• Tidak ada hasil yang ditemukan

Structured backward error of approximate eigenpair

In this section we derive structured backward error of an approximate eigenpair (λ, x) of PS. The backward error of (λ, x) is defined as the smallest, in norm, perturbation4P of P such that (λ, x) is an eigenpair of P +4P, that is, (P(λ) +4P(λ))x= 0. We make the convention throughout the chapter that,4PPm(Cn×n) is of the form4P =Pm

j=0zj4Aj. Recall that the Frobenius and the spectral norm defined on Pm(Cn×n) are given by

|||P|||F :=

 Xm

j=0

kAjk2F

1/2

and|||P|||2:=

 Xm

j=0

kAjk22

1/2

respectively where P(z) = Pm

i=0zjAj. Then it follows that, for any λ C,kP(λ)k ≤

|||P|||F,2 kΛmk2,where Λm= [1, λ, . . . , λm]T.

By convention, if (λ, x)C×Cn,thenxis assumed to be nonzero, that is,x6= 0.Treating (λ, x) as an approximate eigenpair of the polynomial PPm(Cn×n),we define the backward error of (λ, x) by

ηF(λ, x,P) := min

4PPm(Cn×n){|||4P|||F : P(λ)x+4P(λ)x= 0}, η2(λ, x,P) := min

4PPm(Cn×n){|||4P|||2: P(λ)x+4P(λ)x= 0}.

Setting r:=P(λ)x,we haveηF(λ, x,P) =krk2/kxk2kΛmk2=η2(λ, x,P),see (4.1). Hence- forth, we denote ηF(λ, x,P) andη2(λ, x,P) byη(λ, x,P).

Next assume that PS.Then we define the structured backward error of (λ, x) by ηFS(λ, x,P) := min

4PS{|||4P|||F : P(λ)x+4P(λ)x= 0}

η2S(λ, x,P) := min

4PS{|||4P|||2: P(λ)x+4P(λ)x= 0}.

Unless otherwise stated, we denoteηS(λ, x,P) for bothηSF(λ, x,P) andη2S(λ, x,P).

By Theorem 5.2.1 and Theorem 5.2.2 it is obvious to see that ηS(λ, x,P) < and η(λ, x,P)≤ηS(λ, x,P).

To make the presentation simple we define Πi:CmCm,by

Πi([x0, x1, x1, . . . , xm−1]T) := [x0, x1, x2, . . . , xi−1,0,0, . . . ,0]T.

We consider flip operatorR=



1 . .. 1

Rm×m.

Theorem 5.3.1. Let S be a space of T-palindromic polynomials and P S. Assume that (λ, x)is an approximate eigen-pair of Pand setr:=P(λ)x.Then we have the following

1. mis odd:

ηFS(λ, x,P) =





2η(λ, x,P), ifλ=1

2 r

|xTr|2

kΠ(m+1)/2m+RΛm)k22 +krkkΛ22−|xTr|2

mk22 ,ifλ6=±1

η2S(λ, x,P) =













η(λ, x,P)if λ=±1

2 r

|xTr|2

kΠ(m+1)/2m+RΛm)k22 +kΠ(m+1)/2RΛkΛmk22 (krk22−|xTr|2)

mk42 ,if |λ|>1

2 r

|xTr|2

kΠ(m+1)/2m+RΛm)k22 +kΠ(m+1)/2ΛmkΛk2 (krk22−|xTr|2)

mk42 , if |λ| ≤1 LetEj:= kΠ λj+λm−j

(m+1)/2m+RΛm)k22(xTr)xxH, Fj:= kΛλj

mk22PxTrxH+kΛλm−j

mk22xrTPx. Forj = 0 : (m−1)/2, define

4Aj:=

( Fj, λ=1 Ej+Fj, λ6=1 and 4Am−j = 4ATj. Then 4P(z) = Pm

j=0zj4Aj is a unique polynomial such that 4PS,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).Next, define

4Aj :=















Fj, ifλ=1

Ej+Fj (j|2λm−j+m−j|2λj) xTrPxTrrTPx

m−j|2 kΠ(m+1)/2m+RΛm)k22 (krk22− |xTr|2), if|λ|>1 Ej+Fj (j|2λm−j+m−j|2λj) xTrPxTrrTPx

j|2 kΠ(m+1)/2m+RΛm)k22 (krk22− |xTr|2),if |λ| ≤1, λ6=1 forj= 0 : (m−1)/2and4Am−j =4ATj.Then4P(z) =Pm

j=0zj4Aj is a polynomial such that4PS,P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).

2. mis even:

ηFS(λ, x,P) =





1 m+1

p2krk22− |xTr|2≤√

2η(λ, x,P), if λ=±1

r

(2kΠ(m/2)+1Λmm/2RΛmk22−|λm/2|2)|xTr|2

kΠ(m/2)+1Λmm/2RΛmk42 + 2krkkΛ22−|xTr|2

mk22 ,if λ6=±1

η2S(λ, x,P) =

























η(λ, x,P), ifλ=±1

r

kΛm+RΛmk223m/2|2

kΠ(m/2)+1Λmm/2RΛmk42|xTr|2+(2kΠm/2RΛmk22+kΛm/2|2) (krk22−|xTr|2)

mk42 ,

if|λ|>1;

r

kΛm+RΛmk223m/2|2

kΠ(m/2)+1Λmm/2RΛmk42|xTr|2+(2kΠm/2Λmk22+kΛm/2|2) (krk22−|xTr|2)

mk42 ,

if|λ| ≤1.

Set

Gj := λj+λm−j

kΠ(m/2)+1Λm+ Πm/2RΛmk22xxTrxH+ λj

kΛmk22PxTrxH+ λm−j kΛmk22xrTPx

Hm/2 := λm/2

kΠ(m/2)+1Λm+ Πm/2RΛmk22xxTrxH+ λm/2

kΛmk22PxTrxH+ λm/2

kΛmk22xrTPx. Now forj= 0 : (m−2)/2 define

4Aj :=

( λj

kΛmk22(xTr)xxH+kΛ1

mk22[λjPxTrxH+λm−jxrTPx], ifλ=±1

Gj, ifλ6=±1

4Am/2 :=

( λm/2

kΛmk22 [(xTr)xxH+PxTrxH+xrTPx], ifλ=±1

Hm/2, ifλ6=±1

and 4Am−j = 4ATj. Then 4P(z) = Pm

j=0zj4Aj is a unique polynomial such that 4PS,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).

Further, forj= 0 : (m−2)/2 define

4Aj :=





























λj

kΛmk22(xTr)xxH+kΛ1

mk22[λjPxTrxH+λm−jxrTPx]kΛλm−j xTrPxTrrTPx

mk22 (krk22−|xTr|2), ifλ=±1 Gj (j|2λm−j+m−j|2λj) xTr PxTrrTPx

kΠ(m/2)+1Λm+ Πm/2RΛmk22 m−j|2 (krk22− |xTr|2), if|λ|>1

Gj (j|2λm−j+m−j|2λj)xTr PxTrrTPx

kΠ(m/2)+1Λm+ Πm/2RΛmk22 j|2 (krk22− |xTr|2),if|λ| ≤1, λ6=±1

4Am/2 :=







 λm/2

kΛmk22 [(xTr)xxH+PxTrxH+xrTPx] λm/2xTr PxTrrTPx

kΛmk22 (krk22− |xTr|2),ifλ=±1 Hm/2 λm/2 xTr PxTrrTPx

kΠ(m/2)+1Λm+ Πm/2RΛmk22 (krk22− |xTr|2), ifλ6=±1, and 4Am−j =4ATj. Then 4P(z) = Pm

j=0zj4Aj is a polynomial such that a 4P S,P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).

