• Tidak ada hasil yang ditemukan

Localization of pseudospectra of matrix pencils

For simplicity, throughout this chapter, we consider the space of pencilsLpw(Cn×n,k · k) and assume that each components ofwis nonzero. This makesLpw(Cn×n,k · k) a normed space. We further assume that the normk · k onCn×n a subordinate norm and has the property thatkdiag(A1, A2)k= max(kA1k, kA2k).

First, we consider pseudospectra of scalar pencils which will be used in the subsequent development.

Proposition 4.2.1. Let L Lpw(C,| · |) be a scalar pencil given by L(z) := α −zβ.

Then the pseudospectrum of L is given by Λ²(L) :={(z C: |α−zβ|

k(1, z)kw1,q ≤²}. Now considering the homogeneous form L(c, s) := cα−sβ, the pseudospectrum is given by Λ²(L) :=

½

(c, s)C2\ {0}: |cα−sβ|

k(c, s)kw1,q ≤²

¾ .

We now consider pseudospectra of diagonal and block diagonal pencils which will be crucial in the later development. We have the following result whose proof is immediate.

Theorem 4.2.2. Let L Lpw(Cn×n,k · k) be a regular pencil. Suppose that L is block diagonal and is given by L= diag(L1,L2). Then we have Λ²(L) = Λ²(L1)Λ²(L2).

In particular, suppose that L is a diagonal pencil and is given by L := diag(Li), where each Li is a scalar pencil. Then we have Λ²(L) = ni=1Λ²(Li).

Let LLpw(Cn×n,k · k) given by L(z) =A−zB and X Cn×n. Then XL and LX denote the pencils given by XL(z) = XA−zXB and LX(z) = AX−zBX. Then for the backward error functionηw,p(z,L) we have the following.

Theorem 4.2.3. Let LLpw(Cn×n,k · k) be regular. Then for ∆LLpw(Cn×n,k · k)we have

ηw,p(λ,L)− |||∆L|||w,p ≤ηw,p(λ,L+∆L)≤ηw,p(λ,L) +|||∆L|||w,p.

Let X and Y be invertible matrices in Cn×n and cond(X, Y) := kX1k kYk. Then ηw,p(λ,L)

cond(X, Y) ≤ηw,p(λ, Y1LX)cond(Y, X)ηw,p(λ,L).

Similar result hold for homogeneous matrix pencils.

Proof: We have

ηw,p(λ,L+∆L) := inf{|||G|||w,p :λ∈Λ(L+∆L+G)}

= inf{|||(∆L+G)∆L|||w,p :λ∈Λ(L+∆L+G)}.

This gives ηw,p(λ,L+∆L)≤ηw,p(λ,L) +|||∆L|||w,p and ηw,p(λ,L+∆L)≥ηw,p(λ,L)

|||∆L|||w,p.Hence the result follows.

Next, we have

ηw,p(λ, Y1LX) = inf{|||∆L|||w,p :λ∈Λ(Y1LX+∆L)}

= inf{|||∆L|||w,p :λ∈Λ(L+Y∆LX1)}

= inf{|||Y1Y∆LX1X|||w,p :λ∈Λ(L+Y∆LX1)}

cond(Y, X)ηw,p(λ,L) (4.1)

and

ηw,p(λ,L) = ηw,p(λ, Y Y1LXX1)

≤ kYkkX1w,p(λ, Y1LX) = cond(X, Y)ηw,p(λ, Y1LX). (4.2) Hence the desired result follows. ¥

Now we have the following Bauer-Fike type inclusion theorems for pseudospectra.

Theorem 4.2.4. Let LLpw(Cn×n,k · k) be regular. Then we have the following.

(a)Let X, Y Cn×n be non-singular. Set κ1 :=kX1kkYk andκ2 :=kY1kkXk. Then Λ²(L)Λκ2²(Y1LX)andΛ²(Y1LX)Λκ1²(L).

