Introduction
1.15 Objective of the thesis
Many liquid crystals, such as calamitic, bent-core, and discotic, have been investigated extensively since their discovery.These liquid crystals are used in many devices we use today.
These liquid crystal devices, most of them are in calamitic liquid crystals. As a result, the chemistry and physics of calamitic liquid crystals are well understood. However, recently discovered discotic and banana-shaped LCs have not yet been thoroughly investigated for their structure-property relationship and device applications. New materials are required to understand the structure-property relationship of these intriguing materials and to consider their application. The main objective of this thesis is to synthesize and characterize new liquid crystalline compounds derived from novel aromatic ring structures. We have synthesized the new molecular materials for discotic liquid crystals using different core moieties such as pyrene, heptazine, rubicene, cyanostar. We have investigated their mesophase behavior and photophysical properties. We have also synthesized carboxylic acid-functionalized dendrimers by click chemistry, which usually form a stable hydrogen-bonded complex with benzotri- imidazole. The formation of the mesophases and supramolecular assemblies are confirmed with different instrumental techniques.
Page | 33 1.16 References:
[1] J. M. Lehn, Science 1993, 260, 1762–3.
[2] G. V. Oshovsky, D. N. Reinhoudt, W. Verboom, Angew. Chem. Int. Ed. Engl. 2007, 46, 2366–93.
[3] L. F. Giraldo, B. L. López, L. Pérez, S. Urrego, L. Sierra, M. Mesa, Macromol. Symp.
2007, 258, 129–141.
[4] A. Thomas, F. Goettmann, M. Antonietti, Chem. Mater. 2008, 20, 738–755.
[5] K. Zhu, J. Sun, H. Zhang, J. Liu, Y. Wang, J. Nat. Gas Chem. 2012, 21, 215–232.
[6] N. Pal, A. Bhaumik, Adv. Colloid Interface Sci. 2013, 189–190, 21–41.
[7] D. Papapostolou, S. Howorka, Mol. Biosyst. 2009, 5, 723–32.
[8] B. Liu, Y. Yao, S. Che, Angew. Chem. Int. Ed. Engl. 2013, 52, 14186–90.
[9] B. Liu, Y. Yao, S. Che, Angew. Chemie 2013, 125, 14436–14440.
[10] Z. Huang, Y. Yao, S. Che, Chemistry 2014, 20, 3273–6.
[11] L. Han, S. Che, Chem. Soc. Rev. 2013, 42, 3740–52.
[12] H. Yang, N. Coombs, I. Sokolov, G. A. Ozin, Nature 1996, 381, 589–592.
Rubicene Extended pyrene Heptazine
Cyanostar Hydrogen-bonded dendritic-benzotri (imidazole)
derivative architectures
Page | 34 [13] G. S. Attard, J. C. Glyde, C. G. Göltner, Nature 1995, 378, 366–368.
[14] C. G. Goltner, M. Antonietti, Adv. Mater. 1997, 9, 431–436.
[15] M. Kléman, Acta Crystallogr. Sect. A 1981, 37, 607–608.
[16] J. W. Goodby, G. W. Gray, J. W G Goodby, Smectic Liquid Crystals: Textures and Structures, Leonard Hill, Leonard Hill: Glasgow, London, 1991.
[17] D. Demus, J. Goodby, G. W. Gray, H. ‐W. Spiess, V. Vill, in Handb. Liq. Cryst. Set, Wiley, Weinheim, 1998.
[18] D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, V. Vill, Physical Properties of Liquid Crystals, Wiley, Wiley-VCH: Weinheim, 1999.
[19] P. Collings, in Liq. Cryst. Nature’s Delicate Phase Matter, Princeton University Press:
Princeton, NJ, 2002.
[20] I. Dierking, in Textures Liq. Cryst., Wiley, Weinheim, 2003.
[21] A. Jákli, A. Saupe, One- and Two- Dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals, Taylor & Francis:, London, 2006.
[22] T. Geelhaar, K. Griesar, B. Reckmann, Angew. Chemie Int. Ed. 2013, 52, 8798–8809.
[23] H. Kelker, Mol. Cryst. Liq. Cryst. 1973, 21, 1–48.
[24] F. Reinitzer, Liq. Cryst. 1989, 5, 7–18.
[25] V. N. Kozhevnikov, B. Donnio, D. W. Bruce, Angew. Chemie Int. Ed. 2008, 47, 6286–
6289.
[26] D. Vorländer, Kristallinisch-Flüssige Substanzen, Enke, Stuttgart, 1908.
[27] S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E.
Kapatsina, S. Sauer, A. Schreivogel, et al., Angew. Chemie Int. Ed. 2007, 46, 4832–
4887.
