In this section we derive structured backward error of an approximate eigenpair (λ, x) of P∈S. The backward error of (λ, x) is defined as the smallest, in norm, perturbation4P of P such that (λ, x) is an eigenpair of P +4P, that is, (P(λ) +4P(λ))x= 0. We make the convention throughout the chapter that,4P∈Pm(Cn×n) is of the form4P =Pm
j=0zj4Aj. Recall that the Frobenius and the spectral norm defined on Pm(Cn×n) are given by
|||P|||F :=
Xm
j=0
kAjk2F
1/2
and|||P|||2:=
Xm
j=0
kAjk22
1/2
respectively where P(z) = Pm
i=0zjAj. Then it follows that, for any λ ∈ C,kP(λ)k ≤
|||P|||F,2 kΛmk2,where Λm= [1, λ, . . . , λm]T.
By convention, if (λ, x)∈C×Cn,thenxis assumed to be nonzero, that is,x6= 0.Treating (λ, x) as an approximate eigenpair of the polynomial P∈Pm(Cn×n),we define the backward error of (λ, x) by
ηF(λ, x,P) := min
4P∈Pm(Cn×n){|||4P|||F : P(λ)x+4P(λ)x= 0}, η2(λ, x,P) := min
4P∈Pm(Cn×n){|||4P|||2: P(λ)x+4P(λ)x= 0}.
Setting r:=−P(λ)x,we haveηF(λ, x,P) =krk2/kxk2kΛmk2=η2(λ, x,P),see (4.1). Hence- forth, we denote ηF(λ, x,P) andη2(λ, x,P) byη(λ, x,P).
Next assume that P∈S.Then we define the structured backward error of (λ, x) by ηFS(λ, x,P) := min
4P∈S{|||4P|||F : P(λ)x+4P(λ)x= 0}
η2S(λ, x,P) := min
4P∈S{|||4P|||2: P(λ)x+4P(λ)x= 0}.
Unless otherwise stated, we denoteηS(λ, x,P) for bothηSF(λ, x,P) andη2S(λ, x,P).
By Theorem 5.2.1 and Theorem 5.2.2 it is obvious to see that ηS(λ, x,P) < ∞ and η(λ, x,P)≤ηS(λ, x,P).
To make the presentation simple we define Πi:Cm→Cm,by
Πi([x0, x1, x1, . . . , xm−1]T) := [x0, x1, x2, . . . , xi−1,0,0, . . . ,0]T.
We consider flip operatorR=
1 . .. 1
∈Rm×m.
Theorem 5.3.1. Let S be a space of T-palindromic polynomials and P ∈ S. Assume that (λ, x)is an approximate eigen-pair of Pand setr:=−P(λ)x.Then we have the following
1. mis odd:
ηFS(λ, x,P) =
√2η(λ, x,P), ifλ=−1
√2 r
|xTr|2
kΠ(m+1)/2(Λm+RΛm)k22 +krkkΛ22−|xTr|2
mk22 ,ifλ6=±1
η2S(λ, x,P) =
η(λ, x,P)if λ=±1
√2 r
|xTr|2
kΠ(m+1)/2(Λm+RΛm)k22 +kΠ(m+1)/2RΛkΛmk22 (krk22−|xTr|2)
mk42 ,if |λ|>1
√2 r
|xTr|2
kΠ(m+1)/2(Λm+RΛm)k22 +kΠ(m+1)/2ΛmkΛk2 (krk22−|xTr|2)
mk42 , if |λ| ≤1 LetEj:= kΠ λj+λm−j
(m+1)/2(Λm+RΛm)k22(xTr)xxH, Fj:= kΛλj
mk22PxTrxH+kΛλm−j
mk22xrTPx. Forj = 0 : (m−1)/2, define
4Aj:=
( Fj, λ=−1 Ej+Fj, λ6=−1 and 4Am−j = 4ATj. Then 4P(z) = Pm
j=0zj4Aj is a unique polynomial such that 4P∈S,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).Next, define
4Aj :=
Fj, ifλ=−1
Ej+Fj− (|λj|2λm−j+|λm−j|2λj) xTrPxTrrTPx
|λm−j|2 kΠ(m+1)/2(Λm+RΛm)k22 (krk22− |xTr|2), if|λ|>1 Ej+Fj− (|λj|2λm−j+|λm−j|2λj) xTrPxTrrTPx
|λj|2 kΠ(m+1)/2(Λm+RΛm)k22 (krk22− |xTr|2),if |λ| ≤1, λ6=−1 forj= 0 : (m−1)/2and4Am−j =4ATj.Then4P(z) =Pm
j=0zj4Aj is a polynomial such that4P∈S,P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).