Proof: First suppose that mis odd. By Theorem 5.2.1 there exists a polynomial 4P S such that4P(λ)x+ P(λ)x= 0.Forj = 0 : (m−1)/2,consider

4Agj:=QT4AQ=

à ajj aTj bj Xj

!

and 4ATj =4Am−j, where Q:= [x, Q1] is a unitary matrix. Now since4P(λ)x+ P(λ)x= 0,we have,

à Pm

j=0λjajj

P(m−1)/2

j=0 λjbj+P(m−1)/2

j=0 λm−jaj

!

= Ã xTr

QT1r

! .

The minimum norm solution of P(m−1)/2

j=0 λjbj+P(m−1)/2

j=0 λm−jaj =QT1r is given by bj =

λj

kΛmk22QT1r andaj = kΛλm−j

mk22QT1r.

Forλ=1, we havexTr= 0.Hence the minimum norm solution ofPm

j=0λjajj =xTr, isajj = 0.So we have4Aj forj= 0 :m, as follows:

4Aj=Q

 0 (kΛλm−j

mk22QT1r)T

λj

kΛmk22QT1r Xj

QH, 4ATj =4Am−j, j= 0 : (m−1)/2.

Setting Xj= 0, j= 0 :m,we obtainηSF(λ, x,P) =

2krkm+12 =

2η(λ, x,P).Simplifying the expressions of4Aj, j= 0 :m,we obtain the desired result.

Now letλ 6=1. Notice that ajj = am−j,m−j, j = 0 : (m−1)/2. Hence the minimum norm solution ofPm

j=0λjajj =xTrwhich implies P(m−1)/2

j=0 (λj+λm−j)ajj =xTr, is ajj = λj+λm−j

kΠ(m+1)/2m+RΛm)k22xTr.

Thus we obtain

4Aj = Q



λj+λm−j

kΠ(m+1)/2m+RΛm)k22xTr (kΛλm−j

mk22QT1r)T

λj

kΛmk22QT1r Xj



QH, j= 0 : (m−1)/2 4Am−j = ATj, j= 0 : (m−1)/2.

Now setting Xj= 0, j= 0 : (m−1)/2,we have

ηSF(λ, x,P) = 2

s

|xTr|2

kΠ(m+1)/2m+RΛm)k22 +krk22− |xTr|2 kΛmk22 . Simplifying the expression of4Aj, i= 0 :mwe obtain the desired result.

In particular, whenλ= 1,we getkΛmk22=m+1 andkΠ(m+1)/2m+RΛm)k22= 2(m+1), which gives,

ηSF(λ, x,P) = 1

√m+ 1 q

2krk22− |xTr|2≤√

2η(λ, x,P).

Now we consider spectral norm. For λ =1, by DKW Theorem 1.2.5 applied to4Aj

givesµ4Aj = kΛkrk2

mk22 andXj = 0, j= 0 : (m−1)/2.Hence ηS2(λ, x,P) = krkm+12 =η(λ, x,P).

Thus we obtain the same4Aj that we have obtained for Frobenius norm.

Next letλ6=1.Forj= 0 : (m−1)/2,applying DKW Theorem 1.2.5 to4Aj,we have

µ4Aj =







 r

j+λm−j|2

kΠ(m+1)/2m+RΛm)k42|xTr|2+m−j|2kΛ(krk22−|xTr|2)

mk42 , if|λ|>1 r

j+λm−j|2

kΠ(m+1)/2m+RΛm)k42|xTr|2+j|2 (krkkΛ22−|xTr|2)

mk42 , if|λ| ≤1,

and

Xj =









(j|2λm−j+m−j|2λj)xTrQT1r(QT1r)T

m−j|2 kΠ(m+1)/2m+RΛm)k22(krk22− |xTr|2), if|λ|>1

(j|2λm−j+m−j|2λj)xTrQT1r(QT1r)T

j|2 kΠ(m+1)/2m+RΛm)k22(krk22− |xTr|2), if|λ| ≤1.

This gives,

η2S(λ, x,P) =







2 r

|xTr|2

kΠ(m+1)/2m+RΛm)k22 +kΠ(m+1)/2RΛkΛmk22 (krk22−|xTr|2)

mk42 , if|λ|>1

2 r

|xTr|2

kΠ(m+1)/2m+RΛm)k22 +kΠ(m+1)/2ΛmkΛk2 (krk22−|xTr|2)

mk42 , if|λ| ≤1.

Simplifying the expression of4Aj, j= 0 : (m−1)/2 we obtain the desired result.

Now ifλ= 1, we havekΛmk22 =m+ 1 andkΠ(m+1)/2m+RΛm)k22= 2(m+ 1),which gives,

η2S(λ, x,P) = krk2

√m+ 1 =η(λ, x,P).

Next, suppose thatmis even. Note that,Am/2=ATm/2.Then we have

à Pm

j=0λjajj

P(m−2)/2

j=0 λjbj+P(m−2)/2

j=0 λm−jaj+λm/2am/2

!

= Ã xTr

QT1r

! .

The minimum norm solution ofP(m−2)/2

j=0 λjbj+P(m−2)/2

j=0 λm−jaj+λm/2am/2=QT1ris given by

bj = λj

kΛmk22QT1r, aj= λm−j

kΛmk22QT1r, am/2= λm/2 kΛmk22QT1r.

Forλ=±1,the minimum norm solution ofPm

j=0λjajj =xTris ajj =kΛλj

mk22xTr. Hence we have,

4Aj=Q



λj

kΛmk22xTr kΛλm−j

mk22(QT1r)T

λj

kΛmk22QT1r Xj



QH, 4Am/2=Q



λm/2

kΛmk22xTr kΛλm/2

mk22(QT1r)T

λm/2

kΛmk22QT1r Xm/2



QH,

and 4Am−j =4ATj, j = 0 : (m−2)/2.Setting Xj = 0, j = 0 :m, we have ηFS(λ, x,P) =

1 m+1

p2krk22− |xTr|2.Simplifying4Ajs forj= 0 :mwe obtain the desired result.

Again, ifλ6=±1,the minimum norm solution ofPm

j=0λjajj =xTris ajj = λj+λm−j

kΠ(m+2)/2Λm+ Πm/2RΛmk22xTr, am/2,m/2= λm/2

kΠ(m+2)/2Λm+ Πm/2RΛmk22xTr.

Hence we have

4Aj = Q



λj+λm−j

kΠ(m+2)/2Λmm/2RΛmk22xTr kΛλm−j

mk22(QT1r)T

λj

kΛmk22QT1r Xj



QH, j= 0 : (m−2)/2,

4Am/2 = Q



λm/2

kΠ(m+2)/2Λmm/2RΛmk22xTr kΛλm/2

mk22(QT1r)T

λm/2

kΛmk22QT1r Xm/2



QH

4Am−j = 4ATj, j= 0 : (m−2)/2.

Setting Xj = 0, j= 0 :m, we have

ηFS(λ, x,P) = s

(2kΠ(m+2)/2Λm+ Πm/2RΛmk22− |λm/2|2)|xTr|2

kΠ(m+2)/2Λm+ Πm/2RΛmk42 + 2krk22− |xTr|2 kΛmk22 . which gives the desired result. Simplifying the expressions of4Aj the desired result follows.