[28] S. Chandrasekhar, B. K. Sadashiva, K. A. Suresh, Pramana 1977, 9, 471–480.
[29] J. W. Goodby, I. M. Saez, S. J. Cowling, V. Görtz, M. Draper, A. W. Hall, S. Sia, G.
Cosquer, S.-E. Lee, E. P. Raynes, Angew. Chemie Int. Ed. 2008, 47, 2754–2787.
[30] I. Dierking, A. Martins Figueiredo Neto, Crystals 2020, 10, 604.
[31] G. Tiddy, Phys. Rep. 1980, 57, 1–46.
[32] D. Lombardo, M. A. Kiselev, S. Magazù, P. Calandra, Adv. Condens. Matter Phys.
2015, 2015, 1–22.
[33] B.-S. Kim, D.-J. Hong, J. Bae, M. Lee, J. Am. Chem. Soc. 2005, 127, 16333–16337.
[34] R. Zana, Dynamics of Surfactant Self-Assemblies, CRC Press, 2005.
[35] C. Fong, T. Le, C. J. Drummond, Chem. Soc. Rev. 2012, 41, 1297–322.
[36] Sandeep Kumar, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers,
Page | 35 2011.
[37] J. W. Goodby, I. M. Saez, S. J. Cowling, in Supramol. Chem., John Wiley & Sons, Ltd, Chichester, UK, 2012.
[38] D. Vorländer, A. Apel, Berichte der Dtsch. Chem. Gesellschaft (A B Ser. 1932, 65, 1101–1109.
[39] T. Niori, T. Sekine, J. Watanabe, T. Furukawa, H. Takezoe, J. Mater. Chem. 1996, 6, 1231.
[40] C. Tschierske, G. Dantlgraber, Pramana 2003, 61, 455–481.
[41] R. A. Reddy, C. Tschierske, J. Mater. Chem. 2006, 16, 907–961.
[42] M. B. Ros, J. L. Serrano, M. R. de la Fuente, C. L. Folcia, J. Mater. Chem. 2005, 15, 5093.
[43] Link, Natale, Shao, Maclennan, Clark, Korblova, Walba, Science 1997, 278, 1924–7.
[44] B. R. Acharya, A. Primak, S. Kumar, Phys. Rev. Lett. 2004, 92, 145506.
[45] L. A. Madsen, T. J. Dingemans, M. Nakata, E. T. Samulski, Phys. Rev. Lett. 2004, 92, 145505.
[46] C. Destrade, P. Foucher, H. Gasparoux, N. H. Tinh, A. M. Levelut, J. Malthete, Mol.
Cryst. Liq. Cryst. 1984, 106, 121–146.
[47] I. Fischbach, F. Ebert, H. W. Spiess, I. Schnell, Chemphyschem 2004, 5, 895–908.
[48] M. Lehmann, I. Fischbach, H. W. Spiess, H. Meiert, J. Am. Chem. Soc. 2004, 126, 772–784.
[49] S. Sergeyev, W. Pisula, Y. H. Geerts, Chem. Soc. Rev. 2007, 36, 1902.
[50] S. Kumar, Chem. Soc. Rev. 2006, 35, 83–109.
[51] S. Kumar, Liq. Cryst. 2009, 36, 607–638.
[52] S. Chandrasekhar, Liq. Cryst. 1993, 14, 3–14.
[53] T. Wöhrle, I. Wurzbach, J. Kirres, A. Kostidou, N. Kapernaum, J. Litterscheidt, J. C.
Haenle, P. Staffeld, A. Baro, F. Giesselmann, et al., Chem. Rev. 2016, 116, 1139–
1241.
[54] H. K. Bisoyi, S. Kumar, Chem. Soc. Rev. 2010, 39, 264–285.
[55] S. Kohmoto, E. Mori, K. Kishikawa, J. Am. Chem. Soc. 2007, 129, 13364–5.
[56] L. Y. Park, D. G. Hamilton, E. A. McGehee, K. A. McMenimen, J. Am. Chem. Soc.
2003, 125, 10586–10590.
[57] P. H. J. Kouwer, W. F. Jager, W. J. Mijs, S. J. Picken, Macromolecules 2001, 34, 7582–7584.
[58] P. H. J. Kouwer, S. J. Picken, G. H. Mehl, J. Mater. Chem. 2007, 17, 4196.
Page | 36 [59] S. Krishna Prasad, D. S. Shankar Rao, S. Chandrasekhar, S. Kumar, in Mol. Cryst. Liq.
Cryst., 2003, pp. 121–139.