2. mis even:
ηFS(λ, x,P) =
√1 m+1
p2krk22− |xTr|2≤√
2η(λ, x,P), if λ=±1
r
(2kΠ(m/2)+1Λm+Πm/2RΛmk22−|λm/2|2)|xTr|2
kΠ(m/2)+1Λm+Πm/2RΛmk42 + 2krkkΛ22−|xTr|2
mk22 ,if λ6=±1
η2S(λ, x,P) =
η(λ, x,P), ifλ=±1
r
kΛm+RΛmk22−3|λm/2|2
kΠ(m/2)+1Λm+Πm/2RΛmk42|xTr|2+(2kΠm/2RΛmk22+|λkΛm/2|2) (krk22−|xTr|2)
mk42 ,
if|λ|>1;
r
kΛm+RΛmk22−3|λm/2|2
kΠ(m/2)+1Λm+Πm/2RΛmk42|xTr|2+(2kΠm/2Λmk22+|λkΛm/2|2) (krk22−|xTr|2)
mk42 ,
if|λ| ≤1.
Set
Gj := λj+λm−j
kΠ(m/2)+1Λm+ Πm/2RΛmk22xxTrxH+ λj
kΛmk22PxTrxH+ λm−j kΛmk22xrTPx
Hm/2 := λm/2
kΠ(m/2)+1Λm+ Πm/2RΛmk22xxTrxH+ λm/2
kΛmk22PxTrxH+ λm/2
kΛmk22xrTPx. Now forj= 0 : (m−2)/2 define
4Aj :=
( λj
kΛmk22(xTr)xxH+kΛ1
mk22[λjPxTrxH+λm−jxrTPx], ifλ=±1
Gj, ifλ6=±1
4Am/2 :=
( λm/2
kΛmk22 [(xTr)xxH+PxTrxH+xrTPx], ifλ=±1
Hm/2, ifλ6=±1
and 4Am−j = 4ATj. Then 4P(z) = Pm
j=0zj4Aj is a unique polynomial such that 4P∈S,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).
Further, forj= 0 : (m−2)/2 define
4Aj :=
λj
kΛmk22(xTr)xxH+kΛ1
mk22[λjPxTrxH+λm−jxrTPx]−kΛλm−j xTrPxTrrTPx
mk22 (krk22−|xTr|2), ifλ=±1 Gj− (|λj|2λm−j+|λm−j|2λj) xTr PxTrrTPx
kΠ(m/2)+1Λm+ Πm/2RΛmk22 |λm−j|2 (krk22− |xTr|2), if|λ|>1
Gj− (|λj|2λm−j+|λm−j|2λj)xTr PxTrrTPx
kΠ(m/2)+1Λm+ Πm/2RΛmk22 |λj|2 (krk22− |xTr|2),if|λ| ≤1, λ6=±1
4Am/2 :=
λm/2
kΛmk22 [(xTr)xxH+PxTrxH+xrTPx]− λm/2xTr PxTrrTPx
kΛmk22 (krk22− |xTr|2),ifλ=±1 Hm/2− λm/2 xTr PxTrrTPx
kΠ(m/2)+1Λm+ Πm/2RΛmk22 (krk22− |xTr|2), ifλ6=±1, and 4Am−j =4ATj. Then 4P(z) = Pm
j=0zj4Aj is a polynomial such that a 4P∈ S,P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).
