∆Wk(z) := ∆Ak+ j=1zj∆Bkj fork = 1,· · · , mand∆W(z) := (∆W1(z),· · · ,∆Wm(z)).
Then ∆W is T-symmetric, W(λ)x+ ∆W(λ)x= 0 and |||∆W|||p =ηpS(λ, x,W).
Proof. Recall from the proof of Theorem 6.3.1 that
∆Ak = Qk
y0
||(1,λ)||qxTkrk y0
||(1,λ)||q(Q(k)Trk)T
y0
||(1,λ)||qQ(k)Trk Ack
QHk,
∆Bkj = Qk
yj
||(1,λ)||qxTkrk ||(1,λ)yj||
q(Q(k)Trk)T
yj
||(1,λ)||q dBkj
QHk .
satisfies thatWk(λ)xk+ ∆Wk(λ)xk = 0. When||rk||2 6=|xTkrk|, forµ∆Ak := ||(1,λ)|y0|||
q||rk||2 and µ∆Bkj := ||(1,λ)|yj|||
q||rk||2, by Theorem 6.4.1, we have Ack=−y0 xTkrk(Q(k)Trk)(Q(k)Trk)T
||(1, λ)||q(||rk||22− |xTkrk|2) and dBkj =−yj xTkrk(Q(k)Trk)(Q(k)Trk)T
||(1, λ)||q(||rk||22− |xTkrk|2). (6.40) When ||rk||2 = |xTkrk| for some k ∈ {1,· · ·, m} then note that ||Q(k)Trk||2 = (||rk||22 −
|xTkrk|2)12 = 0, i.e., Q(k)Trk= 0. So we have
∆Ak=Qk
y0
||(1,λ)||qxTkrk 0 0 Ack
QHk, ∆Bkj =Qk
yj
||(1,λ)||qxTkrk 0 0 Bdkj
QHk.
For µ∆Ak := ||(1,λ)|y0|||
q|xTkrk|= ||(1,λ)|y0|||
q||rk||2 and µ∆Bkj := ||(1,λ)|yj|||
q||rk||2, by Theorem 6.4.1, we have Ack = dBkj = 0. So ||∆Wk||p = ||(1,λ)||y||p||
q||rk||2 = ||(1,λ)1 ||
q||rk||2. Therefore ηpS(λ, x,W) =|||∆W|||p = ||(1,λ)1 ||
q ||(||r1||2,· · · ,||rm||2)||p.
When||rk||2 6=|xTkrk|, substitutingAck andBdkj as given in (6.40) in (6.14) and (6.15), respectively, and when ||rk||2 = |xTkrk|, setting Ack = Bdkj = 0, in (6.14) and (6.15) we obtain the desired perturbation.
Next we consider T-skew symmetric MEPs.
Theorem 6.4.3. Let S be the space of all T-skew symmetric MEPs and W ∈ S be as given in (6.1). Let λ := (λ1,· · ·, λm)T ∈ Cm and 0 6= x := x1 ⊗ · · · ⊗xm ∈ Cn1⊗ · · · ⊗Cnm be such thatxHkxk = 1. Consider rk:=−Wk(λ)xk for all k = 1,· · · , m.
Then ηSp(λ, x,W) = ||(1,λ)1 ||
q ||(||r1||2,· · · ,||rm||2)||p, where p−1+q−1 = 1.
Let (y0,· · · , ym) ∈ ∂||(1, λ)||q. Define ∆Ak = ||(1,λ)||
q (rkxk −xkrk) and ∆Bkj =
yj
||(1,λ)||q (rkxHk −xkrkT)for all k, j = 1,· · · , m. Consider∆Wk(z) := ∆Ak+Pm
j=1zj∆Bkj
for k = 1,· · · , m and ∆W(z) := (∆W1(z),· · · ,∆Wm(z)). Then ∆W is T-skew sym- metric, W(λ)x+ ∆W(λ)x= 0 and |||∆W|||p =ηpS(λ, x,W).
Proof. Recall from the proof of Theorem 6.3.2 that in this case we have
∆Ak = Qk
0 −||(1,λ)y0 ||q(Q(k)Trk)T
y0
||(1,λ)||qQ(k)Trk Ack
QHk,
∆Bkj = Qk
0 −||(1,λ)yj||q(Q(k)Trk)T
yj
||(1,λ)||qQ(k)Trk dBkj
QHk.
such that Wk(λ)xk + ∆Wk(λ)xk = 0. Now for µ∆Ak := ||(1,λ)|y0|||
q||rk||2 and µ∆Bkj :=
|yj|
||(1,λ)||q||rk||2by Theorem 6.4.1, we haveAck =Bdkj = 0. ThenηpS(λ, xk, Wk) = ||(1,λ)||y||p||
q||rk||2 =
1
||(1,λ)||q||rk||2 and thus we have ηpS(λ, x,W) = ||(1,λ)1 ||
q ||(||r1||2,· · · ,||rm||2)||p. Further simplifying ∆Ak and ∆Bkj, we have
∆Ak= y0
||(1, λ)||q(rkxHk −xkrkT)+Q(k)AckQ(k)H,∆Bkj = yj
||(1, λ)||q(rkxHk −xkrTk)+Q(k)BdkjQ(k)H. Setting Ack=dBkj = 0, we obtain the desired optimal perturbation.
Now we derive ηSp(λ, x,W) for a T-even MEP.
Theorem 6.4.4. Let S be the space of all T-even MEPs and W ∈ S be as given in (6.1). Let λ := (λ1,· · · , λm)T ∈ Cm and 0 6= x := x1 ⊗ · · · ⊗xm ∈ Cn1 ⊗ · · · ⊗ Cnm be such that xHkxk = 1. Consider rk := −Wk(λ)xk for all k = 1,· · · , m. Let (y0,· · · , ym)T ∈ ∂||(1, λ)||q, for p−1 +q−1 = 1. Then ηpS(λ, x,W) = ||(c1,· · · , cm)||p, where ck =||(ak, bk1,· · · , bkm)||p, ak =
|xTkAkxk|2+ ||(1,λ)|y0|2||2 q
||rk||22− |xTkAkxk|212
and bkj = ||(1,λ)|yj|||q ||rk||22− |xTkAkxk|212
for all k, j = 1,· · ·, m. In particular, when p = 2, we have η2S(λ, x,W) =Pm
k=1
|xTkAkxk|2+||(1,λ)1 ||2
2 ||rk||22− |xTkAkxk|212
.
