• Tidak ada hasil yang ditemukan

8.2 Future Scopes of Work

8.2.3 Power Flow Analysis of an AC-DC Distribution Network

This topic is in line of the recent trend of hybrid microgrids. Current unbalanced AC network load flow distribution analysis can be expanded into AC-DC distribution network analysis.

Appendix A

Smaller Test System

Figure A.1: 30 bus weakly meshed distribution system with induction motor and generator.

Table A.1: System line data

Branch From To Resistance Reactance

number bus bus (pu) (pu)

1 1 2 0.0967 0.0397

2 2 3 0.0886 0.0364

3 3 4 0.1359 0.0377

4 4 5 0.1236 0.0343

5 5 6 0.1236 0.0343

6 6 7 0.2598 0.0446

7 7 8 0.1732 0.0298

8 8 9 0.2598 0.0446

9 9 10 0.1932 0.0298

10 10 11 0.2083 0.0186

11 11 12 0.0866 0.0149

12 3 13 0.1299 0.0223

13 13 14 0.1732 0.0298

14 14 15 0.0866 0.0149

15 15 16 0.0433 0.0074

16 6 17 0.1483 0.0412

17 17 18 0.1359 0.0377

18 18 19 0.1718 0.0291

19 19 20 0.1562 0.0355

20 20 21 0.1962 0.0355

21 21 22 0.2165 0.0372

22 22 23 0.3165 0.0372

23 23 24 0.2598 0.0446

24 24 25 0.1732 0.0198

25 25 26 0.1083 0.0186

26 26 27 0.0866 0.0149

27 7 28 0.1299 0.0223

28 28 29 0.2299 0.0223

29 29 30 0.1299 0.0273

30 4 14 0.1732 0.0298

31 9 29 0.0866 0.0149

32 11 19 0.0433 0.0074

Table A.2: System nominal load data

Constant power load Constant current load Constant impedance load Induction motor load Bus

No

Active power (pu)

Reactive power

(pu)

Active power (pu)

Reactive power

(pu)

Active power (pu)

Reactive power

(pu)

Active power (pu)

Reactive power

(pu)