(b) Let κ:= inf{kY1k kXk: Y1 LX = diag(L1, L2)}. Then we have Λ²(L)Λκ²(L1)Λκ²(L2).

(c) Let X and Y be non-singular such that Y1LX = diag(L1,L2). Let X :=£

X1 X2¤ and (Y1) :=£

Y1 Y2¤

be conformal partitions. Setκ:=kX1kkY1k+kX2kkY2k. Then we have

Λ²(L)Λκ²(L1)Λκ²(L2).

(d) Let X and Y be non-singular such that Y1LX = diag(L1, . . . ,Lk). Let X :=

£X1 · · · Xk¤

and (Y1) := £

Y1 · · · Yk¤

be conformal partitions. Set φj(²) :=

kkXjk kYjk². Then we have

Λ²(L)⊆ ∪kj=1Λφj(²)(Lj).

Proof: Without loss of generality we prove the results for non-homogeneous pencils.

The proof of (a) follows from the fact thatηw,p(λ, Y1LX)≤ kY1k kXkηw,p(λ,L) and ηw,p(λ,L)≤ kYk kX1w,p(λ, Y1LX).

By (a),we have that Λ²(L)Λκ²(Y1LX), whereκ=kY1k kXk.Now from Theorem 4.2.2, we have Λκ²(Y1LX) = Λκ²(L1)Λκ²(L2). Thus Λ²(L)Λκ²(L1)Λκ²(L2).

Next, we haveL(z) = Ydiag(L1(z), L2(z))X1 L(z)1 =Xdiag(L1(z)1,L2(z)1)Y1

=X1L1(z)1Y1+X2L2(z)1Y2 ⇒ kL(z)1k ≤max(kL1(z)1k,kL2(z)1k)(kX1kkY1k+ kX2kkY2k) = max(kL1(z)1k,kL2(z)1k)κ. Hence the proof follows .

Finally, L(z)1 = Pk

j=1XjLj(z)1Yj ⇒ kL(z)1k ≤ k max

1≤j≤kkXjkkYjkkLj(z)1k. This implies that Λ²(L)Λφj(²)(L), where φj(²) =kkXjk kYjk. ¥

For the special case when L is simple, we have the following result.

Corollary 4.2.5. Let L Lpw(Cn×n,k · k) be given by L(z) = A −zB or L(c, s) = cA−sB. Suppose that YAX = diag(αi) and YBX = diag(βi). Set yi := Y ei and xi :=Xei. Then (αii, yi, xi) is an eigentriple of L(z) = A−zB and ((βi, αi), yi, xi) is an eigentriple of L(c, s) =cA−sB. Further, we have

Λ²(L)⊆ ∪ni=1Λκ²(Li) and Λ²(L)⊆ ∪ni=1Λi²(Li),

where Li(z) = αi−zβi or L(c, s) = i−sβi and κ:=kYkkXk, κi :=kxikkyik.

If L(z) = A−zB is diagonalizable and B is non-singular then we can choose X and Y such that YBX =I and YAX = diag(λ1, . . . , λn). Consequently, we have the following special case.

Corollary 4.2.6. Let L Lpw(Cn×n,k · k) be given by L(z) = A−zB. Suppose that B is non-singular. Let Y and X be such that YBX = I and YAX = diag(λi). Let yi :=Y ei and xi :=Xei. Then (λi, xi, yi) is an eigentriple of L. Further, we have

Λ²(L)⊆ ∪ni=1Λκ²(Li) and Λ²(L)⊆ ∪ni=1Λi²(Li), where Li(z) = z−λi, κ:=kYk kXk and κi :=kxik kyik.

To obtain further inclusions for pseudospectra, we need the following result.

Lemma 4.2.7. [28, 24] Let

·I1 M 0 I2

¸

Cn×n, where I1 and I2 are the identity matrices of size k and n−k, respectively, and M C(n−k). Then

°°

°°

·I1 M 0 I2

¸ °°°

°2

= r

1 + 1

2(kMk22 + q

kMk42+ 4kMk22).