When ||rk||2 6=|xkAkxk|, define
∆Ak := −xkxTkAkxkxHk + y0
||(1, λ)||q
rkxHk +xkrkT −2(xTkAkxk)xkxHk
−y02 xTkAkxk(Ink−xkxTk)rkrkT(Ink −xkxHk)
|y0|2(||rk||22− |xTkAkxk|2) ,
∆Bkj := yj
||(1, λ)||q rkxHk −xkrTk and when ||rk||2 =|xTkAkxk|, define
∆Ak := −xkxTkAkxkxHk + y0
||(1, λ)||q
rkxHk +xkrkT −2(xTkAkxk)xkxHk ,
∆Bkj := yj
||(1, λ)||q rkxHk −xkrTk
for all k, j = 1,· · · , m. Consider∆Wk(z) := ∆Ak+Pm
j=1zj∆Bkj fork = 1,· · · , m and
∆W(z) := (∆W1(z),· · · ,∆Wm(z)). Then ∆W is T-even, W(λ)x+ ∆W(λ)x = 0 and
|||∆W|||p =ηpS(λ, x,W).
Proof. It follows from the proof of Theorem 6.3.3 that we have
∆Ak = Qk
−xTkAkxk y0
||(1,λ)||q(Q(k)Trk)T
y0
||(1,λ)||qQ(k)Trk Ack
QHk,
∆Bkj = Qk
0 −||(1,λ)yj||q(Q(k)Trk)T
yj
||(1,λ)||qQ(k)Trk dBkj
QHk
such that Wk(λ)xk+ ∆Wk(λ)xk = 0. When ||rk||2 6=|xTkAkxk| for some k∈ {1,· · · , m} for µ∆Ak =ak and µ∆Bkj =bkj, by Theorem 6.4.1, we have
Ack =−y02 xTkAkxk(Q(k)Trk)(Q(k)Trk)T
|y0|2(||rk||22− |xTkAkxk|2)12 and dBkj = 0. (6.41) When ||rk||2 = |xTkAkxk| for some k ∈ {1,· · · , m}, note that Q(k)Trk = 0 and thus
∆Ak = Qk
−xTkAkxk 0 0 Ack
QHk and ∆Bkj = Qk
0 0 0 dBkj
QHk. Again for µ∆Ak = ak and µ∆Bkj = bkj, by Theorem 6.4.1, we have Ack = dBkj = 0. Then ||∆Wk||2 =
||(ak, bk1,· · · , bkm)||p =ck and therefore ηp(λ, x,W) = |||∆W|||p = ||(c1,· · · , cm)||p. Fur- ther simplifying ∆Ak and ∆Bkj, we have
∆Ak = −xkxTkAkxkxHk + y0
||(1, λ)||q
rkxHk +xkrkT −2(xTkAkxk)xkxHk
+Q(k)AckQ(k)H
∆Bkj = yj
||(1, λ)||q rkxHk −xkrTk
+Q(k)BdkjQ(k)H.
When ||rk||2 6=|xTkAkxk| for somek ∈ {1,· · · , m}, settingAckand Bdkj as given in (6.41) and when||rk||2 =|xTkAkxk|for somek ∈ {1,· · ·, m}, settingAck=dBkj = 0, the desired perturbation follows.
In case of a T-odd MEP, we have the following result.
Theorem 6.4.5. Let Sbe the space of all T-odd MEPs and W∈S be as given in (6.1).
Let λ := (λ1,· · · , λm)T ∈ Cm and 0 6= x := x1 ⊗ · · · ⊗xm ∈ Cn1 ⊗ · · · ⊗Cnm be such that xHkxk = 1. Consider rk := −Wk(λ)xk for all k = 1,· · · , m. Let (y0,· · · , ym)T ∈
∂||(1, λ)||q and (z1,· · · , zm)T ∈∂||λ||q, for p−1+q−1 = 1. Then
ηSp(λ, x,W) =
||(c1,· · · , cm)||p when λ6= 0
||(||r1||2,· · · ,||rm||2)||p when λ= 0, where ck =||(ak, bk1,· · · , bkm)||p and
ak = |y0|
||(1, λ)||q(||rk||22−|xTkrk|2)12 andbkj =
|zj|2
||λ||2q|xTkrk|2+ |yj|2
||(1, λ)||2q
(||rk||22− |xTkrk|2) 12
for all k, j = 1,· · · , m. In particular, when p= 2, we have
ηS2(λ, x,W) =
Pm
k=1
1
||λ||22|xTkrk|2+ ||(1,λ)1 ||2
2 ||rk||22− |xTkAkxk|212
when λ6= 0
||(||r1||2,· · · ,||rm||2)||2 when λ= 0.
When ||rk||2 6=|xTkrk| for some k∈ {1,· · · , m}, define
∆Ak := y0
||(1, λ)||q
(rkxHk −xkrkT)
∆Bkj := zj
||λ||q(xTkrk)xkxHk + yj
||(1, λ)||q(rkxHk +xkrkT −2(xTkrk)xkxHk)
−yj2 zj xTkrk(Ink−xkxTk)rkrkT(Ink−xkxHk)
||λ||q |yj|2 (||rk||22− |xTkrk|2)
and when ||rk||2 =|xkrk| for some k ∈ {1,· · · , m}, define
∆Ak := y0
||(1, λ)||q(rkxHk −xkrTk),
∆Bkj := zj
||λ||q(xTkrk)xkxHk + yj
||(1, λ)||q(rkxHk +xkrkT −2(xTkrk)xkxHk) for all k, j = 1,· · · , m. Consider∆Wk(z) := ∆Ak+Pm
j=1zj∆Bkj fork = 1,· · · , m and
∆W(z) := (∆W1(z),· · · ,∆Wm(z)). Then ∆W is T-odd, W(λ)x+ ∆W(λ)x = 0 and
|||∆W|||p =ηpS(λ, x,W).