1 0.00367 0.00191 0.00044 0.00022 0 0 0 0

2 0.00307 0.00148 0 0 0.00083 0.00041 0 0

3 0.00368 0.00195 0.00014 0.00012 0 0 0 0

4 0.00268 0.00191 0.00027 0.00019 0 0 0 0

5 0.00469 0.00231 0 0 0.00015 5.23E-05 0.01491 0.00404

6 0.00368 0.00191 0.00064 0.00022 0.00037 0.00019 0 0

7 0.00368 0.00191 0.00094 0.00032 0 0 0 0

8 0.00268 0.00191 0.00043 0.00032 0.00063 0.00022 0 0

9 0.00468 0.00191 0 0 0.00025 0.00012 0.01491 0.00404

10 0.00368 0.00291 0 0 0 0 0 0

11 0.00307 0.00158 0 0 0 0 0 0

12 0.00261 0.00132 0 0 0 0 0.01491 0.00404

13 0.00158 0.00082 0.00016 8.24712E-05 0.00042 1.82E-05 0 0

14 0.00468 0.00191 0.00047 0.00019 0 0 0.01491 0.00404

15 0.00368 0.00291 0.00037 0.00029 0.00094 0.00033 0 0

16 0.00054 0.00033 0 0 5.40E-05 3.29E-05 0 0

17 0.00368 0.00191 0.00084 0.00022 0 0 0 0

18 0.00568 0.00191 0.00016 1.91379E-05 0 0 0.00746 0.00202

19 0.00368 0.00191 0.00037 0.00019 0 0 0 0

20 0.00368 0.00151 0.00037 0.00015 0 0 0 0

21 0.00768 0.00191 0 0 0.00028 0.00012 0.004028 0.00109

22 0.00368 0.00191 0 0 3.68E-05 1.91E-05 0 0

23 0.01268 0.00191 0 0 0 0 0 0

24 0.00368 0.00191 0.00014 2.19138E-05 0.00054 0.00022 0 0

25 0.00054 0.00033 6.53998E-05 3.32874E-05 5.40E-05 3.29E-05 0.01491 0.00404

26 0.00368 0.00191 0 0 0 0 0 0

27 0.00568 0.00191 0.00057 0.00019 0.00016 0.00012 0 0

28 0.00158 0.00082 0.00012 5.82471E-06 0 0 0.00746 0.00202

29 0.00368 0.00158 0 0 0.00031 0.00016 0 0

30 0.00158 0.00082 0.00016 8.24712E-05 0 0 0 0

Appendix B

Bigger Test System

DG1

DG4

DG2

DG5

DG3

1

2 3

4

5

6 7 8

9 10 11

12 14 13

15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34

35 36 37

38 43

44

39 41 40

42 45

47 46

48 49 50

51

52 53

54 55

56 57 58

59 60 61 62

63 64

65 66

67 68

69 70 71

72

73 74

75 76

77

78 79

80 81

82 83

84 85

86 87

88 89

90 91

93 92 94

95 96

97 98

99 100

101 102

103 104

105 106

107

108 109

110 111

112

113 114

115 116

118 119

120 121 122 123

117

Figure B.1: Single line diagram of the modified 123-bus system with DGs and links.

Bibliography

[1] Das, D., Kothari, D.P., Kalam, A.: ‘Simple and efficient method for load flow solution of radial distribution networks’, Int. J. Electr. Power Energy Syst., 1995, 17, (5), pp. 335-346.

[2] Sun, D.I.H., Abe, S., Shoults, R.R., Chen, M.S., Eichenberger, P.A.E.P., Farris, D.: ‘Calculation of energy losses in a distribution system’, IEEE Trans. Power App. Syst., 1980, PAS-99, (4), pp. 1347-1356.

[3] Ju, Y., Wu, W., Zhang, B., Sun, H.: ‘An extension of FBS three-phase power flow for handling PV nodes in active distribution networks’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 1547-1555.

[4] D’Adamo, C., Jupe, S., Abbey, C.: ‘Global survey on planning and operation of active distribution networks-update of CIGRE C6.11 working group activities’, Proc. 20th Int. Conf. Exhib. Electr. Distrib.-Part 1, 2009, pp. 1-4.

[5] Ochoa, L.F., Dent, C.J., Harrison, G.P.: ‘Distribution network capacity assess- ment: Variable DG and active networks’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 87-95.

[6] Zhang, S., Cheng, H., Wang, D., Zhang, L., Li, F., Yao, L.: ‘Distributed gener- ation planning in active distribution network considering demand side manage- ment and network reconfiguration’, Applied energy, 2018,228, pp. 1921-1936.

[7] You, Y., Liu, D., Yu, W., Chen, F., Pan, F.: ‘Technology and its trends of active distribution network’, Automation of Elect. Power Systs., 2012, 36, (18), pp.

10-16.

[8] McDonald, J.: ‘Adaptive intelligent power systems: Active distribution net- works’, Energy Policy, 2008, 36, (12), pp. 4346-4351.

[9] Atteya, I.I., Ashour, H., Fahmi, N., Strickland, D.: ‘Radial distribution net- work reconfiguration for power losses reduction using a modified particle swarm optimisation’, CIRED-Open Access Proceedings Journal, 2017, 2017, (1), pp.

2505-2508.

[10] Heidari, M. A.: ‘Optimal network reconfiguration in distribution system for loss reduction and voltage-profile improvement using hybrid algorithm of PSO and ACO’, CIRED-Open Access Proceedings Journal, 2017, 2017, (1), pp. 2458- 2461.

[11] Siti, M.W., Nicolae, D.V., Jimoh, A.A., Ukil, A.: ‘Reconfiguration and load balancing in the LV and MV distribution networks for optimal performance’, IEEE Trans. Power Del., 2007,22, (4), pp. 2534-2540.

[12] Morton, A.B., Mareels, J.M.Y.: ‘Overload prevention and loss minimization in managed distribution networks’, IEEE Trans. Power Delivery, 15, (3), pp. 972- 977.

[13] Esmaeilian, H.R., Fadaeinedjad, R.: ‘Energy loss minimization in distribution systems utilizing an enhanced reconfiguration method integrating distributed generation’, IEEE Systems Journal, 2015, 9, (4), pp. 1430-1439.

[14] Peponis, G.J., Papadopoulos, M.P., Hatziargyriou, N.D.: ‘Distribution network reconfiguration to minimize resistive line losses’, IEEE Trans. Power Delivery, 10, (3), pp. 1338-1342.

[15] Borozan, V., Rajicic, D., Ackovski, R.: ‘Improved method for loss minimization in distribution networks. IEEE Trans. Power Syst.’, 1995,10, (3), pp. 1420-1425.