We now generalize this result and obtain the following.

Lemma 4.2.8. LetZ =

·αI1 M 0 βI2

¸

Cn×n,where I1 andI2 are the identity matrices of sizek andn−k, respectively,M C(n−k) and α, β are nonzero positive real numbers.

Then

σmax(Z) = s

(α2 +β2+kMk22) +p

(α2+β2+kMk22)24α2β2

2 ,

σmin(Z) = s

(α2+β2+kMk22)p

(α2+β2+kMk22)24α2β2

2 ,

cond(Z) = σmax(Z)

σmin(Z) = (α2+β2+kMk22) +p

(α2+β2+kMk22)24α2β2

2αβ and

σmax(Z)σmin(Z) =αβ, where σmin(Z) and σmax(Z) are the smallest and the largest sin- gular values of Z, respectively.

Proof: We have kZk22 =ρ(ZZ),where ρ(ZZ) = sup

k(x,y)k2=1

½£

x y¤ ZZ

·x y

¸

; x∈Rk, y Rn−k

¾

.Now,

£x y¤ ZZ

·x y

¸

= £

x y¤·

α2 α M

α M β2 +MM

¸ ·x y

¸

= £

x y¤·

α2x+αM y αMx+ (β2+MM)y

¸

= α2kxk22+ β2kyk22+ αxMy+αyMy+αyMx+yMMy

= α2kxk22+β2kyk22+ 2Re(α xM y) +kyk22kMk22.

Note that there exists vectorsxandysuch thatkxk2 = 1 =kyk2 andxMy =kMyk2 = kMk2. Let (x1, x2) :=

· x

2, y

2

¸

. Then k(x1, x2)k2 = 1 and £

x1 x2¤ ZZ

·x1 x2

¸

=

2kx1k22+β2kx2k22+ 2αkx1k2kMk2kx2k2 +kx2k22kMk22}. Consequently, we have ρ(ZZ) = sup

k(x,y)k2=1

2kxk22+β2kyk22+ 2αkxk2kMk2kyk2 +kyk22kMk22}

= ρ

· α2 αkMk2 αkMk2 kMk22 +β2

¸

= (α2+β2+kMk22) +p

(α2+β2+kMk22)24α2β2 2

⇒ρ(ZZ) = (α2+β2+kMk22) +p

(α2+β2+kMk22)24α2β2 2

⇒σmax(Z) = kZk2 = s

(α2+β2+kMk22) +p

(α2+β2+kMk22)24α2β2

2 .(4.3)

Now, we have σmin(Z) = 1

σmax(Z1), where Z1 =

·α1I1 −α11 0 β1I2

¸

. Thus

σmax(Z1) =

2 q

(α2+β2 +kMk22)p

(α2+β2 +kMk22)24α2β2 .

Therefore, we have σmin(Z) =

s

(α2+β2+kMk22)p

(α2+β2+kMk22)24α2β2

2 . (4.4)

From (4.3) and (4.4) we haveσmin(Z)σmax(Z) = αβ. Hence the proof. ¥

Now, we have the following result which will be useful in deriving pseudospectra inclusions.

Theorem 4.2.9. Set P :=p

1 +kZ1k22, Q:=p

1 +kZ2k22 and let X :=

·I1 Z2 0 I2

¸ ·Q1/2 0 0 P1/2

¸ , Y :=

·I1 Z1 0 I2

¸ ·Q1/2 0 0 P1/2

¸

.Then

kXk2 =p Q/P

q

(P+Q)+

(P+Q)24P/Q

2 , kX1k2 =

q

(P+Q)+

(P+Q)24P/Q

2 ,

kYk2 = q

(P+Q)+

(P+Q)24Q/P

2 , kY1k2 =p

P/Q q

(P+Q)+

(P+Q)24Q/P

2 and

cond(X) =p

Q/P(P+Q)+

(P+Q)24P/Q

2 , cond(Y) =p

P/Q(P+Q)+

(P+Q)24Q/P

2 .