Now we consider T-even alternating MEPs.
Theorem 6.4.6. Let S be the space of all T-even alternating MEPs and W ∈ S be as given in (6.1). Let λ := (λ1,· · ·, λm)T ∈ Cm and 0 6= x := x1 ⊗ · · · ⊗xm ∈ Cn1⊗ · · · ⊗Cnm be such thatxHkxk = 1. Consider rk:=−Wk(λ)xk for all k = 1,· · · , m.
Let (y0,· · · , ym)T ∈ ∂||(1, λ)||q and (z0,· · ·, zm)T ∈ ∂||(1,Π(e)(λ)||q for p−1 +q−1 = 1.
Then ηSp(λ, x,W) =||(c1,· · · , cm)||p, where ck =||(ak, bk1,· · · , bkm)||p and ak =
|z0|2
||(1,Λ(e)(λ))||2q|xTkrk|2+ |y0|2
||(1, λ)||2q
(||rk||22− |xTkrk|2) 12
bkj =
|zj|2
||(1,Λ(e)(λ))||2q|xTkrk|2+ ||(1,λ)|yj|2||2
q(||rk||22− |xTkrk|2)12
when j is even
|yj|
||(1,λ)||q(||rk||22− |xTkrk|2)12 when j is odd for all k, j = 1,· · · , m. In particular, for p= 2, we have
ηS2(λ, x,W) = Xm k=1
1
||(1,Λ(e)(λ))||22|xTkrk|2+ 1
||(1, λ)||22 ||rk||22− |xTkrk|2!12 . When ||rk||2 6=|xTkrk| for some k ∈ {1,· · · , m}, define
∆Ak := z0
||(1,Λ(e)(λ))||q
(xTkrk)xkxHk + y0
||(1, λ)||q
[rkxHk +xkrTk −2(xTkrk)xkxHk]
−y02z0xTkrk(Ink−xkxTk)rkrkT(Ink −xkxHk)
|y0|2(||rk||22− |xTkrk|2)||(1,Λ(e)(λ))||q ,
∆Bkj :=
zj
||(1,Λ(e)(λ))||q(xTkrk)xkxHk +||(1,λ)yj ||
q[rkxHk +xkrkT −2(xTkrk)xkxHk]
−|yj|2(||rk||22−|yxj2TzjxTkrk
krk|2)||(1,Λ(e)(λ))||q(Ink −xkxTk)rkrTk(Ink −xkxHk ) when j is even
yj
||(1,λ)||q[rkxHk −xkrTk] when j is odd
and when ||rk||2=|xkrk| for some k ∈ {1,· · · , m}, define
∆Ak := z0
||(1,Λ(e)(λ))||q(xTkrk)xkxHk + y0
||(1, λ)||q[rkxHk +xkrkT −2(xTkrk)xkxHk],
∆Bkj :=
zj
||(1,Λ(e)(λ))||q(xTkrk)xkxHk +||(1,λ)yj||
q[rkxHk +xkrkT −2(xTkrk)xkxHk] when j is even
yj
||(1,λ)||q[rkxHk −xkrkT] when j is odd
for all k, j = 1,· · · , m. Consider ∆Wk(z) := ∆Ak +Pm
j=1zj∆Bkj for k = 1,· · ·, m and ∆W(z) := (∆W1(z),· · · ,∆Wm(z)). Then ∆W is T-even alternating, W(λ)x+
∆W(λ)x= 0 and |||∆W|||p =ηpS(λ, x,W).
Proof. Recall from the proof of Theorem 6.3.5 that
∆Ak = Qk
z0
||(1,Π(e)(λ))||qxTkrk y0
||(1,λ)||q(Q(k)Trk)T
y0
||(1,λ)||qQ(k)Trk Ack
QHk,
∆Bkj =
Qk
zj
||(1,Π(e)(λ))||qxTkrk yj
||(1,λ)||q(Q(k)Trk)T
yj
||(1,λ)||qQ(k)Trk Bdkj
QHk when j is even
Qk
0 −||(1,λ)yj ||q(Q(k)Trk)T
yj
||(1,λ)||qQ(k)Trk Bdkj
QHk when j is odd
for all k, j = 1,· · · , m. When ||rk||2 6=|xTkrk| for some k ∈ {1,· · · , m}, for µ∆Ak = ak
and µ∆Bkj =bkj, by Theorem 6.4.1, we have Ack =− y02z0xTkrk
|y0|2(||rk||22− |xTkrk|2)||(1,Π(e)(λ))||q(Q(k)Trk)(Q(k)Trk)T, dBkj =
−|yj|2(||rk||22−|yxj2Tkzrjkx|Tk2)r||k(1,Π(e)(λ))||q(Q(k)Trk)(Q(k)Trk)T when j is even
0 when j is odd.
When ||rk||2 = |xTkrk| for some k ∈ {1,· · · , m} then noting that Q(k)Trk = 0 we have
∆Ak = Qk
z0
||(1,Π(e)(λ))||qxTkrk 0
0 Ack
QHk , ∆Bkj =Qk
zj
||λ||qxTkrk 0 0 Bdkj
QHk when j is
even and ∆Bkj =Qk
0 0 0 Bdkj
QHk when j is odd. Again forµ∆Ak =ak and µ∆Bkj =
bkj, by Theorem 6.4.1, we have Ack =Bdkj = 0. So ||∆Wk||p =||(ak, bk1,· · · , bkm)||p =ck
and hence ηpS(λ, x,W) = |||∆W|||p = ||(c1,· · · , cm)||p. Simplifying ∆Ak and ∆Bkj, the desired perturbation follows.