[16] Coroam˘a, I., Chicco, G.: ‘Gavrila¸s, M. and Russo, A.: ‘Distribution system optimisation with intra-day network reconfiguration and demand reduction pro- curement’, Elect. Power Syst. Res., 2013,98, pp. 29-38.

[17] Evangelopoulos, V.A., Georgilakis, P.S., Hatziargyriou, N.D., . ‘Optimal oper- ation of smart distribution networks: A review of models, methods and future research’, Elect. Power Syst. Res., 2016, 140, pp.95-106.

[18] Capitanescu, F., Bilibin, I., Ramos, E.R.: ‘A comprehensive centralized approach for voltage constraints management in active distribution grid’, IEEE Trans.

Power Syst., 2014, 29, (2), pp. 933-942.

[19] Marvasti, A.K., Fu, Y., DorMohammadi, S., Rais-Rohani, M.: ‘Optimal opera- tion of active distribution grids: A system of systems framework’, IEEE Trans.

Smart Grid, 2014, 5, (3), pp. 1228-1237.

[20] Degefa, M.Z., Lehtonen, M., Millar, R.J., Alah¨aiv¨al¨a, A., Saarij¨arvi, E.: ‘Opti- mal voltage control strategies for day-ahead active distribution network opera- tion’, Elect. Power Syst. Res., 2015, 127, pp. 41-52.

[21] Ghasemi, M.A., Parniani, M.: ‘Prevention of distribution network overvoltage by adaptive droop-based active and reactive power control of PV systems’, Elect.

Power Syst. Res., 2016, 133, pp. 313-327.

[22] Li, P., Ji, H., Wang, C., Zhao, J., Song, G., Ding, F., Wu, J.: ‘Coordinated control method of voltage and reactive power for active distribution networks based on soft open point’, IEEE Trans. Sust. Energy, 2017, 8, (4), pp. 1430- 1442.

[23] Hashim, T.T., Mohamed, A., Shareef, H.: ‘A review on voltage control methods for active distribution networks’, Przeglad Elektrotechniczny (Electrical Review), 2012, 88, (6).

[24] Yuan, H., Li, F., Wei, Y., Zhu, J.: ‘Novel linearized power flow and linearized OPF models for active distribution networks with application in distribution LMP’, IEEE Trans. Smart Grid, 2018, 9,(1), pp. 438-448.

[25] Su, X., Masoum, M.A., Wolfs, P.J.: ‘Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced four-wire LV distribution networks’, IEEE Trans. Sustainable Energy, 2014, 5, (3), pp. 967- 977.

[26] Dolan, M.J., Davidson, E.M., Ault, G.W., Bell, K.R., McArthur, S.D.: ‘Dis- tribution power flow management utilizing an online constraint programming method’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 798-805.

[27] Wei, W., Wang, J., Wu, L.: ‘Distribution optimal power flow with real-time price elasticity’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 1097-1098.

[28] Khonji, M., Chau, C.K., Elbassioni, K.: ‘Optimal power flow with inelastic de- mands for demand response in radial distribution networks’, IEEE Trans. Control Netw. Syst., 2018, 5, (1), pp. 513-524.

[29] Tariq, M., Poor, H.V.: ‘Electricity theft detection and localization in grid-tied microgrids’, IEEE Trans. Smart Grid, 2018, 9, (3), pp. 1920-1929.

[30] Delgado, G.M., Contreras, J., Arroyo, J.M.: ‘Distribution network expansion planning with an explicit formulation for reliability assessment’, IEEE Trans.

Power Systems, 2018, 33, (3), pp.2583-2596.

[31] Arrillaga, J., Arnold, C.P.: ‘Computer Analysis of Power Systems’(John Willey and Sons, Chichester, England, 1990).

[32] Elsayed, A.M., Mishref, M.M., Farrag, S.M.: ‘Distribution system performance enhancement (Egyptian distribution system real case study)’, Int. Trans. Electr.

Energ. Syst., 2018, pp. 1-24. DOI: 10.1002/etep.2545.

[33] Ramos, E.R., Exp´osito, A.G., Santos, J.R., Iborra, F.L.: ‘Path-based distribu- tion network modeling: application to reconfiguration for loss reduction’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 556-564.

[34] Wu, F.F.: ‘Theoretical study of the convergence of the fast decoupled load flow’, IEEE Trans. Power App. Syst., 1977, PAS-96, (1), pp. 268-275.

[35] Kersting, W.H.: ‘Distribution system modeling and analysis’(CRC Press, New Mexico, 2012).