Proof: First suppose that mis odd. By Theorem 5.2.1 there exists a polynomial 4P ∈S such that4P(λ)x+ P(λ)x= 0.Forj = 0 : (m−1)/2,consider
4Agj:=QT4AQ=
à ajj aTj bj Xj
!
and 4ATj =4Am−j, where Q:= [x, Q1] is a unitary matrix. Now since4P(λ)x+ P(λ)x= 0,we have,
à Pm
j=0λjajj
P(m−1)/2
j=0 λjbj+P(m−1)/2
j=0 λm−jaj
!
= Ã xTr
QT1r
! .
The minimum norm solution of P(m−1)/2
j=0 λjbj+P(m−1)/2
j=0 λm−jaj =QT1r is given by bj =
λj
kΛmk22QT1r andaj = kΛλm−j
mk22QT1r.
Forλ=−1, we havexTr= 0.Hence the minimum norm solution ofPm
j=0λjajj =xTr, isajj = 0.So we have4Aj forj= 0 :m, as follows:
4Aj=Q
0 (kΛλm−j
mk22QT1r)T
λj
kΛmk22QT1r Xj
QH, 4ATj =4Am−j, j= 0 : (m−1)/2.
Setting Xj= 0, j= 0 :m,we obtainηSF(λ, x,P) =√
2√krkm+12 =√
2η(λ, x,P).Simplifying the expressions of4Aj, j= 0 :m,we obtain the desired result.
Now letλ 6=−1. Notice that ajj = am−j,m−j, j = 0 : (m−1)/2. Hence the minimum norm solution ofPm
j=0λjajj =xTrwhich implies P(m−1)/2
j=0 (λj+λm−j)ajj =xTr, is ajj = λj+λm−j
kΠ(m+1)/2(Λm+RΛm)k22xTr.
Thus we obtain
4Aj = Q
λj+λm−j
kΠ(m+1)/2(Λm+RΛm)k22xTr (kΛλm−j
mk22QT1r)T
λj
kΛmk22QT1r Xj
QH, j= 0 : (m−1)/2 4Am−j = ATj, j= 0 : (m−1)/2.
Now setting Xj= 0, j= 0 : (m−1)/2,we have
ηSF(λ, x,P) = √ 2
s
|xTr|2
kΠ(m+1)/2(Λm+RΛm)k22 +krk22− |xTr|2 kΛmk22 . Simplifying the expression of4Aj, i= 0 :mwe obtain the desired result.
In particular, whenλ= 1,we getkΛmk22=m+1 andkΠ(m+1)/2(Λm+RΛm)k22= 2(m+1), which gives,
ηSF(λ, x,P) = 1
√m+ 1 q
2krk22− |xTr|2≤√
2η(λ, x,P).
Now we consider spectral norm. For λ =−1, by DKW Theorem 1.2.5 applied to4Aj
givesµ4Aj = kΛkrk2
mk22 andXj = 0, j= 0 : (m−1)/2.Hence ηS2(λ, x,P) = √krkm+12 =η(λ, x,P).
Thus we obtain the same4Aj that we have obtained for Frobenius norm.
Next letλ6=−1.Forj= 0 : (m−1)/2,applying DKW Theorem 1.2.5 to4Aj,we have
µ4Aj =
r
|λj+λm−j|2
kΠ(m+1)/2(Λm+RΛm)k42|xTr|2+|λm−j|2kΛ(krk22−|xTr|2)
mk42 , if|λ|>1 r
|λj+λm−j|2
kΠ(m+1)/2(Λm+RΛm)k42|xTr|2+|λj|2 (krkkΛ22−|xTr|2)
mk42 , if|λ| ≤1,
and
Xj =
− (|λj|2λm−j+|λm−j|2λj)xTrQT1r(QT1r)T
|λm−j|2 kΠ(m+1)/2(Λm+RΛm)k22(krk22− |xTr|2), if|λ|>1
− (|λj|2λm−j+|λm−j|2λj)xTrQT1r(QT1r)T
|λj|2 kΠ(m+1)/2(Λm+RΛm)k22(krk22− |xTr|2), if|λ| ≤1.