Next we consider spectral norm. If λ= ±1, applying DKW Theorem 1.2.5 to4Aj we have, µ4Aj = kΛkrk2

mk22 for j = 0 : m and η2S(λ, x,P) = krkm+12 = η(λ, x,P). Now by DKW Theorem 1.2.5, we have

Xj= λm−j QT1r(QT1r)T

kΛmk22 (krk22− |xTr|2), j= 0 : (m−2)/2, Xm/2= λm/2QT1r(QT1r)T kΛmk22(krk22− |xTr|2). Therefore, we have

4Aj = λj

kΛmk22rxH+ λm−j

kΛmk22xrTPx λm−j PxTrrTPx

kΛmk22 (krk22− |xTr|2), 4Am/2 = λm/2

kΛmk22 [rxH+xrTPx] λm/2 PxTrrTPx

kΛmk22 (krk22− |xTr|2). Again for λ6=±1,we have

µ4Aj =







 r

j+λm−j|2 |xTr|2

kΠ(m+2)/2Λmm/2RΛmk42 +m−j|2kΛ(krk22−|xTr|2)

mk42 , if|λ|>1 r

j+λm−j|2 |xTr|2

kΠ(m+2)/2Λmm/2RΛmk42 +j|2 (krkkΛ22−|xTr|2)

mk42 , if|λ| ≤1 µ4Am/2 =

s

m/2|2|xTr|2

kΠ(m+2)/2Λm+ Πm/2RΛmk42 +m/2|2 (krk22− |xTr|2) kΛmk42 . Consequently by DKW Theorem 1.2.5 we have

Xj =









(j|2λm−j+m−j|2λj)xTr QT1r(QT1r)T

kΠ(m+2)/2Λm+ Πm/2RΛmk22 m−j|2 (krk22− |xTr|2), if|λ|>1

(j|2λm−j+2m−j|2λj)xTr QT1r(QT1r)T

kΠ(m+2)/2Λm+ Πm/2RΛmk22 j|2 (krk22− |xTr|2), if|λ| ≤1;

Xm/2 = λm/2xTr QT1r(QT1r)T

kΠ(m+2)/2Λm+ Πm/2RΛmk22(krk22− |xTr|2).

Hence we obtain

ηS2(λ, x,P) =



















 r

kΛm+RΛmk223m/2|2

kΠ(m+2)/2Λmm/2RΛmk42|xTr|2+2kΠm/2RΛmk22+kΛm/2|2 (krk22−|xTr|2)

mk42 ,

if|λ|>1 r

kΛm+RΛmk223m/2|2

kΠ(m+2)/2Λmm/2RΛmk42|xTr|2+2kΠm/2Λmk22+kΛm/2|2 (krk22−|xTr|2)

mk42 ,

if|λ| ≤1.

Simplifying the expressions of4Ajs we obtain the desired result.¥

Note that ifY Cn×n is such thatY x= 0 andYTx= 0 thenY = (I−xxH)TZ(I−xxH) for some matrix Z. Hence from the proof of Theorem 5.3.1, we obtain that if K is a T- palindromic polynomial such that P(λ)x+K(λ)x= 0 then K(z) =4P(z)+(I−xxH)TN(z)(I−

xxH) for someT-palindromic polynomial N,where 4P is given in Theorem 5.3.1.

Remark 5.3.2. If |xTr|=krk2,then kQT1rk2= 0. In such a case, considering Xj = 0, j = 0 :m, we obtain the desired results.

Theorem 5.3.3. Let S be the space of T-anti-palindromic polynomials and PS. Assume that (λ, x)C×Cn and setr:=P(λ)x.Then we have the following.

1. mis odd: we have

ηSF(λ, x,P) =



2 η(λ, x,P), if λ= 1

2 r

|xTr|2

kΠ(m+1)/2m−RΛm)k22 +krkkΛ22−|xTr|2

mk22 , if λ6= 1.

ηS2(λ, x,P) =





















η2(λ, x,P), ifλ= 1

2 r

|xTr|2

kΠ(m+1)/2m−RΛm)k22 +kΠ(m+1)/2RΛkΛmk22(krk22−|xTr|2)

mk42 , if|λ|>1,

2 r

|xTr|2

kΠ(m+1)/2m−RΛm)k22 +kΠ(m+1)/2ΛkΛmk22(krk22−|xTr|2)

mk42 , if|λ| ≤1.

Set

Ej := λj−λm−j

kΠ(m+1)/2m−RΛm)k22(xTr)xxH 1

kΛmk22[λm−jxrTPx−λjPxTrxH] Fj := λj−λm−j

kΠ(m+1)/2m−RΛm)k22(xTr)xxH 1

kΛmk22[λm−jxrTPx−λjPxTrxH].

Forj= 0 : (m−1)/2,define 4Aj:=

( 1

kΛmk22[rxH−xrT], if λ= 1

Ej, λ6= 1

and4Am−j=−ATj.Then4P(z) =Pm

j=0zj4Aj is a unique polynomial4PS such

thatP(λ)x+4P(λ)x= 0 and|||4P|||F =ηFS(λ, x,P).Next, define

4Aj:=



















 1

kΛmk22[rxH−xrT], if λ= 1

Ej+ (j|2λm−j− |λm−j|2λj)xTrPxTrrTPx

m−j|2kΠ(m+1)/2m−RΛm)k22(krk22− |xTr|2), if |λ|>1

Ej+ (j|2λm−j− |λm−j|2λj)xTrPxTrrTPx

j|2kΠ(m+1)/2m−RΛm)k22(krk22− |xTr|2), if |λ| ≤1, λ6= 1 and 4Am−j = −ATj, j = 0 : (m−1)/2.Then 4P(z) = Pm

j=0zj4Aj is a polynomial such that4PS,P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).

2. mis even:

ηFS(λ, x,P) =



2 η(λ, x,P), if λ= 1

2 r

|xTr|2

kΠm/2m−RΛm)k22 +krkkΛ22−|xTr|2

mk22 , if λ6= 1.

η2S(λ, x,P) =













η(λ, x,P), if λ= 1,

r

2|xTr|2

kΠm/2m−RΛm)k22 +(2kΠm/2RΛmk2+kΛm/2|2)(krk22−|xTr|2)

mk42 ,if|λ|>1, r

2|xTr|2

kΠm/2m−RΛm)k22 +(2kΠm/2Λmk2+kΛm/2|2)(krk22−|xTr|2)

mk42 , if|λ| ≤1.

Forj= 0 : (m−2)/2,consider

4Aj :=





1

kΛmk22[rxH−xrT], ifλ= 1

Fj, ifλ6= 1

, 4Am/2:=







1

kΛmk22[rxH−xrT], ifλ= 1

λm/2

kΛmk22[rxH−xrT], ifλ6= 1 and 4Am−j = −ATj, j = 0 : (m−2)/2. Then 4P(z) = Pm

j=0zj4Aj is a unique polynomial such that 4P S,P(λ)x+4P(λ)x = 0 and |||4P|||F = ηFS(λ, x,P). Next, define

4Aj :=



















 1

kΛmk22[rxH−xrT], ifλ= 1 Fj+ (j|2λm−j− |λm−j|2λj)xTrPxTrrTPx

m−j|2kΠm/2m−RΛm)k22(krk22− |xTr|2), if|λ|>1

Fj+ (j|2λm−j− |λm−j|2λj)xTrPxTrrTPx

j|2kΠm/2m−RΛm)k22(krk22− |xTr|2), if|λ| ≤1, λ6= 1

4Am/2 :=







 1

kΛmk22[rxH−xrT], ifλ= 1 λm/2

kΛmk22[rxH−xrT], ifλ6= 1

and4Am−j =−ATj, j = 0 : (m−2)/2. Then 4P(z) = Pm

j=0zj4Aj is a polynomial such that4PS,4PSsuch that P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).