[36] Yang, N.C., Chen, H.C.: ‘Three-phase power-flow solutions using decomposed quasi-Newton method for unbalanced radial distribution networks’, IET Gener., Transm., Distrib., 2017, 11, (4), pp. 3594-3600.

[37] Ju, Y., Wu, W., Zhang, B., Su, H.: ‘Loop-analysis-based continuation power flow algorithm for distribution networks’, IET Gener., Transm., Distrib., 2014, 8, (7), pp. 1284-1292.

[38] Xiao, P., Yu, D.C., Yan, Y.: ‘A unified three-phase transformer model for dis- tribution load flow calculations’, IEEE Trans. Power Syst., 2006, 21, (1), pp.

153-159.

[39] Cheng, C.S., Shlrmohammadi, D.: ‘A three-phase power flow method for real- time distribution system analysis’, IEEE Trans. Power Syst., 1995, 10, (2), pp.

671-679.

[40] Kersting, W.H.: ‘A method to teach the design and operation of a distribution system’, IEEE Trans. Power App. Syst., 1984,103, (7), pp. 1945-1952.

[41] Augugliaro, A., Dusonchet, L., Favuzza, S.: ‘A backward sweep method for power flow solution in distribution networks’, Int. J. Elect. Power Energy Syst., 2010, 32, (4), pp. 271-280.

[42] Chang, G.W., Chu, S.Y., Wang, H.L.: ‘An improved backward/forward sweep load flow algorithm for radial distribution systems’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 882-884.

[43] Losi, A., Russo, M.: ‘Object-oriented load flow for radial and weakly meshed distribution networks’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 1265-1274.

[44] Eminoglu, U., Hocaoglu, M.H.: ‘A new power flow method for radial distribution systems including voltage dependent load models’, Elect. Power Syst. Res., 2005, 76, (1-3), pp. 106-114.

[45] Abdelaziz, M.M.A., Farag, H.E., El-Saadany, E.F., Mohamed, Y.A.R.I.: ‘A novel and generalized three-phase power flow algorithm for islanded microgrids using a newton trust region method’, IEEE Trans. Power Syst., 2013, 28,(1), pp. 190- 201.

[46] Chen, C.S., Hsu, C.T., Yan, Y.H.: ‘Optimal distribution feeder capacitor place- ment considering mutual coupling effect of conductors’, IEEE Trans. Power Del., 1995, 10, (2), pp. 987-994.

[47] Lo, K.L. and Zhang, C.: , May. Decomposed three-phase power flow solution using the sequence component frame. Proc. Inst. Elect. Eng., Gen., Transm., Distrib., 1993, 140, (3), pp. 181-188.

[48] Akher, M.A., Nor, K.M., Rashid, A.A.: ‘Improved three-phase power-flow meth- ods using sequence components’, IEEE Trans. Power Syst., 2005, 20, (3), pp.

1389-1397.

[49] Kamh, M.Z., Iravani, R.: ‘Unbalanced model and power-flow analysis of micro- grids and active distribution systems’, IEEE Trans. Power Del., 2010, 25, (4), pp. 2851-2858.

[50] Akher, M.A., Nor, K.M., Abdul-Rashid, A. H.: ‘Development of unbalanced three-phase distribution power flow analysis using sequence and phase compo- nents’, Proc. 12th Int. Middle-East Power Syst. Conf., 2008, pp. 406-411.

[51] Dˇzafi´c, I., Neisius, H.T., Gilles, M., Henselmeyer, S., Landerberger, V.: ‘Three- phase power flow in distribution networks using fortescue transformation’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 1027-1034.

[52] Luo, G.X., Semlyen, A.: ‘Efficient load flow for large weakly meshed networks’, IEEE Trans. Power Syst., 1990, 5, (4), pp. 1309-1316.

[53] Wu, W.C., Zhang, B.M.: ‘A three-phase power flow algorithm for distribution system power flow based on loop-analysis method’, Int. J. Electr. Power Energy Syst., 2008, 30, (1), pp. 8-15.

[54] Ju, Y., Wu, W., Zhang, B.: ‘Convergence problem in forward/backward sweep power flow method caused by non-positive-sequence impedance of distributed generators and its solution’, Int. J. Elect. Power Energy Syst., 2015,65, pp. 463- 466.

[55] Price, W.W., Wirgau, K.A., Murdoch, A., Mitsche, J.V., Vaahedi, E., El-Kady, M.A.: ‘Load modeling for power flow and transient stability computer studies’, IEEE Trans. Power Syst., 1988, 3, (1), pp. 180-187.