This gives,
η2S(λ, x,P) =
√2 r
|xTr|2
kΠ(m+1)/2(Λm+RΛm)k22 +kΠ(m+1)/2RΛkΛmk22 (krk22−|xTr|2)
mk42 , if|λ|>1
√2 r
|xTr|2
kΠ(m+1)/2(Λm+RΛm)k22 +kΠ(m+1)/2ΛmkΛk2 (krk22−|xTr|2)
mk42 , if|λ| ≤1.
Simplifying the expression of4Aj, j= 0 : (m−1)/2 we obtain the desired result.
Now ifλ= 1, we havekΛmk22 =m+ 1 andkΠ(m+1)/2(Λm+RΛm)k22= 2(m+ 1),which gives,
η2S(λ, x,P) = krk2
√m+ 1 =η(λ, x,P).
Next, suppose thatmis even. Note that,Am/2=ATm/2.Then we have
à Pm
j=0λjajj
P(m−2)/2
j=0 λjbj+P(m−2)/2
j=0 λm−jaj+λm/2am/2
!
= Ã xTr
QT1r
! .
The minimum norm solution ofP(m−2)/2
j=0 λjbj+P(m−2)/2
j=0 λm−jaj+λm/2am/2=QT1ris given by
bj = λj
kΛmk22QT1r, aj= λm−j
kΛmk22QT1r, am/2= λm/2 kΛmk22QT1r.
Forλ=±1,the minimum norm solution ofPm
j=0λjajj =xTris ajj =kΛλj
mk22xTr. Hence we have,
4Aj=Q
λj
kΛmk22xTr kΛλm−j
mk22(QT1r)T
λj
kΛmk22QT1r Xj
QH, 4Am/2=Q
λm/2
kΛmk22xTr kΛλm/2
mk22(QT1r)T
λm/2
kΛmk22QT1r Xm/2
QH,
and 4Am−j =4ATj, j = 0 : (m−2)/2.Setting Xj = 0, j = 0 :m, we have ηFS(λ, x,P) =
√1 m+1
p2krk22− |xTr|2.Simplifying4Ajs forj= 0 :mwe obtain the desired result.
Again, ifλ6=±1,the minimum norm solution ofPm
j=0λjajj =xTris ajj = λj+λm−j
kΠ(m+2)/2Λm+ Πm/2RΛmk22xTr, am/2,m/2= λm/2
kΠ(m+2)/2Λm+ Πm/2RΛmk22xTr.
Hence we have
4Aj = Q
λj+λm−j
kΠ(m+2)/2Λm+Πm/2RΛmk22xTr kΛλm−j
mk22(QT1r)T
λj
kΛmk22QT1r Xj
QH, j= 0 : (m−2)/2,
4Am/2 = Q
λm/2
kΠ(m+2)/2Λm+Πm/2RΛmk22xTr kΛλm/2
mk22(QT1r)T
λm/2
kΛmk22QT1r Xm/2
QH
4Am−j = 4ATj, j= 0 : (m−2)/2.
Setting Xj = 0, j= 0 :m, we have
ηFS(λ, x,P) = s
(2kΠ(m+2)/2Λm+ Πm/2RΛmk22− |λm/2|2)|xTr|2
kΠ(m+2)/2Λm+ Πm/2RΛmk42 + 2krk22− |xTr|2 kΛmk22 . which gives the desired result. Simplifying the expressions of4Aj the desired result follows.