Similarly we have the following result for aT-odd alternating MEP.
Theorem 6.4.7. Let S be the space of all T-odd alternating MEPs and W ∈ S be as given in (6.1). Let λ := (λ1,· · ·, λm)T ∈ Cm and 0 6= x := x1 ⊗ · · · ⊗xm ∈ Cn1⊗· · ·⊗Cnm be such that xHkxk = 1. Considerrk :=−Wk(λ)xk, for allk = 1,· · · , m.
Let(y0,· · · , ym)T ∈∂||(1, λ)||qand(z1,· · · , zm)T ∈∂||Π(o)(λ)||q forp−1+q−1 = 1. Then ηpS(λ, x,W) =
||(c1,· · · , cm)||p when Π(o)(λ)6= 0
1
||(1,λ)||q||(||r1||2,· · · ,||rm||)||p when Π(o)(λ) = 0, where ck =||(ak, bk1,· · · , bkm)||p, ak= ||(1,λ)|y0|||
q(||rk||22− |xTkrk|2)12 and bkj =
|yj|
||(1,λ)||q(||rk||22− |xTkrk|2)12 when j is even |zj|2
||Λ(o)(λ)||2q|xTkrk|2+ ||(1,λ)|yj|2||2
q(||rk||22− |xTkrk|2)12
when j is odd for all k, j = 1,· · · , m. In particular, for p= 2, we have
η2S(λ, x,W) =
Pm
k=1
1
||Λ(o)(λ))||22|xTkrk|2+ ||(1,λ)1 ||2
2 ||rk||22− |xTkrk|212
when Π(o)(λ)6= 0
1
||(1,λ)||2||(||r1||2,· · · ,||rm||)||2 when Π(o)(λ) = 0.
When ||rk||26=|xTkrk| for some k ∈ {1,· · · , m}, define∆Ak := ||(1,λ)y0||
q[rkxHk −xkrkT],
∆Bkj :=
yj
||(1,λ)||q[rkxHk −xkrTk] when j is even
zj
||Λ(o)(λ)||q(xTkrk)xkxHk + ||(1,λ)yj||
q[rkxHk +xkrTk −2(xTkrk)xkxHk]
−|yj|2(||rk||22y−|j2xzTjxTkrk
krk|2)||Λ(e)(λ)||q(Ink −xkxTk)rkrTk(Ink−xkxHk) when j is odd and when ||rk||2=|xTkrk|for some k ∈ {1,· · · , m}, define ∆Ak:= ||(1,λ)y0 ||
q[rkxHk −xkrkT],
∆Bkj :=
yj
||(1,λ)||q[rkxHk −xkrTk] when j is even
zj
||Λ(o)(λ)||q(xTkrk)xkxHk + ||(1,λ)yj||
q[rkxHk +xkrTk −2(xTkrk)xkxHk] when j is odd, for all k, j = 1,· · · , m. Consider ∆Wk(z) := ∆Ak+Pm
j=1zj∆Bkj for k = 1,· · · , m and ∆W(z) := (∆W1(z),· · · ,∆Wm(z)). Then ∆W is T-odd alternating, W(λ)x +
∆W(λ)x= 0 and |||∆W|||p =ηpS(λ, x,W).
Now we derive the structured backward error for the H-structures by considering H¨older 2-norm|||·|||2 on MEP(n1,· · · , nm).
Theorem 6.4.8. Let S be the space of all H-Hermitian MEPs and W∈ S be as given in (6.1). Let λ:= (λ1,· · ·, λm)T ∈Cm be such that λj :=αj+iβj for all j = 1,· · · , m, where i=√
−1 and 06=x :=x1⊗ · · · ⊗xm ∈Cn1 ⊗ · · · ⊗Cnm be such that xHkxk = 1.
Consider rk:=−Wk(λ)xk and Pk =Ink−xkxHk for all k= 1,· · · , m. Then ηS2(λ, x,W) =
1
||(1,λ)||2||(||r1||2,· · · ,||rm||2)|| when λ∈Rm Pm
k=1
Pm
j=0|skj|2+ ||(1,λ)1 ||2
2 ||rk||22− |xHk rk|212
when λ∈Cm\Rm, where skj is as defined in Theorem 6.3.7.
When ||rk||2 6=|xHkrk|, for some k∈ {1,· · · , m}, define
∆Ak=
1
||(1,λ)||22 rkxHk +xkrHk −(rHk xk)xkxHk
− ||(1,λ)xHk||22r(k||Prkkr||k22r−|kHxPHk
krk|2) when λ ∈Rm sk0xkxHk +||(1,λ)1 ||2
2
PkrkxHk +xkrHkPk
−||srk0k||P2krkrkHPk
2−|xHkrk|2 when λ ∈Cm\Rm,
∆Bkj =
λj
||(1,λ)||22 rkxHk +xkrHk −(rkHxk)xkxHk
− ||(1,λ)λjx||Hk22(r||krPkk||r22k−|rHkxHPk
krk|2) when λ ∈Rm skjxkxHk +||(1,λ)1 ||2
2
λjPkrkxHk +λjxkrHkPk
− ||srkjk||P2krkrkHPk
2−|xHkrk|2 when λ ∈Cm\Rm and when ||rk||26=|xHkrk|, for some k ∈ {1,· · ·, m}, define
∆Ak =
1
||(1,λ)||22(xHk rk)xkxHk = ||(1,λ)1 ||2
2rkxHk when λ ∈Rm xksk0xHk when λ ∈Cm\Rm,
∆Bkj =
λj
||(1,λ)||22(xHk rk)xkxHk = ||(1,λ)λj||2
2rkxHk when λ ∈Rm xkskjxHk when λ ∈Cm\Rm, for all k, j = 1,· · · , m. Consider ∆Wk(z) := ∆Ak+Pm
j=1zj∆Bkj fork = 1,· · · , m and
∆W(z) := (∆W1(z),· · · ,∆Wm(z)). Then ∆W isH-Hermitian, W(λ)x+ ∆W(λ)x= 0 and |||∆W|||2 =η2S(λ, x,W).