[56] Chen, T.H., Chen, M.S., Hwang, K.J., Kotas, P., Chebli, E.A.: ‘Distribution system power flow analysis-a rigid approach’, IEEE Trans. Power Del., 1991, 6, (3), pp. 1146-1152.

[57] Rajiˇci´c, D., Aˇckovski, R., Taleski, R.: ‘Voltage correction power flow’, IEEE Trans. Power Del., 1994, 9, (2), pp. 1056-1062.

[58] Vieira, J.C.M., Freitas, W., Morelato, A.: ‘Phase-decoupled method for three- phase power-flow analysis of unbalanced distribution systems’, IEE Proc. Gener.

Transm. Distrib., 2004, 151, (5), pp. 568-574.

[59] Shirmohammadi, D., Hong, H. W., Semlyen, A., Luo, G.X.: ‘A compensation- based power flow method for weakly meshed distribution and transmission net- works’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 753-762.

[60] Teng, J.H.: ‘A direct approach for distribution system load flow solutions’, IEEE Trans. Power Del., 2003, 18, (3), pp. 882-887.

[61] Irving, M.R., Al-Othman, A.K.: ‘Admittance matrix models of three-phase transformers with various neutral grounding configurations’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 1210-1212.

[62] Verma, R., Sarkar, V.: ‘Accurate modeling of induction motor loads in the load flow analysis of a distribution network’, Proc. 6th Int. Conf. Power Syst., 2016, pp. 1-5.

[63] Aree, P., Acha, E.: ‘Power flow initialisation of dynamic studies with induction motor loads’, IET Gener., Transm., Distrib., 2011, 5, (4), pp. 417-424.

[64] Aman, M.M., Jasmon, G.B., Bakar, A.H.A., Mokhlis, H., Naidu, K.: ‘Graph theory-based radial load flow analysis to solve the dynamic network reconfigura- tion problem’, Int. Trans. Electr. Energ. Syst., 2016, 26, (1), pp. 783–808.

[65] Ghatak, U., Mukherjee, V.: ‘An improved load flow technique based on load current injection for modern distribution system’, Int. J. Elect. Power Energy Syst., 2017, 84, pp. 168-181.

[66] Strezoski, V.C., Vidovi´c, P.M.: ‘Power flow for general mixed distribution net- works’, Int. Trans. Electr. Energ. Syst., 2014, 25, (10), pp. 2455-2471.

[67] Zimmerman, R.D., Chiang, H.D.: ‘Fast decoupled power flow for unbalanced radial distribution systems’, IEEE Trans. Power Syst., 1995, 10, (4), pp. 2045- 2052.

[68] Li, H., Zhang, A., Shen, X., Xu, J.: ‘A load flow method for weakly meshed distribution networks using powers as flow variables’, Int. J. Elect. Power Energy Syst., 2014, 58, pp. 291-299.

[69] Khushalani, S., Solanki, J.M., Schulz, N.N.: ‘Development of three-phase un- balanced power flow using PV and PQ models for distributed generation and study of the impact of DG models’, IEEE Trans. Power Syst., 2007,22, (3), pp.

1019-1025.

[70] Zhu, Y., Tomsovic, K.: ‘Adaptive power flow method for distribution systems with dispersed generation’, IEEE Trans. Power Del., 2002,17, (3), pp. 822-827.

[71] Augugliaro, A., Dusonchet, L., Favuzza, S., Ippolito, M.G., Sanseverino, E.R.:

‘A new backward/forward method for solving radial distribution networks with PV nodes’, Elect. Power Syst. Res., 2008, 78, (3), pp. 330-336.

[72] Sun, H., Nikovski, D., Ohno, T., Takano, T., Kojima, Y.: ‘A fast and robust load flow method for distribution systems with distributed generations’, Proc.

Smart Grid and Clean Energy Technol., 2011, 12, (4), pp. 236-244.

[73] Chen, H., Chen, J., Shi, D., Duan, X.: ‘Power flow study and voltage stability analysis for distribution systems with distributed generation’, Proc. IEEE Power Energy Soc. General Meeting, 2006, pp. 1-8.

[74] Rajiˇci´c, D., Bose, A.: ‘A modification to the fast decoupled power flow for networks with high R/X ratios’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 743- 746.