Further, we have cond(Y, X) = cond(X, Y) = p

cond(X)cond(Y)≤P +Q.

Proof: We have X =

·Q1/2I1 P1/2Z2

0 P1/2I2

¸

. Then for α = Q1/2, β = P1/2, M = P1/2Z2, by Lemma 4.2.8 we obtain cond(X) = p

Q/P(P+Q)+

(P+Q)24P/Q

2 , kXk2 =

pQ/P q

(P+Q)+

(P+Q)24P/Q

2 and kX1k2 =

q

(P+Q)+

(P+Q)24P/Q

2 .

Similarly, for Y =

·Q1/2I1 P1/2Z1

0 P1/2I2

¸

,by Lemma 4.2.8 we obtain cond(Y) =p

P/Q(P+Q)+

(P+Q)24Q/P

2 ,kYk2 =

q

(P+Q)+

(P+Q)24Q/P

2 and

kY1k2 =p P/Q

s

(P +Q) +p

(P +Q)24Q/P

2 .

Again by Lemma 4.2.8, we haveσmin(X)σmax(X) = σmin(Y)σmax(Y) =αβ = qQ

P

kXk2 kY1k2 =kYk2 kX1k2 cond(Y, X) = cond(X, Y). Now cond(X, Y) = p

cond(X, Y)cond(Y, X)

= p

kX1k2kYk2kY1k2kXk2

= p

cond(X)cond(Y).

Now we show that cond(X, Y)≤P +Q. We have cond(X, Y) =

s

(P +Q) +p

(P +Q)24Q/P 2

s

(P +Q) +p

(P +Q)24P/Q 2

(P +Q) +p

(P +Q)24Q/P

4 + (P +Q) +p

(P +Q)24P/Q 4

(P +Q)

2 +P +Q

4 +P +Q

4 =P +Q.

Hence the proof. ¥

LetLLpw(Cn×n,k·k2) be a regular pencil given byL =

·L1 L12 0 L2

¸

,whereL1,L2,L12 are pencils of size m, n−m and m×n−m, respectively, and Λ(L1)Λ(L2) = ∅.Now, consider the Sylvester operator

S :Cm×n−m×Cm×n−m Lpw(Cm×n−m,k · k)

defined by S(Z1, Z2) := L1Z1 Z2L2. Then as we shall see, S(Z1, Z2) = L12 has a unique solution. So let Z1 and Z2 be unique solution of S(Z1, Z2) = L12. Set P :=p

1 +kZ1k2 and Q:=p

1 +kZ2k2. Define X :=

·Q1/2I1 P1/2Z2 0 P1/2I2

¸

and Y :=

·Q1/2I1 P1/2Z1 0 P1/2I2

¸

. (4.5)

Then we have Y1LX = diag(L1,L2).

Theorem 4.2.10. LetLLpw(Cn×n,k · k2)be a regular pencil given by L=

·L1 L12 0 L2

¸ , whereΛ(L1)Λ(L2) = ∅.LetZ1 andZ2 be solution of the generalized Sylvester equation L1Z1−Z2L2 =L12. Set P :=p

1 +kZ1k2 and Q:=p

1 +kZ2k2. Define κ1 :=

s

(P +Q) +p

(P +Q)24Q/P 2

s

(P +Q) +p

(P +Q)24P/Q 2

and κ2 :=P +Q. Then we have

Λ²(L)Λκ1²(L1)Λκ1²(L2)Λκ2²(L1)Λκ2²(L2).

Proof: DefiningXandY as in (4.5), we haveY1LX = diag(L1,L2).By Theorem 4.2.9, we have cond(X, Y) =κ1 ≤κ2.Hence the result follows from Theorem 4.2.4. ¥

Now, consider the matrix A :=

·A1 A12

0 A2

¸

, where A1 Cm×m, A2 C(n−m)×(n−m). SetR(z) := k(A−zI)1k2, R1(z) :=k(A1−zI)1k2 andR2(z) :=k(A2−zI)1k2.Then the following holds.