Proof. When λ∈Cm\Rm, recall from Theorem 6.3.7 that
∆Ak = Qk
sk0 1
||(1,λ)||2(Q(k)Hrk)H
1
||(1,λ)||2Q(k)Hrk Ack
QHk ,
∆Bkj = Qk
skj λj
||(1,λ)||2(Q(k)Hrk)H
λj
||(1,λ)||2Q(k)Hrk Bdkj
QHk
for all j = 1,· · ·, m. So forµ∆Ak := |sk0|2+||(1,λ)1 ||2
2 ||rk||22− |xHkrk|22
and µ∆Bkj :=
|skj|2+||(1,λ)|λj|2||2
2 ||rk||22− |xHkrk|212
by Theorem 6.4.1, we haveAck =−sk0(Q(k)
Hrk)(Q(k)Hrk)H
||rk||22−|xHkrk|2
and Bdkj = −skj(Q(k)
Hrk)(Q(k)Hrk)H
||rk||22−|xHkrk|2 . When ||rk||2 = |xHkrk| for some k ∈ {1,· · · , m} then note that ||Q(k)Hrk||2 = (||rk||22 − |xHkrk|2)12 = 0, i.e., Q(k)Hrk = 0. So we have
∆Ak = Qk
sk0 0 0 Ack
QHk and ∆Bkj = Qk
skj 0 0 Bdkj
QHk . For µ∆Ak = |sk0| and µ∆Bkj = |skj|, again by Theorem 6.4.1, we have Ack = Bdkj = 0. Hence ||∆Wk||2 = Pm
j=0|skj|2+||rk||22− |xHkrk|212 and
η2S(λ, x,W) =|||∆W|||2 = Xm k=1
Xm j=0
|skj|2+||rk||22− |xHkrk|2
!!12 . When λ∈Rm, recall from Theorem 6.3.7 that
∆Ak = Qk
1
||(1,λ)||22xHkrk 1
||(1,λ)||22(Q(k)Hrk)H
1
||(1,λ)||22Q(k)Hrk Abk
QHk,
∆Bkj = Qk
λj
||(1,λ)||22xHkrk λj
||(1,λ)||22(Q(k)Hrk)H
λj
||(1,λ)||22Q(k)Hrk Bbkj
QHk
for all j = 1,· · · , m. When ||rk||2 6= |xHkrk| for µ∆Ak = ||(1,λ)1 ||2
2||rk||2 and µ∆Bkj =
|λj|
||(1,λ)||22||rk||2 by Theorem 6.4.1, we have Ack=−xHk rk(Q(k)Hrk)(Q(k)Hrk)H
||rk||22− |xHk rk|2 and Bdkj =−λj xHkrk(Q(k)Hrk)(Q(k)Hrk)H
||rk||22− |xHkrk|2 .
Finally when||rk||2 =|xHkrk|for somek∈ {1,· · · , m}then ∆Ak=Qk
1
||(1,λ)||22xHkrk 0 0 Ack
QHk
and ∆Bkj = Qk
λj
||(1,λ)||22xHkrk 0 0 dBkj
QHk. For µ∆Ak = ||(1,λ)1 ||2
2||rk||2 and µ∆Bkj =
|λj|
||(1,λ)||22||rk||2by Theorem 6.4.1, we haveAck =dBkj = 0. Therefore||∆Wk||2 = ||(1,λ)1 ||2||rk||2 and and η2S(λ, x,W) = |||∆W|||2 = ||(1,λ)1 ||
2||(||r1||2,· · · ,||rm||2)||2. The desired optimal perturbations follow by simplifying ∆Ak and ∆Bkj.
Next we derive ηS2(λ, x,W) forH-even MEP.
Theorem 6.4.9. Let S be the space of all H-even MEPs and W ∈ S be as given in (6.1). Let λ := (λ1,· · ·, λm)T ∈ Cm be such that λj := αj +iβj,for all j = 1,· · · , m, where i=√
−1 and 06=x :=x1⊗ · · · ⊗xm ∈Cn1 ⊗ · · · ⊗Cnm be such that xHkxk = 1.
Consider rk:=−Wk(λ)xk and Pk :=Ink−xkxHk for all k= 1,· · ·, m. Then
ηS2(λ, x,W) =
1
||(1,λ)||2||(||r1||2,· · · ,||rm||2)||2 when λ∈iRm Pm
k=1
Pm
j=0|skj|2+ ||(1,λ)1 ||2
2 ||rk||22− |xHk rk|212
when λ∈Cm\iRm where skj are as given in Theorem 6.3.8.
When ||rk||2 6=|xHkrk|, for some k∈ {1,· · · , m}, define
∆Ak:=
1
||(1,λ)||22 rkxHk +xkrHk −(rHkxk)xkxHk
− ||(1,λ)x||Hk2rkPkrkrkHPk
2(||rk||22−|xHkrk|2) λ∈iRm sk0xkxHk + ||(1,λ)1 ||2
2
PkrkxHk +xkrHkPk
−||srk0k||P2krkrkHPk
2−|xHkrk|2 λ∈Cm\iRm,
∆Bkj :=
λj
||(1,λ)||22 rkxHk +xkrHk −(rHkxk)xkxHk
+ +||isrkjPkrkrHkPk
k||22−|xHkrk|2 λ ∈iRm iskjxkxHk +||(1,λ)1 ||2
2
λjPkrkxHk −λjxkrkHPk
+||isrkjPkrkrkHPk
k||22−|xHkrk|2 λ ∈Cm\iRm When ||rk||2 =|xHkrk| for some k∈ {1,· · · , m}, define
∆Ak :=
1
||(1,λ)||22rkxHk λ ∈iRm
sk0xkxHk λ ∈Cm\iRm, ∆Bkj :=
λj
||(1,λ)||22rkxHk λ∈iRm iskjxkxHk λ∈Cm\iRm for all k, j = 1,· · · , m. Consider ∆Wk(z) := ∆Ak+Pm
j=1zj∆Bkj fork = 1,· · · , m and
∆W(z) := (∆W1(z),· · · ,∆Wm(z)). Then ∆W is H-even, W(λ)x+ ∆W(λ)x= 0 and
|||∆W|||2 =η2S(λ, x,W).