Proof: First assume that PS andmis odd. By Theorem 5.2.2 there exists 4PSsuch that 4P(λ)x+ P(λ)x= 0.Forj= 0 : (m−1)/2,consider

4Agj :=QT4AQ=

à ajj aTj bj Xj

!

and 4Am−j =−4ATj, j= 0 : (m−1)/2, where Q= [x, Q1] is a unitary matrix. Since4P(λ)x+ P(λ)x= 0,we have,



P(m−1)/2

j=0 λjajjP(m−1)/2

j=0 λm−jajj P(m−1)/2

j=0 λjbjP(m−1)/2

j=0 λm−jaj

= Ã xTr

QT1r

! .

The minimum norm solution of P(m−1)/2

j=0 λjbjP(m−1)/2

j=0 λm−jaj =QT1r is given by bj =

λj

kΛmk22QT1r andaj =kΛλm−j

mk22QT1r, j= 0 : (m−1)/2.

Forλ= 1,we havexTr= 0. Hence the minimum norm solution ofPm

j=0λjajj =xTr, is ajj = 0, j= 0 :m.Thus we have

4Aj=Q

 0 λm−jkΛ(QT1r)T

mk22 λjQT1r

kΛmk22 Xj

QH, Am−j=ATj j= 0 : (m−1)/2.

Setting Xj = 0, j = 0 : mwe have the minimum Frobenius norm of 4Aj. Consequently we have,

ηFS(λ, x,P) = 2 krk2

kΛmk2

=

2η(λ, x,P).

Simplifying the expression of4Aj, j= 0 :mwe obtain the desired result.

Next suppose thatλ6= 1.Then the minimum norm solution of

(m−1)/2X

j=0

λjajj

(m−1)/2X

j=0

λm−jajj =xTr

is given by

ajj = λj−λm−j

kΠ(m+1)/2m−RΛm)k22xTr, j= 0 : (m−1)/2.

Therefore we have

4Aj=Q



λj−λm−j

kΠ(m+1)/2m−RΛm)k22xTr λm−jkΛ(QT1r)T

mk22

λjQT1r

kΛmk22 Xj



QH, j= 0 : (m−1)/2.

TakingXj= 0,we obtain the minimum Frobenius norm of4Aj and consequently we have

ηSF(λ, x,P) = 2

vu

utP(m−1)/2

j=0 j−λm−j|2|xTr|2 kΠ(m+1)/2m−RΛm)k42 +

P(m−1)/2

j=0 (m−j|2+j|2)(krk22− |xTr|2) kΛmk42

=

2 s

|xTr|2

kΠ(m+1)/2m−RΛm)k22+krk22− |xTr|2 kΛmk22 .

Simplifying the expression of4Aj for allj = 0 : (m−1)/2 we obtain the desired result.

Next we consider the spectral norm. Assume thatλ= 1.Applying DKW Theorem 1.2.5 to 4Aj we have µ4Aj =kΛkrk2

mk2, j = 0 : (m−1)/2 andXj = 0.Therefore we have η2S(λ, x,P) =

krk2

kΛmk2 =η(λ, x,P).Simplifying the expression of4Ajwe obtain4Aj =kΛ1

mk22[xrT−rxH].

Hence the result follows.

Next, suppose thatλ6= 1.In this case we have

µ4Aj =







 r

j−λm−j|2|xTr|2

kΠ(m+1)/2m−RΛm)k42 +m−j|2kΛ(krk22−|xTr|2)

mk42 , if |λ|>1 r

j−λm−j|2|xTr|2

kΠ(m+1)/2m−RΛm)k42 +j|2(krkkΛ22−|xTr|2)

mk42 , if |λ| ≤1 forj= 0 : (m−1)/2.Therefore applying DKW Theorem 1.2.5 to4Aj we have

Xj =









(j|2λm−j− |λm−j|2λj)xTr(QT1r)(QT1r)T

m−j|2kΠ(m+1)/2m−RΛm)k22(krk22− |xTr|2), if|λ|>1, (j|2λm−j− |λm−j|2λj)xTr(QT1r)(QT1r)T

j|2kΠ(m+1)/2m−RΛm)k22(krk22− |xTr|2), if|λ| ≤1, forj= 0 : (m−1)/2.

Hence we have

ηS2(λ, x,P) =







2 r

|xTr|2

kΠ(m+1)/2m−RΛm)k22 +kΠ(m+1)/2RΛkΛmk22(krk22−|xTr|2)

mk42 , if |λ|>1,

2 r

|xTr|2

kΠ(m+1)/2m−RΛm)k22 +kΠ(m+1)/2ΛkΛmk22(krk22−|xTr|2)

mk42 , if |λ| ≤1.

Simplifying the expression of4Aj forj= 0 : (m−1)/2 we obtain the desired result.

Next, assume that m is even. Note that in this case ATm/2 =−Am/2. Consequently we

have 



P(m−2)/2

j=0 λjajjP(m−2)/2

j=0 λm−jajj

P(m−2)/2

j=0 λjbj+am/2λm/2P(m−2)/2

j=0 λm−jaj

= Ã xTr

QT1r

! .

Note thatam/2,m/2= 0,sinceAm/2is a skew-symmetric matrix. The minimum norm solution ofP(m−2)/2

j=0 λjbj+am/2λm/2P(m−2)/2

j=0 λm−jaj=QT1ris given by bj =λjQT1r

kΛmk22, aj=−λm−jQT1r

kΛmk22 , am/2=λm/2QT1r

kΛmk22 , j= 0 : (m−2)/2.

Forλ= 1, xTr= 0.Hence the minimum norm solution ofP(m−2)/2

j=0 λjajjP(m−2)/2

j=0 λm−jajj = 0 is given by ajj = 0.Consequently, we have,

4Aj =Q

 0 (QkΛT1r)T

mk22 QT1r

kΛmk22 Xj

QH, j = 0 : (m−2)/2.

Setting Xj = 0, j = 0 : (m−2)/2 we obtain the minimum norm of4Aj and consequently we haveηSF(λ, x,P) =

2η(λ, x,P).Simplifying the expression of4Aj we obtain the desired

result.

Next, suppose thatλ6= 1.Then the minimum norm solution of

(m−2)/2X

j=0

λjajj

(m−2)/2X

j=0

λm−jajj =xTr

is given by

ajj = λj−λm−j

kΠm/2m−RΛm)k22xTr andam/2,m/2= 0. Consequently, forj= 0 : (m−2)/2,we obtain

4Aj = Q



λj−λm−j

kΠm/2m−RΛm)k22xTr λm−jkΛ(QT1r)T

mk22

λjQT1r

kΛmk22 Xj



QH,

4Am/2 = Q

 0 λm/2kΛ(QT1r)T

mk22 λm/2QT1r

kΛmk22 Xm/2

QH.