Next we consider spectral norm. If λ= ±1, applying DKW Theorem 1.2.5 to4Aj we have, µ4Aj = kΛkrk2
mk22 for j = 0 : m and η2S(λ, x,P) = √krkm+12 = η(λ, x,P). Now by DKW Theorem 1.2.5, we have
Xj=− λm−j QT1r(QT1r)T
kΛmk22 (krk22− |xTr|2), j= 0 : (m−2)/2, Xm/2=− λm/2QT1r(QT1r)T kΛmk22(krk22− |xTr|2). Therefore, we have
4Aj = λj
kΛmk22rxH+ λm−j
kΛmk22xrTPx− λm−j PxTrrTPx
kΛmk22 (krk22− |xTr|2), 4Am/2 = λm/2
kΛmk22 [rxH+xrTPx]− λm/2 PxTrrTPx
kΛmk22 (krk22− |xTr|2). Again for λ6=±1,we have
µ4Aj =
r
|λj+λm−j|2 |xTr|2
kΠ(m+2)/2Λm+Πm/2RΛmk42 +|λm−j|2kΛ(krk22−|xTr|2)
mk42 , if|λ|>1 r
|λj+λm−j|2 |xTr|2
kΠ(m+2)/2Λm+Πm/2RΛmk42 +|λj|2 (krkkΛ22−|xTr|2)
mk42 , if|λ| ≤1 µ4Am/2 =
s
|λm/2|2|xTr|2
kΠ(m+2)/2Λm+ Πm/2RΛmk42 +|λm/2|2 (krk22− |xTr|2) kΛmk42 . Consequently by DKW Theorem 1.2.5 we have
Xj =
− (|λj|2λm−j+|λm−j|2λj)xTr QT1r(QT1r)T
kΠ(m+2)/2Λm+ Πm/2RΛmk22 |λm−j|2 (krk22− |xTr|2), if|λ|>1
− (|λj|2λm−j+|λ2m−j|2λj)xTr QT1r(QT1r)T
kΠ(m+2)/2Λm+ Πm/2RΛmk22 |λj|2 (krk22− |xTr|2), if|λ| ≤1;
Xm/2 = − λm/2xTr QT1r(QT1r)T
kΠ(m+2)/2Λm+ Πm/2RΛmk22(krk22− |xTr|2).
Hence we obtain
ηS2(λ, x,P) =
r
kΛm+RΛmk22−3|λm/2|2
kΠ(m+2)/2Λm+Πm/2RΛmk42|xTr|2+2kΠm/2RΛmk22+|λkΛm/2|2 (krk22−|xTr|2)
mk42 ,
if|λ|>1 r
kΛm+RΛmk22−3|λm/2|2
kΠ(m+2)/2Λm+Πm/2RΛmk42|xTr|2+2kΠm/2Λmk22+|λkΛm/2|2 (krk22−|xTr|2)
mk42 ,
if|λ| ≤1.
Simplifying the expressions of4Ajs we obtain the desired result.¥
Note that ifY ∈Cn×n is such thatY x= 0 andYTx= 0 thenY = (I−xxH)TZ(I−xxH) for some matrix Z. Hence from the proof of Theorem 5.3.1, we obtain that if K is a T- palindromic polynomial such that P(λ)x+K(λ)x= 0 then K(z) =4P(z)+(I−xxH)TN(z)(I−
xxH) for someT-palindromic polynomial N,where 4P is given in Theorem 5.3.1.
Remark 5.3.2. If |xTr|=krk2,then kQT1rk2= 0. In such a case, considering Xj = 0, j = 0 :m, we obtain the desired results.
Theorem 5.3.3. Let S be the space of T-anti-palindromic polynomials and P∈S. Assume that (λ, x)∈C×Cn and setr:=−P(λ)x.Then we have the following.
1. mis odd: we have
ηSF(λ, x,P) =
√2 η(λ, x,P), if λ= 1
√2 r
|xTr|2
kΠ(m+1)/2(Λm−RΛm)k22 +krkkΛ22−|xTr|2
mk22 , if λ6= 1.