Proof. When λ∈iRm, recall from the proof of Theorem 6.3.8 that
∆Ak = Qk
1
||(1,λ)||22xHkrk 1
||(1,λ)||22(Q(k)Hrk)H
1
||(1,λ)||22Q(k)Hrk Ack
QHk,
∆Bkj = Qk
λj
||(1,λ)||22xHkrk −||(1,λ)λj||22(Q(k)Hrk)H
λj
||(1,λ)||22Q(k)Hrk Bdkj
QHk
for all j = 1,· · · , m. When ||rk||2 6= |xHkrk| for µ∆Ak = ||(1,λ)1 ||2
2||rk||2 and µ∆Bkj =
|λj|
||(1,λ)||22||rk||2, by Theorem 6.4.1, we have Ack = −xHkrk(Q(k)
Hrk)(Q(k)Hrk)H
||(1,λ)||22(||rk||22−|xHkrk|2) and Bdkj =
j k k k k
||(1,λ)||22(||rk||22−|xHkrk|2) . When ||rk||2 = |xHkrk| for some k ∈ {1,· · · , m}, we have Q(k)Hrk = 0. Hence
∆Ak =Qk
1
||(1,λ)||22xHkrk 0 0 Ack
QHk and ∆Bkj =Qk
λj
||(1,λ)||22xHkrk 0 0 Bdkj
QHk.
Again for µ∆Ak = ||(1,λ)1 ||2
2||rk||2 and µ∆Bkj = ||(1,λ)|λj|||2
2||rk||2 by Theorem 6.4.1, we have Ack = dBkj = 0. So ||∆Wk||2 = ||(1,λ)1 ||2||rk||2 and therefore η2S(λ, x,W) = |||∆W|||2 =
1
||(1,λ)||2||(||r1||2,· · · ,||rm||2)||2.
When λ∈Cm\iRm, recall from Theorem 6.3.8 that
∆Ak = Qk
sk0 ||(1,λ)1 ||2
2(Q(k)Hrk)H
1
||(1,λ)||22Q(k)Hrk Ack
QHk,
∆Bkj = Qk
iskj −||(1,λ)λj||22(Q(k)Hrk)H
λj
||(1,λ)||22Q(k)Hrk Bdkj
QHk,
for all j = 1,· · · , m. When ||rk||2 6= |xHkrk| for some k ∈ {1,· · · , m}, for µ∆Ak = |sk0|2+ ||(1,λ)1 ||4
2 ||rk||22− |xHkrk|212
andµ∆Bkj =
|skj|2+||(1,λ)|λj|2||4
2 ||rk||22− |xHkrk|212 by Theorem 6.4.1, we have Ack =−sk0(Q(k)
Hrk)(Q(k)Hrk)H
||rk||22−|xHkrk|2 and dBkj = iskj(Q(k)
Hrk)(Q(k)Hrk)H
||rk||22−|xHkrk|2 . When||rk||2 =|xHkrk|for somek ∈ {1,· · · , m}then we have ∆Ak =Qk
sk0 0 0 Ack
QHk
and ∆Bkj = Qk
iskj 0 0 Bdkj
QHk . For µ∆Ak = |sk0| and µ∆Bkj = |skj|, by Theo-
rem 6.4.1, we haveAck =dBkj = 0. Therefore||∆Wk||2 =Pm
j=0|skj|2+ ||(1,λ)1 ||2
2 ||rk||22− |xHkrk|212
and thus ηS2(λ, x,W) =|||∆W|||2 =Pm k=1
Pm
j=0|skj|2+||(1,λ)1 ||2
2 ||rk||22− |xHkrk|212 . SimplifyingAck and Bdkj, we obtain the desired optimal perturbations.
In a similar way, in case of aH-even alternating MEP, we have the following result.
Theorem 6.4.10. Let S be the space of all H-even alternating MEPs and W ∈ S be as given in (6.1). Let λ := (λ1,· · · , λm)T ∈ Cm be such that λj := αj +iβj for all j = 1,· · · , m, where i =√
−1, 06= x:=x1 ⊗ · · · ⊗xm ∈Cn1 ⊗ · · · ⊗Cnm be such that
xkxk = 1. Consider rk :=−Wk(λ)xk and Pk :=Ink−xkxk for all k= 1,· · ·, m. Then
ηS2(λ, x,W) =
1
||(1,λ)||2||(||r1||2,· · · ,||rm||2)||2 when λ∈iRm Pm
k=1
Pm
j=0|skj|2+ ||(1,λ)1 ||2
2 ||rk||22− |xHk rk|212
when λ∈Cm\iRm where skj are as given in Theorem 6.3.9.