Proposition 4.2.11. [24] Let a12:=kA12k2, rm(z) := min (R1(z), R2(z))andrM(z) :=

max (R1(z), R2(z)). Then we have kR(z)k2

r

1 + a12rm(z)

2 ((a212rm(z)2+ 4)1/2+a12rm(z)).

Then we have following pseudospectra inclusion. Recall that hw,p(z) = k(1, z)kw,p. Theorem 4.2.12. Let LLpw(Cn×n,k · k2) be given by L:=

·L1 L12

0 L2

¸

, where Λ(L1) Λ(L2) =∅. Set g1(²) :=²

r 1 + κ

² and κ:=|||L12|||w,p. Then for all ² >0 we have Λ²(L)Λg1(²)(L1)Λg1(²)(L2).

Proof: Without loss of generality, we consider L to be nonhomogeneous. So, let rM(λ) = max (kL1(λ)1k,kL2(λ)1k), rm(λ) = min (kL1(λ)1k,kL2(λ)1k). Then by Proposition 4.2.11,

kL(λ)1k ≤rM(λ) r

1 + kL12(λ)krm(λ) 2

³

(kL12(λ)k2rm(λ)2+ 4)1/2+kL12(λ)krm(λ)

´ . Now, (kL(λ)1k) 1

²hw1,q(λ) gives 1

²2hw1,q(λ)2 ≤rM(λ)2 µ

1 + kL12(λ)krm(λ) 2

³

(kL12(λ)k2rm(λ)2 + 4)1/2 +kL12(λ)krm(λ)

´¶

≤rM(λ)2 µ

1 + kL12(λ)krM(λ) 2

³

(kL12(λ)k2rM(λ)2+ 4)1/2+kL12(λ)krM(λ)

´¶

≤rM(λ)2+ κhw1,q(λ)rM(λ)3

2 (κ2hw1,q(λ)2rM(λ)2+ 4)1/2+ κ2hw1,q(λ)2rM(λ)4

2 . Thus we have 1

²2hw1,q(λ)2 −rM(λ)2 µ

1 + κ2hw1,q(λ)2rM(λ)2 2

κhw1,q(λ)rM(λ)3 2

¡κ2hw1,q(λ)2rM(λ)2 + 4¢1/2 .

For simplicity of notations, set d := hw1,q(λ), rM := rM(λ) and recall that κ =

|||∆L12|||w,p. Then we have 1

²2d2 −rM2 µ

1 + κ2d2r2M 2

κdrM3 2

µq

κ2d2r2M + 4

. (4.6)

Now two choices arise, namely.

(a) 1

²2d2 −r2M µ

1 + κ2d2rM2 2

0 and (b) 1

²2d2 −rM2 µ

1 + κ2d2r2M 2

0.

Now under the case (a) squaring both sides of (4.6) we get 1

²4d4+r4M µ

1 + κ2d2rM2 2

2

2

²2d2rM2 µ

1 + κ2d2r2M 2

κ2d2r6M

4 (κ2d2r2M + 4) 1

²4d4 +rM4 2

²2d2rM2 κ2

²2rM4 0 µ

r2M 1

²2d2

2

r4Mκ2

²2

·µ

rM2 1

²2d2

−r2Mκ

²

¸ ·µ

r2M 1

²2d2

+rM2 κ

²

¸

0. Hence

we have ·

rM2

³ 1 κ

²

´

1

²2d2

¸ · r2M

³ 1 + κ

²

´

1

²2d2

¸

0. (4.7)

Case-I: Letκ≤². Then either r2M

³ 1−κ

²

´

1

²2d2 and r2M

³ 1 + κ

²

´

1

²2d2 or

rM2

³ 1 κ

²

´

1

²2d2 and rM2

³ 1 + κ

²

´

1

²2d2. In the first case we have 1

²p

1 +κ/² rMd 1

²p

1−κ/² and in the second case, we

have 1

²p

1−κ/² ≤rMd 1

²p

1 +κ/², which is not possible.