ηS2(λ, x,P) =
η2(λ, x,P), ifλ= 1
√2 r
|xTr|2
kΠ(m+1)/2(Λm−RΛm)k22 +kΠ(m+1)/2RΛkΛmk22(krk22−|xTr|2)
mk42 , if|λ|>1,
√2 r
|xTr|2
kΠ(m+1)/2(Λm−RΛm)k22 +kΠ(m+1)/2ΛkΛmk22(krk22−|xTr|2)
mk42 , if|λ| ≤1.
Set
Ej := λj−λm−j
kΠ(m+1)/2(Λm−RΛm)k22(xTr)xxH− 1
kΛmk22[λm−jxrTPx−λjPxTrxH] Fj := λj−λm−j
kΠ(m+1)/2(Λm−RΛm)k22(xTr)xxH− 1
kΛmk22[λm−jxrTPx−λjPxTrxH].
Forj= 0 : (m−1)/2,define 4Aj:=
( 1
kΛmk22[rxH−xrT], if λ= 1
Ej, λ6= 1
and4Am−j=−ATj.Then4P(z) =Pm
j=0zj4Aj is a unique polynomial4P∈S such
thatP(λ)x+4P(λ)x= 0 and|||4P|||F =ηFS(λ, x,P).Next, define
4Aj:=
1
kΛmk22[rxH−xrT], if λ= 1
Ej+ (|λj|2λm−j− |λm−j|2λj)xTrPxTrrTPx
|λm−j|2kΠ(m+1)/2(Λm−RΛm)k22(krk22− |xTr|2), if |λ|>1
Ej+ (|λj|2λm−j− |λm−j|2λj)xTrPxTrrTPx
|λj|2kΠ(m+1)/2(Λm−RΛm)k22(krk22− |xTr|2), if |λ| ≤1, λ6= 1 and 4Am−j = −ATj, j = 0 : (m−1)/2.Then 4P(z) = Pm
j=0zj4Aj is a polynomial such that4P∈S,P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).
2. mis even:
ηFS(λ, x,P) =
√2 η(λ, x,P), if λ= 1
√2 r
|xTr|2
kΠm/2(Λm−RΛm)k22 +krkkΛ22−|xTr|2
mk22 , if λ6= 1.
η2S(λ, x,P) =
η(λ, x,P), if λ= 1,
r
2|xTr|2
kΠm/2(Λm−RΛm)k22 +(2kΠm/2RΛmk2+|λkΛm/2|2)(krk22−|xTr|2)
mk42 ,if|λ|>1, r
2|xTr|2
kΠm/2(Λm−RΛm)k22 +(2kΠm/2Λmk2+|λkΛm/2|2)(krk22−|xTr|2)
mk42 , if|λ| ≤1.
Forj= 0 : (m−2)/2,consider
4Aj :=
1
kΛmk22[rxH−xrT], ifλ= 1
Fj, ifλ6= 1
, 4Am/2:=
1
kΛmk22[rxH−xrT], ifλ= 1
λm/2
kΛmk22[rxH−xrT], ifλ6= 1 and 4Am−j = −ATj, j = 0 : (m−2)/2. Then 4P(z) = Pm
j=0zj4Aj is a unique polynomial such that 4P ∈ S,P(λ)x+4P(λ)x = 0 and |||4P|||F = ηFS(λ, x,P). Next, define
4Aj :=
1
kΛmk22[rxH−xrT], ifλ= 1 Fj+ (|λj|2λm−j− |λm−j|2λj)xTrPxTrrTPx
|λm−j|2kΠm/2(Λm−RΛm)k22(krk22− |xTr|2), if|λ|>1
Fj+ (|λj|2λm−j− |λm−j|2λj)xTrPxTrrTPx
|λj|2kΠm/2(Λm−RΛm)k22(krk22− |xTr|2), if|λ| ≤1, λ6= 1
4Am/2 :=
1
kΛmk22[rxH−xrT], ifλ= 1 λm/2
kΛmk22[rxH−xrT], ifλ6= 1
and4Am−j =−ATj, j = 0 : (m−2)/2. Then 4P(z) = Pm
j=0zj4Aj is a polynomial such that4P∈S,4P∈Ssuch that P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).