When ||rk||2 6=|xHkrk|, for some k∈ {1,· · · , m}, define
∆Ak:=
1
||(1,λ)||22 rkxHk +xkrHk −(rHkxk)xkxHk
− ||(1,λ)x||Hk2rkPkrkrkHPk
2(||rk||22−|xHkrk|2) when λ∈iRm sk0xkxHk + ||(1,λ)1 ||2
2
PkrkxHk +xkrHkPk
−||srk0k||P22k−|rkxrHkHPk
krk|2 when λ∈Cm\iRm
∆Bkj :=
λj
||(1,λ)||22 rkxHk +xkrHk −(rHkxk)xkxHk
− ||(1,λ)λj||x2HkrkPkrkrHkPk
2(||rk||22−|xHkrk|2) when λ∈iRm sk0xkxHk + ||(1,λ)1 ||2
2
PkrkxHk +xkrkHPk
−||srkjk||P2krkrHkPk
2−|xHkrk|2 when λ∈Cm\iRm when j is even and
∆Bkj :=
λj
||(1,λ)||22 rkxHk +xkrHk −(rHkxk)xkxHk
+ λjxHkrkPkrkrkHPk
||(1,λ)||22(||rk||22−|xHkrk|2) when λ∈iRm iskjxkxHk +||(1,λ)1 ||2
2
λjPkrkxHk −λjxkrHk Pk
+||isrkjPkrkrkHPk
k||22−|xHkrk|2 when λ∈Cm\iRm When ||rk||2 = |xHkrk| for some k ∈ {1,· · · , m} define ∆Ak := ||(1,λ)1 ||2
2rkxHk, ∆Bkj :=
λj
||(1,λ)||22rkxHk whenλ ∈iRm and∆Ak :=sk0xkxHk,∆Bkj :=
skjxkxHk when j is even iskjxkxHk when j is odd, when λ ∈ Cm \ iRm. Consider ∆Wk(z) := ∆Ak + Pm
j=1zj∆Bkj for k = 1,· · ·, m and ∆W(z) := (∆W1(z),· · · ,∆Wm(z)). Then ∆W is H-even alternating, W(λ)x+
∆W(λ)x= 0 and |||∆W|||2 =η2S(λ, x,W).
7
Summary
We have developed a general framework for the spectral analysis of nonhomogeneous MEPs. For a general norm on the space of MEPs, we have defined the condition number cond(λ,W) of a simple eigenvalue λ of an MEP Wby
cond(λ,W) := lim sup
|||∆W|||→0
dist(λ, σ(W+ ∆W))
|||∆W||| ,
where ∆W is an MEP and dist(λ, σ(W+ ∆W)) := min{||λ−µ||2 : µ∈σ(W+ ∆W)}. Given a simple eigenvalue λW of W, we have shown that there is an open neighborhood nbd(W) containing W and a smooth function λ such that λ(W) = λW and λ(X) is a simple eigenvalue of X for all X∈nbd(W). We have determined the derivative Dλ(W) and used it to derive three equivalent representations of cond(λ,W). Also, we have constructed a fast perturbation for λW considering a weighted norm on the space of MEPs. We have defined the backward error of an approximate eigenvalue λ of Wby
η(λ,W) := inf{|||∆W|||:λ ∈σ(W+ ∆W)}.
We have derived η(λ,W) and constructed an optimal perturbation ∆W such that λ ∈ σ(W+ ∆W) and |||∆W||| = η(λ,W). Also, for an approximate eigenpair (λ, x :=
x1 ⊗ · · · ⊗ xm) ∈ Cm × (Cn1 ⊗ · · · ⊗ Cnm), we have defined the backward error by η(λ, x,W) := inf{|||∆W||| : W(λ)x+ ∆W(λ)x = 0}. We have derived η(λ, x,W) and constructed optimal perturbation ∆W for (λ, x) such that W(λ)x+ ∆W(λ)x = 0 and
|||∆W|||=η(λ, x,W). We have extended the results to the case of two parameter PEPs.
Further we have developed a general framework for spectral analysis of linear homoge- neous MEPs. We have introduced condition number cond(λ,W) of a simple eigenvalueλ
of a homogeneous MEP Wand derived cond(λ,W).We have also determined backward errors of approximate eigenvalues and approximate eigenpairs of W and constructed optimal perturbations.
We have defined and analyzed two vector spaces of potential linearizations of two- parameter polynomial of degree k. Considering a two-parameter matrix polynomial of the form
P(λ, µ) :=
Xk i=0
k−i
X
j=0
λiµjAij,
whereAij ∈Cn×nfor all i= 0,· · · , kandj = 0,· · · , k−i, we have defined and analyzed two vector spaces, namely, the right ansatz space and the left ansatz space of potential linearizations ofP(λ, µ).We have also analyzed conditions under which a pencil in the ansatz spaces is a linearization ofP(λ, µ).
Finally, we have considered structured linear MEPs and analyzed structured back- ward errors and structured backward perturbations. We have denoted the space of structured MEPs by Sand defined structured backward error of an approximate eigen- pair (λ, x:=x1 ⊗ · · · ⊗xm) by
ηS(λ, x,W) := inf{|||∆W|||: ∆W∈S and W(λ)x+ ∆W(λ)x= 0}.
We have determined ηS(λ, x,W) and constructed an optimal structured perturbation
∆Wsuch that W(λ)x+ ∆W(λ)x= 0 and|||∆W|||=ηS(λ, x,W).
[1] B. Adhikari, Vector space of linearizations for the quadratic two-parameter matrix polynomial, Linear Multilinear Algebra, 61(2013), pp.603-616.
[2] B. Adhikari, Backward Perturbation and Sensitivity Analysis if Structured Polynomial Eigenvalue Problem, PhD thesis, Department of Mathematics, In- dian Institute of Technology Guwahati, India, 2009.
[3] B. Adhikari and R. Alam, Structured backward errors and pseudospectra of structured matrix pencils, SIAM J. Matrix Anal. Appl., 31(2009), pp.331-359.
[4] B. Adhikari and R. Alam, On backward errors of structured polynomial eigenproblems solved by structure preserving linearizations, Linear Algebra Appl., 434(2011), pp.1989-2017.
[5] B. Adhikari, R. Alam and D. Kressner, Structured eigenvalue condi- tion numbers and linearizations for matrix polynomials, Linear Algebra Appl., 435(2011), pp.2193-2221.
[6] S. S. Ahmad, Pseudospectra of matrix pencils and their applications in pertur- bation analysis of eigenvalues and eigendecompositions, PhD thesis, Department of Mathematics, Indian Institute of Technology Guwahati, India, 2007.
[7] S.S. Ahmed and R. Alam, Sensitivity analysis of nonlinear eigenproblems., preprint.