SettingXj= 0 =Xm/2,we get the minimum Frobenius norm of4Ajand4Am/2respectively and these give,

ηFS(λ, x,P) = 2

s

|xTr|2

kΠm/2m−RΛm)k22 +krk22− |xTr|2 kΛmk22 . Simplifying the expressions of4Aj forj= 0 :m/2 we obtain the desired result.

Next consider spectral norm. Suppose thatλ= 1.Then considerµ4Aj = kΛkrk2

mk2 and by DKW Theorem 1.2.5, we have Xj = 0.Therefore we have ηS2(λ, x,P) = kΛkrk2

mk2 =η(λ, x,P).

Simplifying the expression of 4Aj we obtain 4Aj = kΛ1

mk22[xrT −rxH] for j = 0 :m/2.

Hence the result follows.

Next, suppose λ 6= 1. Consider µ4Am/2 =

qm|2(krk22−|xTr|2)

kΛmk42 . Then again by DKW Theorem 1.2.5 we have Xm/2= 0.Now forj= 0 : (m−2)/2 consider

µ4Aj =







 r

j−λm−j|2|xTr|2

kΠm/2m−RΛm)k42 +m−j|2kΛ(krk22−|xTr|2)

mk42 , if |λ|>1, r

j−λm−j|2|xTr|2

kΠm/2m−RΛm)k42 +j|2(krkkΛ22−|xTr|2)

mk42 , if |λ| ≤1.

Then by DKW Theorem 1.2.5 applied to4Aj we have

Xj=









(j|2λm−j− |λm−j|2λj)xTr(QT1r)(QT1r)T

m−j|2kΠm/2m−RΛm)k22(krk22− |xTr|2), if |λ|>1, (j|2λm−j− |λm−j|2λj)xTr(QT1r)(QT1r)T

j|2kΠm/2m−RΛm)k22(krk22− |xTr|2), if |λ| ≤1,

forj= 0 : (m−2)/2.Therefore we have

ηS2(λ, x,P) =







 r

2|xTr|2

kΠm/2m−RΛm)k22 +(2kΠm/2RΛmk2+kΛm/2|2)(krk22−|xTr|2)

mk42 , if |λ|>1, r

2|xTr|2

kΠm/2m−RΛm)k22 +(2kΠm/2Λmk2+kΛm/2|2)(krk22−|xTr|2)

mk42 , if |λ| ≤1.

Simplifying the expressions of4Aj forj= 0 :m/2 we obtain the desired result. ¥

Analogous to theT-palindromic polynomial we conclude that if K is aT-anti-palindromic polynomial such that P(λ)x+ K(λ)x= 0 then K(z) =4P(z) + (I−xxH)TN(z)(I−xxH) for some T-anti-palindromic polynomial N,where4P is given in Theorem 5.3.3.

Remark 5.3.4. If |xTr|=krk2,then kQT1rk2= 0. In such a case, considering Xj = 0, j = 0 :m, we obtain the desired results.

Next we consider H-palindromic/H-anti-palindromic polynomials. To make the presen- tation simple we proceed as follows.

Letz=a+i b∈C.Define a map vec :CR2by vec(z) =

à re(z)

im(z)

!

.Further define a map M:CR2×2 byM(z) =

Ã

re(z) im(z) im(z) re(z)

!

. Then the following hold:

vec(z) = Σ vec(z),where Σ =

à 1 0 0 1

! .

vec(z1z2) =M(z1)vec(z2), z1, z2C.

M(z) =M(z)T.

Assume that λ∈C, andajj C.Then if we havePm

j=0λiajj =xHrthen applying the map vec both sides we obtain

vec(

Xm

j=0

λiajj) = vec(xHr) Xm

j=0

M(λi)vec(ajj) = vec(xHr). (5.1)

Theorem 5.3.5. Let S be the space ofH-palindromic polynomials. Assume that PS and (λ, x)C×Cn. Settingr:=P(λ)x,we have the following.

1. Let mbe odd. Then

ηFS(λ, x,P) =



1 m+1

p2krk22− |rHx|2≤√

2η(λ, x,P), if|λ|= 1

2 q

kbrk22+krkkΛ22−|xHr|2

mk22 , if|λ| 6= 1.

η2S(λ, x,P) =















η(λ, x,P), if|λ|= 1

2 r

kbrk22+kΠ(m+1)/2RΛkΛmk2 (krk22−|xHr|2)

mk42 , if|λ|>1

2 r

kbrk22+kΠ(m+1)/2ΛmkΛk2 (krk22−|xHr|2)

mk42 , if|λ|<1.

wherebr= h

H0 H1 . . . H(m−1)/2 i

vec(xHr) and

Hj=



re(λj) +re(λm−j) im(λj) +im(λm−j) im(λj) +im(λm−j) re(λj)re(λm−j)

, j= 0 : (m−1)/2.

Let Ej:= kΛ1

mk22[λm−jxrHPx+λjPxrxH].Forj= 0 : (m−1)/2 define 4Aj :=



λj

kΛmk22xrHxxH+Ej, if |λ|= 1 eTjbrxxH+Ej, if |λ| 6= 1 and 4Am−j = 4AHj . Then 4P(z) = Pm

j=0zj4Aj is a unique polynomial such that 4PS,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).Next define

4Aj:=



















λj

kΛmk22xrHxxH+Ej xHr λm−jPxrrHPx

kΛmk22 (krk22− |xHr|2), if |λ|= 1 eTjrxxb H+Ej eTjr λb j λm−j PxrrHPx

m−j|2 (krk22− |xHr|2), if |λ|>1 eTjrxxb H+Ej−eTjbr λj λm−j PxrrHPx

i|2 (krk22− |xHr|2) , if |λ|<1 forj= 0 : (m−1)/2with4Am−j=4AHj .Then4P(z) =Pm

j=0zj4Ajis a polynomial such that4PS,P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).

2. Let mbe even. Then

ηFS(λ, x,P) =



1 m+1

p2krk22− |rHx|2≤√

2η(λ, x,P), if|λ|= 1 q

(2kbrk22− |eTm/2br|2) + 2krkkΛ22−|xHr|2

mk22 , if|λ| 6= 1.

η2S(λ, x,P) =











η(λ, x,P) if|λ|= 1

r

(2kbrk22− |eTm/2br|2) +(2kΠm/2RΛmk22+kΛm/2|2)(krk22−|xHr|2)

mk42 , if|λ|>1 r

(2kbrk22− |eTm/2br|2) +(2kΠm/2Λmk22+kΛm/2|2)(krk22−|xHr|2)

mk42 , if|λ|<1.

wherebr=h

H0 H1 . . . H(m−2)/2 Hm/2 i

vec(xHr)and

Hj = Ã

re(λj) +re(λm−j) im(λj) +im(λm−j im(λj) +im(λm−j) re(λj)re(λm−j)

!

, j = 0 : (m−2)/2,

Hm/2 =

à re(λm/2) im(λm/2)

! .

LetFj:= kΛ1

mk22[λm−jxrHPx+λjPxrxH]andGm/2:=kΛ1

mk22[λm/2xrHPx+λm/2PxrxH].