Proof: First assume that P∈S andmis odd. By Theorem 5.2.2 there exists 4P∈Ssuch that 4P(λ)x+ P(λ)x= 0.Forj= 0 : (m−1)/2,consider
4Agj :=QT4AQ=
à ajj aTj bj Xj
!
and 4Am−j =−4ATj, j= 0 : (m−1)/2, where Q= [x, Q1] is a unitary matrix. Since4P(λ)x+ P(λ)x= 0,we have,
P(m−1)/2
j=0 λjajj−P(m−1)/2
j=0 λm−jajj P(m−1)/2
j=0 λjbj−P(m−1)/2
j=0 λm−jaj
= Ã xTr
QT1r
! .
The minimum norm solution of P(m−1)/2
j=0 λjbj−P(m−1)/2
j=0 λm−jaj =QT1r is given by bj =
λj
kΛmk22QT1r andaj =−kΛλm−j
mk22QT1r, j= 0 : (m−1)/2.
Forλ= 1,we havexTr= 0. Hence the minimum norm solution ofPm
j=0λjajj =xTr, is ajj = 0, j= 0 :m.Thus we have
4Aj=Q
0 −λm−jkΛ(QT1r)T
mk22 λjQT1r
kΛmk22 Xj
QH, Am−j=ATj j= 0 : (m−1)/2.
Setting Xj = 0, j = 0 : mwe have the minimum Frobenius norm of 4Aj. Consequently we have,
ηFS(λ, x,P) =√ 2 krk2
kΛmk2
=√
2η(λ, x,P).
Simplifying the expression of4Aj, j= 0 :mwe obtain the desired result.
Next suppose thatλ6= 1.Then the minimum norm solution of
(m−1)/2X
j=0
λjajj−
(m−1)/2X
j=0
λm−jajj =xTr
is given by
ajj = λj−λm−j
kΠ(m+1)/2(Λm−RΛm)k22xTr, j= 0 : (m−1)/2.
Therefore we have
4Aj=Q
λj−λm−j
kΠ(m+1)/2(Λm−RΛm)k22xTr −λm−jkΛ(QT1r)T
mk22
λjQT1r
kΛmk22 Xj
QH, j= 0 : (m−1)/2.
TakingXj= 0,we obtain the minimum Frobenius norm of4Aj and consequently we have
ηSF(λ, x,P) = √ 2
vu
utP(m−1)/2
j=0 |λj−λm−j|2|xTr|2 kΠ(m+1)/2(Λm−RΛm)k42 +
P(m−1)/2
j=0 (|λm−j|2+|λj|2)(krk22− |xTr|2) kΛmk42
= √
2 s
|xTr|2
kΠ(m+1)/2(Λm−RΛm)k22+krk22− |xTr|2 kΛmk22 .
Simplifying the expression of4Aj for allj = 0 : (m−1)/2 we obtain the desired result.
Next we consider the spectral norm. Assume thatλ= 1.Applying DKW Theorem 1.2.5 to 4Aj we have µ4Aj =kΛkrk2
mk2, j = 0 : (m−1)/2 andXj = 0.Therefore we have η2S(λ, x,P) =
krk2
kΛmk2 =η(λ, x,P).Simplifying the expression of4Ajwe obtain4Aj =−kΛ1
mk22[xrT−rxH].
Hence the result follows.
Next, suppose thatλ6= 1.In this case we have
µ4Aj =
r
|λj−λm−j|2|xTr|2
kΠ(m+1)/2(Λm−RΛm)k42 +|λm−j|2kΛ(krk22−|xTr|2)
mk42 , if |λ|>1 r
|λj−λm−j|2|xTr|2
kΠ(m+1)/2(Λm−RΛm)k42 +|λj|2(krkkΛ22−|xTr|2)
mk42 , if |λ| ≤1 forj= 0 : (m−1)/2.Therefore applying DKW Theorem 1.2.5 to4Aj we have
Xj =
(|λj|2λm−j− |λm−j|2λj)xTr(QT1r)(QT1r)T
|λm−j|2kΠ(m+1)/2(Λm−RΛm)k22(krk22− |xTr|2), if|λ|>1, (|λj|2λm−j− |λm−j|2λj)xTr(QT1r)(QT1r)T
|λj|2kΠ(m+1)/2(Λm−RΛm)k22(krk22− |xTr|2), if|λ| ≤1, forj= 0 : (m−1)/2.
