rM4 − 2
²2d2rM2 − κ2
²2rM4 ≤0⇒ µ
r2M − 1
²2d2
¶2
≤ r4Mκ2
²2 ⇒
·µ
rM2 − 1
²2d2
¶
−r2Mκ
²
¸ ·µ
r2M − 1
²2d2
¶
+rM2 κ
²
¸
≤ 0. Hence
we have ·
rM2
³ 1− κ
²
´
− 1
²2d2
¸ · r2M
³ 1 + κ
²
´
− 1
²2d2
¸
≤0. (4.7)
Case-I: Letκ≤². Then either r2M
³ 1−κ
²
´
≤ 1
²2d2 and r2M
³ 1 + κ
²
´
≥ 1
²2d2 or
rM2
³ 1− κ
²
´
≥ 1
²2d2 and rM2
³ 1 + κ
²
´
≤ 1
²2d2. In the first case we have 1
²p
1 +κ/² ≤ rMd ≤ 1
²p
1−κ/² and in the second case, we
have 1
²p
1−κ/² ≤rMd≤ 1
²p
1 +κ/², which is not possible.
Case-II: Letκ≥². Then
· rM2
³ 1− κ
²
´
− 1
²2d
¸
≤0. Hence from (4.7) we have
· rM2
³ 1 + κ
²
´
− 1
²2d
¸
≥0⇒rMd≥ 1
²p
1 +κ/². This shows thatrMd≥ 1
²p
1 +κ/² for all ².
Next consider the case (b). In this case, we have 1
²2d2 −rM2 µ
1 + κ2d2r2M 2
¶
≤ 0
which gives rM(z)2 ≥
−1 + r
1 + 2κ2
²2
κ2d2 .We now show that for all ²≥0,we have
−1 + r
1 + 2κ2
²2
κ2d2 ≥ 1
²2d2(1 +κ/²).
Indeed, −1 + r
1 + 2κ2
²2 ≥ κ2
²2(1 +κ/²) implies that 1 ≥
·
1 + κ2
²2(1 + κ²)
¸2
−2κ2/²2 ⇒
−2κ3
²2(κ+²) + κ4
²2(²+κ)2 ≤0⇒κ+ 2²≥0 which is obviously true. Hence we have
rM(z)2 ≥
−1 + r
1 + 2κ2
²2
κ2d2 ≥ 1
²2d2(1 +κ/²) for all ²≥0.
This shows thatrMd≥ 1
²p
1 +κ/² = 1
g1(²). Consequently, we have Λ²(L)⊂Λg1(²)(L1)∪Λg1(²)(L2) for all ². ¥
ForL ∈Lpw(Cn×n,k · k), we have the following pseudospectra inclusion.
Theorem 4.2.13. Let L∈Lpw(Cn×n,k · k2) be given by L=
·L1 L12
0 L2
¸
, where Λ(L1)∩ Λ(L2) = ∅. Let (Z1, Z2) be the solution of the generalized Sylvester equation L1Z1 − Z2L2 = −L12. Set φ(²) := ²(1 +kZ1k+kZ2k) and f(²) := ²+√
²2+ 4² κ
2 , where κ :=
|||L12|||w,p. Then we have
(a)Λ²(L)⊆Λφ(²)(L1)∪Λφ(²)(L2), (b)Λ²(L)⊆Λf(²)(L1)∪Λf(²)(L2).
Proof: Without loss of generality, assume that L is nonhomogeneous. For λ ∈ C, set d(λ) := max (kL1(λ)−1k, kL2(λ)−1k). Then
L−1(λ) =
·L1(λ)−1 −L1(λ)−1L12(λ)L2(λ)−1
0 L2(λ)−1
¸ . Consequently, we have
kL−1(λ)k ≤max¡
kL1(λ)−1k,kL2(λ)−1k¢ +°
°L1(λ)−1 L12(λ)L2(λ)−1°
°. SinceL1(λ)Z1−Z2L2(λ) =−L12(λ), we have
°°L1(λ)−1 L12(λ)L2(λ)−1°
° = °
°L1(λ)−1(Z2L2(λ)−L1(λ)Z1)L2(λ)−1°
°
≤ d(λ) (kZ1k+kZ2k)
and kL(λ)−1k ≤d(λ) + d(λ) (kZ1k+kZ2k) = d(λ) (1 +kZ1k+kZ2k).
Now, kL(λ)−1k ≥(hw−1,q(λ)²)−1 gives (hw−1,q(λ)²)−1 ≤ kL(λ)−1k ≤d(λ)(1 +kZ1k+ kZ2k) = d(λ)φ(²) ⇒ d(λ)hw−1,q(λ) ≥ 1
²(1 +kZ1k+kZ2k) = 1
φ(²). Hence Λ²(L) ⊆ Λφ(²)(L1)∪Λφ(²)(L2).
Next, we have kL(λ)−1k ≤ d(λ) + d(λ)2κ hw−1,q(λ) ⇒ ²−1 ≤ d(λ)hw−1,q(λ) + (d(λ)hw−1,q(λ))2κ. Now, set d0(λ) = d(λ)hw−1,q(λ). Then ²d0(λ) +² κd0(λ)2 −1 ≥ 0 which implies that d0(λ)≥ −²+√
²2+ 4² κ
2² κ = 2
²+√
²2+ 4² κ ⇒d(λ)hw−1,q(λ)≥ 1 f(²). Thus Λ²(L)⊆Λf(²)(L1)∪Λf(²)(L2). ¥