[8] S.S. Ahmed, R. Alam and R. Byers, Pseudospectra, critical points and multiple eigenvalues of matrix pencils, SIAM J. Matrix Anal. Appl., 31(2010), pp.1915-1933.
[9] S.S. Ahmed and R. Alam, Pseudospectra, critical points and multiple eigen- values of matrix polynomials, Linear Algebra Appl., 430(2009), pp.1171-1195.
[10] R. Alam,On the sensitivity analysis of eigenvalues, Electron. J. Linear Algebra 29(2016), pp.223-235.
[11] F.V.Atkinson,Multiparameter spectral theory, Bull. Am. Math. Soc. 74(1968), pp.1-27.
[12] F.V.Atkinson, Multiparameter Eigenvalue Problems, Academic Press, New York, 1972.
[13] F.V.Atkinson and Angelo B. Mingarelli, Multiparameter Eigenvalue Problems:Strum-Liouville Theory, Academic Press, New York, 1972.
[14] T. Bhattacharyya, P. A. Binding and K. Seddighi, Multiparameter sturm-liouville problems with eigenparameter dependent boundary conditions, J.
Math. Anal. Appl., 264(2001), pp.560-576.
[15] T. Bhattacharyya, T. Ko˘sir and B. Plestenjak, Right definite multipa- rameter sturm-liouville problems with eigenparameter dependent boundary con- ditions, Proc. Edinb. Math. Soc. (2), 45(2002), pp.565-578.
[16] P. Binding, Left definite multiparameter eigenvalue problems, Trans. Amer.
Math. Soc., 272(1982), pp.475-486.
[17] P. Binding and P. J. Browne, Two Parameter Eigenvalue Problems for Matrices, Linear Algebra Appl., 113(1989), pp.139-157.
[18] P. J. Browne, Abstract multiparameter theory,I, J. Math. Anal. Appl., 60(1977), pp.259-273.
[19] P. J. Browne and B. D. Sleeman,Regular multiparameter eigenvalue Prob- lems with several parameters in the boundary conditions, J. Math. Anal. Appl., 72(1979), pp.29-33.
[20] R. D. Carmichael, Boundary value and expansion problems: algebraic basis of the theory, Amer. J. Math., 43(1921), pp.69-101.
[21] R. D. Carmichael, Boundary value and expansion problems: formulation of various transcendental problems, Amer. J. Math., 43(1921), pp.232-270
[22] R. D. Carmichael Boundary value and expansion problems: oscillatory, com- parison and expansion problems, Amer. J. Math., 44(1922), pp.129-152.
[23] N. Cottin, Dynamic model updating - a multiparameter eigenvalue problem, Mech. Systems Signal Process., 15(2001), pp.649-665.
[24] D. Cox, J. Little and D. Oshea,Using algebraic geometry, Springer Verlag, 1997.
[25] C. Davis, W. M. Kahan and H.F. Weinberger,Norm-preserving dialations and their applications to optimal error bounds, SIAM J. Numer. Anal., 19(1982), pp.445-469.
[26] J.-P. Dedieu and F. Tisseur, Perturbation theory for homogeneous polyno- mial eigenvalue problems, Linear Algebra Appl., 358 (2003), pp.7194.
[27] I. Gohberg, P. Lancaster and L. Rodman,Matrix Polynomials, Academic Press, Inc., New York, 1982.
[28] L. Grunenfelder and T. Ko˘sir, An Algebraic approach to multiparameter spectral theory, Trans. Amer. Math. Soc., 348(1996), pp.2983-2998.
[29] L. Grunenfelder and T. Ko˘sir, Geometric aspects of multiparameter spec- tral theory, Trans. Amer. Math. Soc., 350(1998), pp.2525-2546
[30] M. E. Hochstenbach and B. Plestenjak, A JacobiDavidson type method for a right definite two-parameter eigenvalue problem, SIAM J. Matrix Anal.
Appl., 24(2002), pp.392-410.
[31] M.E. Hochstenbach and B. Plestenjak, Backward error, condition num- ber and pseudospectra for the multiparameter eigenvalue problem, Linear Algebra Appl., 375(2003), pp.63-81
[32] M.E. Hochstenbach, T. Ko˘sir and B. Plestenjak,A jacobi-davidson type method for the two-parameter eigenvalue problem SIAM J. Matrix Anal. Appl., 26(2005), pp.477-497.
[33] M.E. Hochstenbach and B. Plestenjak, Harmonic rayleigh ritz extrac- tion for the multiparameter eigenvalue problem, Electron. Trans. Numer. Anal., 29(2008), pp.81-96.
[34] M. E. Hochstenbach, A. Muhic and B. Plestenjak, On lineariza- tions of the quadratic two-parameter eigenvalue problems, Linear Algebra Appl., 436(2012), pp.2725-2743.
[35] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, reprinted paperback version ed., 1995.
[36] E. Jarlebring and M. E. Hochstenbach,Polynomial two-parameter eigen- value problems and matrix pencil methods for stability of delay-differential equa- tions, Linear Algebra Appl., 431(2009), pp.369-380.
[37] T. Ko˘sir,Finite dimensional multiparameter spectral theory: the nonderogatory case, Linear Algebra Appl., 212/213(1994), pp.45-70.
[38] T. Ko˘sir, Kronecker bases for linear matrix equations, with application to two- parameter eigenvalue problems, Linear Algebra Appl., 249(1996), pp.259-288.
[39] T. Ko˘sir,The cayley-hamilton theorem and inverse problems for multiparameter systems, Linear Algebra Appl., 367(2003), pp.155-163.
[40] J. R. Kuttler and V. G. Sigillito, Eigenvalues of the laplacian in two dimensions, SIAM Rev., 26(1984), pp.163-193.
[41] B. C. Lesieutre, A. V. Mamishev, Y. Du, E. Keskiner, M. Zahn and G. C. Verghese, Forward and inverse parameter estimation algorithms of in- terdigital dielectrometry sensors, IEEE Trans. Dielectrecs Elect. Insul., 8(2001), pp.577-588.