Case-II: Letκ≥². Then

· rM2

³ 1 κ

²

´

1

²2d

¸

0. Hence from (4.7) we have

· rM2

³ 1 + κ

²

´

1

²2d

¸

0⇒rMd 1

²p

1 +κ/². This shows thatrMd 1

²p

1 +κ/² for all ².

Next consider the case (b). In this case, we have 1

²2d2 −rM2 µ

1 + κ2d2r2M 2

0

which gives rM(z)2

1 + r

1 + 2κ2

²2

κ2d2 .We now show that for all ²≥0,we have

1 + r

1 + 2κ2

²2

κ2d2 1

²2d2(1 +κ/²).

Indeed, 1 + r

1 + 2κ2

²2 κ2

²2(1 +κ/²) implies that 1

·

1 + κ2

²2(1 + κ²)

¸2

2κ22

2κ3

²2(κ+²) + κ4

²2(²+κ)2 0⇒κ+ 2²≥0 which is obviously true. Hence we have

rM(z)2

1 + r

1 + 2κ2

²2

κ2d2 1

²2d2(1 +κ/²) for all ²≥0.

This shows thatrMd 1

²p

1 +κ/² = 1

g1(²). Consequently, we have Λ²(L)Λg1(²)(L1)Λg1(²)(L2) for all ². ¥

ForL Lpw(Cn×n,k · k), we have the following pseudospectra inclusion.

Theorem 4.2.13. Let LLpw(Cn×n,k · k2) be given by L=

·L1 L12

0 L2

¸

, where Λ(L1) Λ(L2) = ∅. Let (Z1, Z2) be the solution of the generalized Sylvester equation L1Z1 Z2L2 = L12. Set φ(²) := ²(1 +kZ1k+kZ2k) and f(²) := ²+

²2+ 4² κ

2 , where κ :=

|||L12|||w,p. Then we have

(a²(L)Λφ(²)(L1)Λφ(²)(L2), (b²(L)Λf(²)(L1)Λf(²)(L2).

Proof: Without loss of generality, assume that L is nonhomogeneous. For λ C, set d(λ) := max (kL1(λ)1k, kL2(λ)1k). Then

L1(λ) =

·L1(λ)1 L1(λ)1L12(λ)L2(λ)1

0 L2(λ)1

¸ . Consequently, we have

kL1(λ)k ≤max¡

kL1(λ)1k,kL2(λ)1k¢ +°

°L1(λ)1 L12(λ)L2(λ)1°

°. SinceL1(λ)Z1−Z2L2(λ) =L12(λ), we have

°°L1(λ)1 L12(λ)L2(λ)1°

° = °

°L1(λ)1(Z2L2(λ)L1(λ)Z1)L2(λ)1°

°

d(λ) (kZ1k+kZ2k)

and kL(λ)1k ≤d(λ) + d(λ) (kZ1k+kZ2k) = d(λ) (1 +kZ1k+kZ2k).

Now, kL(λ)1k ≥(hw1,q(λ)²)1 gives (hw1,q(λ)²)1 ≤ kL(λ)1k ≤d(λ)(1 +kZ1k+ kZ2k) = d(λ)φ(²) d(λ)hw1,q(λ) 1

²(1 +kZ1k+kZ2k) = 1

φ(²). Hence Λ²(L) Λφ(²)(L1)Λφ(²)(L2).

Next, we have kL(λ)1k ≤ d(λ) + d(λ)2κ hw1,q(λ) ²1 d(λ)hw1,q(λ) + (d(λ)hw1,q(λ))2κ. Now, set d0(λ) = d(λ)hw1,q(λ). Then ²d0(λ) +² κd0(λ)2 1 0 which implies that d0(λ) −²+

²2+ 4² κ

2² κ = 2

²+

²2+ 4² κ d(λ)hw1,q(λ) 1 f(²). Thus Λ²(L)Λf(²)(L1)Λf(²)(L2). ¥