Then for j= 0 : (m−2)/2,define

4Aj:=





λj

kΛmk22xrHxxH+Fj, if |λ|= 1 eTjbrxxH+Fj, if |λ| 6= 1

,4Am/2:=















λm/2

kΛmk22xrHxxH+Gm/2, if|λ|= 1 eTm/2brxxH+Gm/2,

if|λ| 6= 1 and 4Am−j = 4AHj . Then 4P(z) = Pm

j=0zj4Aj is a unique polynomial such that 4PS,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).Next define

4Aj :=



















λj

kΛmk22xxHrxH+Fj λm−j rHx PxrrHPx

kΛmk22 (krk22− |rHx|2), if |λ|= 1 eTjbrxxH+Fj eTjbr λj λm−j PxrrHPx

m−j|2 (krk22− |xHr|2), if |λ|>1 eTjbrxxH+Fj−eTjbr λj λm−j PxrrHPx

i|2 (krk22− |xHr|2) , if |λ|<1

4Am/2 :=







 λm/2

kΛmk22xxHrxH+Gm λm/2 rHx PxrrHPx

kΛmk22 (krk22− |rHx|2), if|λ|= 1 eTm/2brxxH+Gm/2−eTm/2r Pb xrrHPx

(krk22− |xHr|2), if|λ| 6= 1.

and 4Am−j = 4AHj . Then 4P(z) = Pm

j=0zj4Aj is a polynomial such that 4P S,P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).

Proof: Let PSgiven by P(z) =Pm

j=0zjAj.First suppose thatmis odd. By Theorem 5.2.2 there exists4PS,such that4P(λ)x+ P(λ)x= 0.Define

4Aj:=Q

à ajj aHj bj Xj

!

QH, Xm−j =XjH, j= 0 : (m−1)/2,

where Q= [x, Q1] is a unitary matrix. Since4P(λ)x+ P(λ)x= 0,we have

à Pm

j=0λjajj

P(m−1)/2

j=0 λjbj+P(m−1)/2

j=0 λm−jaj

!

=

à xHr QH1 r

! .

Consequently, the minimum norm solution of P(m−1)/2

j=0 λjbj+P(m−1)/2

j=0 λm−jaj =QH1r is given by

bj= λj

kΛmk22QH1r, aj = λm−j

kΛmk22QH1 r, j= 0 : (m−1)/2.

Note that for |λ| = 1, we have xHr = λmxHr. Hence the minimum norm solution of

Pm

j=0λjajj =xHrisajj =kΛλj

mk22xHr, j= 0 :m.Therefore we have

4Aj = Q



λj

kΛmk22xHr kΛλm−j

mk22(QH1 r)H

λj

kΛmk22QH1 r Xj



QH,

4Am−j = 4AHj , j= 0 : (m−1)/2.

Setting Xj = 0 givesηSF(λ, x,P) = m+11 p

2krk22− |rHx|2. Simplifying the expressions for 4Ajs we obtain the desired result.

Next, let|λ| 6= 1. The value ofajj for the equationPm

j=0λjajj =xHr, j= 0 : (m−1)/2 is achieved after employing the condition ajj =am−j,m−jj= 0 : (m−1)/2 in equation (5.1) which becomes

(m−1)/2X

j=0

(M(λj) +M(λm−j)Σ)vec(ajj) = vec(xHr) and the solution is given by ajj =eTjbrwhere

b r=h

H0 H1 . . . H(m−1)/2

i

vec(xHr) and

Hj=

à re(λj) +re(λm−j) im(λj) +im(λm−j) im(λj) +im(λm−j) re(λj)re(λm−j)

! . Thus we obtain,

4Aj=Q



eTjbr λm−j(QkΛH1r)H

mk22

λjQH1r

kΛmk22 Xj



QH, j= 0 : (m−1)/2.

SettingXj= 0,we obtainηFS(λ, x,P) = 2

q

kbrk22+krkkΛ22−|xHr|2

mk22 .Simplifying the expressions of4Ajs we obtain the desired result.

Next we consider spectral norm. If|λ|= 1 applying DKW Theorem 1.2.5 to4Ajwe have µ4Aj = kΛkrk2

mk22 and

Xj=−xHr λm−jQH1 r(QH1r)H

kΛmk22 (krk22− |xHr|2), j= 0 : (m−1)/2.

This gives, η2S(λ, x,P) = krkm+12 =η(λ, x,P).Simplifying the expressions for 4Ajs we obtain the desired result.

Further, for|λ| 6= 1,we consider,

µ4Aj =



 q

|eTjr|b2+m−j|2kΛ(krk22−|xHr|2)

mk42 , if|λ|>1 q

|eTjr|b2+i|2 (krkkΛ22−|xHr|2)

mk42 , if|λ|<1

forj= 0 : (m−1)/2.Then by DKW Theorem 1.2.5 we have

Xj=





eTjbr λm−jj λ|2m−j(krkQ22H1−|xr(QHH1r|2r))H, if|λ|>1

eTjbr λ

j λm−j QH1r(QH1r)H

i|2 (krk22−|xHr|2) , if|λ|<1.

This gives

η2S(λ, x,P) =







2 r

kbrk2+kΠ(m+1)/2RΛkΛmk2 (krk22−|xHr|2)

mk42 , if|λ|>1

2 r

kbrk2+kΠ(m+1)/2ΛmkΛk2(krk22−|xHr|2)

mk42 , if|λ|<1.

Simplifying the expressions of4Aj for allj = 0 : (m−1)/2 we obtain the desired result.

Now suppose that P S and m is even. Notice that Am/2 =AHm/2. By Theorem 5.2.2 there exists a polynomial 4PS such that4P(λ)x+ P(λ)x= 0.Define

4Aj := Q Ã

ajj aHj bj Xj

!

QH, Xm−j =XjH, j= 0 : (m−2)/2,

4Am/2 := Q

à am/2,m/2 aHm/2 am/2 Xm/2

!

QH, Xm/2=Xm/2H . Since4P(λ)x+ P(λ)x= 0, we have

à Pm

j=0λjajj

P(m−2)/2

j=0 λjbj+P(m−2)/2

j=0 λm−jaj+λm/2am/2

!

=

à xHr QH1 r

! .

The minimum norm solution of P(m−2)/2

j=0 λjbj+P(m−2)/2

j=0 λm−jaj+λm/2am/2 = QH1r is given by

bj = λj

kΛmk22, aj= λm−j

kΛmk22, am/2= λm/2 kΛmk22.

Note that for |λ| = 1, we have xHr = λmxHr. Hence the minimum norm solution of Pm

j=0λjajj =xHris given byajj = kΛλj

mk22xHr, j= 0 :m.Therefore we have

4Aj = Q



λj

kΛmk22xHr kΛλm−j

mk22(QH1 r)H

λj

kΛmk22QH1 r Xj



QH,

4Am/2 = Q



λm/2

kΛmk22xHr kΛλm/2

mk22(QH1 r)H

λm/2

kΛmk22QH1 r Xm/2



QH,

4Am−j = 4AHj , j= 0 : (m−2)/2, which gives, ηSF(λ, x,P) = m+11 p

2krk22− |rHx|2. Simplifying the expressions of4Aj for j = 0 :m/2 we obtain the desired result.

Now let |λ| 6= 1. Then the value of ajj from the equation Pm

j=0λjajj = xHr, j = 0 :

(m−2)/2 is achieved after employing the conditionajj =am−j,m−j, j = 0 : (m−2)/2 and am/2,m/2Rin equation (5.1) which becomes

(m−2)/2X

j=0

(M(λj) +M (λm−j)Σ)vec(ajj) +M(λm/2)vec(am/2,m/2) = vec(xHr).

The solution is then given byajj =eTjbr, j= 0 :m/2 where b

r= h

H0 H1 . . . H(m−2)/2 Hm/2 i

vec(xHr) and

Hj = Ã

re(λj) +re(λm−j) im(λj) +im(λm−j) im(λj) +im(λm−j) re(λj)re(λm−j)

!