[75] Rajicic, D., Bose, A.: ‘A modification to the fast decoupled power flow for networks with high R/X ratios’, IEEE Trans. Power Syst., 1988, 3, (2), pp.

743-746.

[76] D´iaz, G., Aleixandre, J. G., Coto, J.: ‘Direct backward/forward sweep algorithm for solving load power flows in AC droop-regulated microgrids’, IEEE Trans.

Smart Grid, 2016, 7, (5), pp. 2208-2217.

[77] D´ıaz, G., G´omez-Aleixandre, J., Coto, J.: ‘Direct backward/forward sweep al- gorithm for solving load power flows in AC droop-regulated microgrids’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 2208-2217.

[78] Chen, T.H., Chen, M.S., Inoue, T., Kotas, P., Chebli, E.A.: ‘Three-phase co- generator and transformer models for distribution system analysis’, IEEE Trans.

Power Del., 1991, 6, (4), pp. 1671-1681.

[79] Grainger, J.J., Stevenson, W.D.: ‘Power System Analysis’(Tata-McGraw-Hill, New Delhi, 2003).

[80] Stagg, G.W., El-Abiad, A.H.: ‘Computer methods in power system analysis’(McGraw-Hill, New York, 1968).

[81] Liu, Y.H., Lee, W.J., Chen, M.S.: ‘Incorporating induction motor model in a load flow program for power system voltage stability study’, Proc. IEEE Int.

Conf. Elect. Mach. and Drives, 1997, 3, pp. 7.1-7.3.

[82] Amin, B.: ‘Induction Motors: Analysis and Torque Control’ (Springer, Berlin, Germany, 2010).

[83] Shakarami, M.R., Beiranvand, H., Beiranvand, A., Sharifipour, E.: ‘A recursive power flow method for radial distribution networks: Analysis, solvability and convergence’, Int. J. Electr. Power Energy Syst., 2017, 86, pp. 71-80.

[84] Dˇzafi´c, I., Jabr, R.A., Neisius, H.T.: ‘Transformer modeling for three-phase distribution network analysis’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 2604- 2611.

[85] Hong, Y.Y., Wang, F.M.: ‘Investigation of impacts of different three-phase trans- former connections and load models on unbalance in power systems by optimiza- tion’, IEEE Trans. Power Syst., 1997, 12, (2), pp. 689-697.

[86] ‘IEEE 34 Node Test Feeder’ ([Online], Available: http://sites.ieee.org/pes- testfeeders/files/2017/08/feeder34.zip).

[87] ‘IEEE 123 Node Test Feeder’ ([Online], Available: http://sites.ieee.org/pes- testfeeders/files/2017/08/feeder123.zip).

[88] Kamh, M.Z.: ‘Component modeling and three-phase power-flow analysis for ac- tive distribution systems’(PhD thesis, University of Toronto, 2011).

[89] Wang, Y., Zhang, N., Li, H., Yang, J., Kang, C.: ‘Linear three-phase power flow for unbalanced active distribution networks with PV nodes’, CSEE J. Power Energy Syst., 2017, 3, (3), pp.321-324.

[90] Pogaku, N., Prodanovi´c, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Elec- tron., 2007, 22, (2), pp. 613-625.

[91] Kallamadi, M., Sarkar, V.: ‘Enhanced real-time power balancing of an AC micro- grid through transiently coupled droop control’, IET Gener., Transm., Distrib., 2017, 11, (8), pp. 1933-1942.

[92] Yazdani, A., Iravani, R.: ‘Voltage-Sourced Converters in Power Sys- tems’(IEEE/Wiley, Piscataway, NJ, USA, 2010).

[93] Saddat, H.: ‘Power System Analysis’(Tata-McGraw-Hill, New Delhi, 2003).

[94] Arrillaga, J., Arnold, C.P.: ‘Computer Analysis of Power Systems’(John Willey and Sons, Chichester, England, 1990).

[95] Barr, J., Majumder, R.: ‘Integration of distributed generation in the volt/var management system for active distribution networks’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 576-586.

[96] Trebolle, D., Hallberg, P., Lorenz, G., Mandatova, P., Guijarro, J.T.:‘Active distribution system management’, In 22nd Int. Conf. Exh. Elect. Distribution (CIRED 2013), 2013, pp. 1-4.

[97] Yazdani, A., Iravani, R.: ‘A unified dynamic model and control for the voltage- sourced converter under unbalanced grid conditions’, IEEE Trans. Power Del., 2006, 21, (3), pp. 1620-1629.