[60] C. Tschierske, Angew. Chemie Int. Ed. 2013, 52, 8828–8878.
[61] B. Donnio, B. Heinrich, H. Allouchi, J. Kain, S. Diele, D. Guillon, D. W. Bruce, J.
Am. Chem. Soc. 2004, 126, 15258–15268.
[62] T. Yasuda, H. Ooi, J. Morita, Y. Akama, K. Minoura, M. Funahashi, T. Shimomura, T.
Kato, Adv. Funct. Mater. 2009, 19, 411–419.
[63] T. Vlad-Bubulak, J. Buchs, A. Kohlmeier, M. Bruma, D. Janietz, Chem. Mater. 2007, 19, 4460–4466.
[64] J. Simmerer, B. Glüsen, W. Paulus, A. Kettner, P. Schuhmacher, D. Adam, K.-H.
Etzbach, K. Siemensmeyer, J. H. Wendorff, H. Ringsdorf, et al., Adv. Mater. 1996, 8, 815–819.
[65] E. Fontes, P. A. Heiney, W. H. de Jeu, Phys. Rev. Lett. 1988, 61, 1202–1205.
[66] P. Davidson, M. Clerc, S. S. Ghosh, N. C. Maliszewskyj, P. A. Heiney, J. Hynes, A. B.
Smith, J. Phys. II 1995, 5, 249–262.
[67] S. H. J. Idziak, P. A. Heiney, J. P. Mccauley, P. Carroll, A. B. Smith, Mol. Cryst. Liq.
Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 1993, 237, 271–275.
[68] K. Hatsusaka, K. Ohta, I. Yamamoto, H. Shirai, J. Mater. Chem. 2001, 11, 423–433.
[69] M. Ichihara, A. Suzuki, K. Hatsusaka, K. Ohta, Liq. Cryst. 2007, 34, 555–567.
[70] R. J. Bushby, O. R. Lozman, Curr. Opin. Colloid Interface Sci. 2002, 7, 343–354.
[71] T. Bjørnholm, T. Hassenkam, N. Reitzel, J. Mater. Chem. 1999, 9, 1975–1990.
[72] O. Karthaus, H. Ringsdorf, V. V. Tsukruk, J. H. Wendorff, Langmuir 1992, 8, 2279–
2283.
[73] O. Y. Mindyuk, P. A. Heiney, Adv. Mater. 1999, 11, 341–344.
[74] S. Kurnar, Chemistry of Discotic Liquid Crystals:From Monomers to Polymers, CRC Press, New York, 2011.
[75] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E.
Gershenson, J. A. Rogers, Science 2004, 303, 1644–1646.
[76] I. Kang, H. J. Yun, D. S. Chung, S. K. Kwon, Y. H. Kim, J. Am. Chem. Soc. 2013, 135, 14896–14899.
[77] M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, T. Park, Adv. Funct.
Mater. 2020, 30, 1904545.
[78] M. Nikolka, K. Broch, J. Armitage, D. Hanifi, P. J. Nowack, D. Venkateshvaran, A.
Sadhanala, J. Saska, M. Mascal, S.-H. Jung, et al., Nat. Commun. 2019, 10, 2122.
[79] S. Kumar, Chem. Soc. Rev. 2006, 35, 83–109.
Page | 37 [80] T. Kato, M. Yoshio, T. Ichikawa, B. Soberats, H. Ohno, M. Funahashi, Nat. Rev.
Mater. 2017, 2, 17001.
[81] W. Pisula, M. Zorn, J. Y. Chang, K. Müllen, R. Zentel, Macromol. Rapid Commun.
2009, 30, 1179–1202.
[82] H. Iino, J. Hanna, Adv. Mater. 2011, 23, 1748–51.
[83] T. Kato, Science 2002, 295, 2414–8.
[84] M. Muthukumar, C. K. Ober, E. L. Thomas, Science 1997, 277, 1225–1232.
[85] J.-M. (Jean-M. Lehn, Supramolecular Chemistry : Concepts and Perspectives, VCH, Weinheim, Germany, 1995.
[86] T. Kato, N. Mizoshita, K. Kishimoto, 2006, 38–68.
[87] T. Kato, Liquid Crystalline Functional Assemblies and Their Supramolecular Structures, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
[88] L. J. Prins, D. N. Reinhoudt, P. Timmerman, Angew. Chemie Int. Ed. 2001, 40, 2382–
2426.
[89] J.-M. Lehn, Science 2002, 295, 2400–2403.
[90] J. C. MacDonald, G. M. Whitesides, Chem. Rev. 1994, 94, 2383–2420.
Page | 38
Page | 39