, j= 0 : (m−2)/2, and

Hm/2 =

à reλm/2 imλm/2

! .

Therefore we obtain,

4Aj = Q



eTjbr λm−j(QkΛH1r)H

mk22

λjQH1r

kΛmk22 Xj



QH,

4Am/2 = Q



eTm/2rb λm/2 (kΛQH1r)H

mk22

λm/2QH1r

kΛmk22 Xm/2



QH,

4Am−j = 4AHj , j= 0 : (m−2)/2.

Setting Xj = 0 =Xm/2, j= 0 : (m−2)/2 we obtain

ηFS(λ, x,P) = s

(2kbrk22− |eTm/2r|b2) + 2krk22− |xHr|2 kΛmk22 . Simplifying the expressions for 4Ajs we obtain the desired result.

Next we consider spectral norm. Note that for |λ| = 1, we have xHr =λmxHr. Conse- quently, λj rHx =λm−j xHr. Consider µ4Aj = kΛkrk2

mk22. Applying DKW Theorem 1.2.5 to 4Aj,we have

Xj=−λm−j rHx QH1 r(QH1 r)H

kΛmk22 (krk22− |rHx|2), Xm/2=−λm/2 rHx QH1r(QH1r)H kΛmk22 (krk22− |rHx|2)

which givesηS2(λ, x,P) = krkm+12 .Simplifying the expressions for 4Ajs we obtain the desired result.

If|λ| 6= 1 consider

µ4Aj =



 q

|eTjr|b2+m−j|2kΛ(krk22−|xHr|2)

mk42 , if|λ|>1 q

|eTjr|b2+i|2 (krkkΛ22−|xHr|2)

mk42 , if|λ|<1 µ4Am/2 =

s

|eTm/2br|2+m|2 (krk22− |xHr|2) kΛmk42

forj= 0 : (m−2)/2.Then again by DKW Theorem 1.2.5 we have

Xj =





eTjbr λm−jj λ|2m−j(krkQ22H1−|xr(QHH1r|2r))H, if|λ|>1

eTjbr λij|2λ(krkm−j22Q−|xH1r(QHr|H12)r)H, if|λ|<1, Xm/2 = −eTm/2br QH1r(QH1r)H

(krk22− |xHr|2) forj= 0 : (m−2)/2.This gives

ηS2(λ, x,P) =







 r

(2kbrk22− |eTm/2br|2) +(2kΠm/2RΛmk22+kΛm/2|2)(krk22−|xHr|2)

mk42 , if|λ|>1 r

(2kbrk22− |eTm/2br|2) +(2kΠm/2Λmk22+kΛm/2|2)(krk22−|xHr|2)

mk42 , if|λ|<1.

Simplifying the expressions of4Ajs we obtain the desired result.¥

It is evident from the proof of Theorem 5.3.5 that, if K is a H-palindromic polynomial such that P(λ)x+ K(λ)x = 0 then K(z) = 4P(z) + (I−xxH)TN(z)(I−xxH) for some H-palindromic polynomial N,where4P is given in Theorem 5.3.5.

Remark 5.3.6. If |xHr|=krk2,thenkQH1 rk2= 0. In such a case, consideringXj= 0, j = 0 :m, we obtain the desired results.

Theorem 5.3.7. Let S be the space of H-anti-palindromic polynomials. Assume that PS and(λ, x)C×Cn. Settingr:=P(λ)x, we have the following.

1. mbe odd:

ηFS(λ, x,P) =



1 m+1

p2krk22− |rHx|2≤√

2η(λ, x,P), if|λ|= 1

2 q

kbrk22+krkkΛ22−|xHr|2

mk22 , if|λ| 6= 1.

η2S(λ, x,P) =











η(λ, x,P), if|λ|= 1

2 r

kbrk22+kΠ(m+1)/2RΛkΛmk2 (krk22−|xHr|2)

mk42 , if|λ|>1

2 r

kbrk22+kΠ(m+1)/2ΛmkΛk2 (krk22−|xHr|2)

mk42 , if|λ|<1.

wherebr= h

H0 H1 . . . H(m−1)/2 i

vec(xHr) and

Hj= Ã

re(λj)re(λm−j) im(λj)im(λm−j) im(λj)im(λm−j) re(λj) +re(λm−j)

! .

Let Ej:= kΛ1

mk22[λjPxrxH−λm−jxrHPx].Then for j= 0 : (m−1)/2 define

4Aj:=



 λj

kΛmk22xrHxxH+Ej, if|λ|= 1 eTjbrxxH+Ej, if|λ| 6= 1 and4Am−j =−4AHj . Then 4P(z) = Pm

j=0zj4Aj is a unique polynomial such that 4PS,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).Next define

4Aj:=



















λj

kΛmk22xrHxxH+Ej+ xHr λm−jPxrrHPx

kΛmk22 (krk22− |xHr|2), if |λ|= 1 eTjrxxb H+Ej+ eTjr λb j λm−j PxrrHPx

m−j|2 (krk22− |xHr|2), if |λ|>1 eTjrxxb H+Ej+eTjbr λj λm−j PxrrHPx

i|2 (krk22− |xHr|2) , if |λ|<1 for j = 0 : (m−1)/2 with 4Am−j = −4AHj . Then 4P(z) = Pm

j=0zj4Aj is a polynomial such that 4PS,P(λ)x+4P(λ)x= 0 and|||4P|||2=η2S(λ, x,P).

2. mis even:

ηFS(λ, x,P) =



1 m+1

p2krk22− |rHx|2≤√

2η(λ, x,P), if|λ|= 1 q

(2kbrk22− |eTm/2br|2) + 2krkkΛ22−|xHr|2

mk22 , if|λ| 6= 1.

η2S(λ, x,P) =











η(λ, x,P) if|λ|= 1

r

(2kbrk22− |eTm/2br|2) +(2kΠm/2RΛmk22+kΛm/2|2)(krk22−|xHr|2)

mk42 , if|λ|>1 r

(2kbrk22− |eTm/2br|2) +(2kΠm/2Λmk22+kΛm/2|2)(krk22−|xHr|2)

mk42 , if|λ|<1.

wherebr=h

H0 H1 . . . H(m−2)/2 Hm/2

i

vec(xHr),

Hj =

à re(λj) +re(λm−j) im(λj) +im(λm−j) im(λj) +im(λm−j) re(λj)re(λm−j)

!

, j= 0 : (m−2)/2, and

Hm/2 =

à im(λm/2) re(λm/2)

! .

LetFj:= kΛ1

mk22[λjPxrxH−λm−jxrHPx]andGm/2:=kΛ1

mk22[λm/2PxrxH−λm/2xrHPx].

Then for j= 0 : (m−2)/2,define

4Aj :=



 λj

kΛmk22xrHxxH+Fj, if |λ|= 1 eTjbrxxH+Fj, if |λ| 6= 1

,4Am/2:=











 λm/2

kΛmk22xrHxxH+Gm/2, if|λ|= 1 i eTm/2brxxH+Gm/2,

if|λ| 6= 1 and4Am−j =−4AHj . Then 4P(z) = Pm

j=0zj4Aj is a unique polynomial such that 4PS,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).Next define

4Aj :=



















λj

kΛmk22xxHrxH+Fj+ λm−j rHx PxrrHPx

kΛmk22 (krk22− |rHx|2), if |λ|= 1 eTjbrxxH+Fj+ eTjbr λj λm−j PxrrHPx

m−j|2 (krk22− |xHr|2), if |λ|>1 eTjbrxxH+Fj+eTjbr λj λm−j PxrrHPx

i|2 (krk22− |xHr|2) , if |λ|<1

4Am/2 :=







 λm/2

kΛmk22xxHrxH+Gm/2+ λm/2 rHx PxrrHPx

kΛmk22 (krk22− |rHx|2), if|λ|= 1 i eTm/2rxxb H+Gm/2+ieTm/2br PxrrHPx

(krk22− |xHr|2), if|λ| 6= 1.

and4Am−j =−4AHj forj= 0 : (m−2)/2.Then4P(z) =Pm

j=0zj4Aj is a polyno- mial such that4PS,P(λ)x+4P(λ)x= 0 and|||4P|||2=η2S(λ, x,P).

Proof: First assume thatm is odd. By Theorem 5.2.2 we know that there exists4P S, such that4P(z)x+ P(z)x= 0.Define

4Aj:=Q

à ajj aHj bj Xj

!

QH, Am−j =−AHj , j= 0 : (m−1)/2.

Since4P(λ)x+ P(λ)x= 0, we have

à Pm

j=0λjajj

P(m−1)/2

j=0 λjbjP(m−1)/2

j=0 λjaj

!

=

à xHr QH1 r

! .

The minimum norm solution of P(m−1)/2

j=0 λjbjP(m−1)/2

j=0 λm−jaj =QH1 ris given by bj =

λj

kΛmk22 andaj =kΛλm−j

mk22.

Note that for |λ| = 1, we havexHr =−λmxHr. Hence the minimum norm solution of Pm

j=0λjajj =xHrisajj =kΛλj

mk22xHr, j= 0 : (m−1)/2.Thus we have

4Aj = Q



λj

kΛmk22xHr kΛλm−j

mk22(QH1r)H

λj

kΛmk22QH1r Xj



QH, 4Am−j = −4AHj j= 0 : (m−1)/2.

SettingXj= 0 we haveηS(λ, x,P) =m+11 p

2krk22− |rHx|2.Simplifying the expressions for 4Aj forj= 0 : (m−1)/2 we obtain the desired result.

Now suppose that|λ| 6= 1.The the value ofajj fromPm

j=0λjajj =xHr, is achieved after employing the conditionajj =−am−j,m−j j= 0 : (m−1)/2.applying vec both sides by (5.1) we have

(m−1)/2X

j=0

(M(λj)M(λm−j)Σ)vec(ajj) = vec(xHr)

which givesajj =eTjr, jb = 0 : (m−1)/2 wherebr= h

H0 H1 . . . H(m−1)/2 i

vec(xHr) and

Hj=

à re(λj)re(λm−j) im(λj)im(λm−j) im(λj)im(λm−j) re(λj) +re(λm−j)

! .

Consequently we have

4Aj=Q



eTjbr kΛλm−j

mk22(QH1r)H

λj

kΛmk22QH1r Xj



QH,4Am−j =−4AHj , j= 0 : (m−1)/2.

Setting Xj = 0 we obtain the minimum Frobenius norm of4Aj and hence we have

ηSF(λ, x,P) = 2

s

kbrk22+krk22− |xHr|2 kΛmk22 . Simplifying the expression of4Aj we obtain the desired result.

Next consider spectral norm. From the construction of 4Aj it is easily seen that the ηS2(λ, x,P) will be same as that given in Theorem 5.3.5 and hence desired results follow.

Now suppose that mis even. By Theorem 5.2.2 we know that there exists 4PSsuch that 4P(λ)x+ P(λ)x= 0.Forj= 0 : (m−2)/2 define

4Aj :=Q Ã

ajj aHj bj Xj

!

QH,4Am/2=Q

à am/2,m/2 −aHm/2 am/2 Xm/2

! QH.

Since4P(λ)x+ P(λ)x= 0, we have

à Pm

j=0λjajj

P(m−2)/2

j=0 λjbjP(m−2)/2

j=0 λm−jaj+λm/2am/2

!

=

à xHr QH1 r

! .

The minimum norm solution of P(m−2)/2

j=0 λjbjP(m−2)/2

j=0 λm−jaj+λm/2am/2=QH1ris bj= λj

kΛmk22QH1r, aj = λm−j

kΛmk22QH1r, am/2= λm/2 kΛmk22QH1r.

Note that for |λ| = 1, we havexHr =−λmxHr. Hence the minimum norm solution of Pm

j=0λjajj =xHrisajj = kΛλj

mk22xHr, j= 0 : (m−2)/2.Note thatam/2,m/2∈iR.Thus we

have

4Aj = Q



λj

kΛmk22xHr kΛλm−j

mk22(QH1r)H

λj

kΛmk22QH1 r Xj



QH,

4Am/2 = Q



λm/2

kΛmk22xHr kΛλm/2

mk22(QH1r)H

λm/2

kΛmk22QH1 r Xm/2



QH,

4Aj = −4AHm−j, j= 0 : (m−2)/2.

Setting Xj = 0 = Xm/2 givesηSF(λ, x,P) = m+11 p

2krk22− |rHx|2 if|λ|= 1.Simplifying the expressions for4Aj we obtain the desired result.

Now suppose that|λ| 6= 1.The value of ajj from the equation Pm

j=0λjajj =xHr, j= 0 : (m−2)/2 is obtained after employing the conditionajj =−am−j,m−j j= 0 : (m−2)/2 and am/2,m/2∈iR.Then applying vec operator both sides, by (5.1) we haveajj =eTjvec(br), j = 0 : (m−2)/2 andam/2,m/2=i eTm/2vec(br) where

b r = h

H0 H1 . . . H(m−2)/2 Hm/2

i

vec(xHr), Hj =

à re(λj) +re(λm−j) im(λj) +im(λm−j) im(λj) +im(λm−j) re(λj)re(λm−j)

!

, j= 0 : (m−2)/2, and

Hm/2 = Ã

im(λm/2) re(λm/2)

! .

Consequently we have

4Aj = Q



eTjrb kΛλm−j

mk22(QH1r)H

λj

kΛmk22QH1 r Xj



QH,

4Am/2 = Q



i eTm/2br kΛλm/2

mk22(QH1r)H

λm/2

kΛmk22QH1 r Xm/2



QH,

4Aj = −4AHm−j, j= 0 : (m−2)/2.

Setting Xj = 0 =Xm/2 we obtain

ηFS(λ, x,P) = s

(2kbrk22− |eTm/2r|b2) + 2krk22− |xHr|2 kΛmk22 . Simplifying the expressions for 4Aj’s we obtain the desired result.

Next consider spectral norm. From the construction of4Ajit is easily seen thatηS2(λ, x,P) will be same as that given in Theorem 5.3.5 and hence the proof is similar.¥

It follows from the proof of Theorem 5.3.5 that, if K is aH-anti-palindromic polynomial

such that P(λ)x+ K(λ)x = 0 then K(z) = 4P(z) + (I−xxH)TN(z)(I−xxH) for some H-anti-palindromic polynomial N,where4P is given in Theorem 5.3.7.

Remark 5.3.8. If |xHr|=krk2,thenkQH1 rk2= 0. In such a case, consideringXj= 0, j = 0 :m, we obtain the desired results.

5.4 Structured backward error and palindromic lineariza-