Hence we have
ηS2(λ, x,P) =
√2 r
|xTr|2
kΠ(m+1)/2(Λm−RΛm)k22 +kΠ(m+1)/2RΛkΛmk22(krk22−|xTr|2)
mk42 , if |λ|>1,
√2 r
|xTr|2
kΠ(m+1)/2(Λm−RΛm)k22 +kΠ(m+1)/2ΛkΛmk22(krk22−|xTr|2)
mk42 , if |λ| ≤1.
Simplifying the expression of4Aj forj= 0 : (m−1)/2 we obtain the desired result.
Next, assume that m is even. Note that in this case ATm/2 =−Am/2. Consequently we
have
P(m−2)/2
j=0 λjajj−P(m−2)/2
j=0 λm−jajj
P(m−2)/2
j=0 λjbj+am/2λm/2−P(m−2)/2
j=0 λm−jaj
= Ã xTr
QT1r
! .
Note thatam/2,m/2= 0,sinceAm/2is a skew-symmetric matrix. The minimum norm solution ofP(m−2)/2
j=0 λjbj+am/2λm/2−P(m−2)/2
j=0 λm−jaj=QT1ris given by bj =λjQT1r
kΛmk22, aj=−λm−jQT1r
kΛmk22 , am/2=λm/2QT1r
kΛmk22 , j= 0 : (m−2)/2.
Forλ= 1, xTr= 0.Hence the minimum norm solution ofP(m−2)/2
j=0 λjajj−P(m−2)/2
j=0 λm−jajj = 0 is given by ajj = 0.Consequently, we have,
4Aj =Q
0 −(QkΛT1r)T
mk22 QT1r
kΛmk22 Xj
QH, j = 0 : (m−2)/2.
Setting Xj = 0, j = 0 : (m−2)/2 we obtain the minimum norm of4Aj and consequently we haveηSF(λ, x,P) =√
2η(λ, x,P).Simplifying the expression of4Aj we obtain the desired
result.
Next, suppose thatλ6= 1.Then the minimum norm solution of
(m−2)/2X
j=0
λjajj−
(m−2)/2X
j=0
λm−jajj =xTr
is given by
ajj = λj−λm−j
kΠm/2(Λm−RΛm)k22xTr andam/2,m/2= 0. Consequently, forj= 0 : (m−2)/2,we obtain
4Aj = Q
λj−λm−j
kΠm/2(Λm−RΛm)k22xTr −λm−jkΛ(QT1r)T
mk22
λjQT1r
kΛmk22 Xj
QH,
4Am/2 = Q
0 −λm/2kΛ(QT1r)T
mk22 λm/2QT1r
kΛmk22 Xm/2
QH.
SettingXj= 0 =Xm/2,we get the minimum Frobenius norm of4Ajand4Am/2respectively and these give,
ηFS(λ, x,P) = √ 2
s
|xTr|2
kΠm/2(Λm−RΛm)k22 +krk22− |xTr|2 kΛmk22 . Simplifying the expressions of4Aj forj= 0 :m/2 we obtain the desired result.
Next consider spectral norm. Suppose thatλ= 1.Then considerµ4Aj = kΛkrk2
mk2 and by DKW Theorem 1.2.5, we have Xj = 0.Therefore we have ηS2(λ, x,P) = kΛkrk2
mk2 =η(λ, x,P).
Simplifying the expression of 4Aj we obtain 4Aj = −kΛ1
mk22[xrT −rxH] for j = 0 :m/2.
Hence the result follows.
Next, suppose λ 6= 1. Consider µ4Am/2 =
q|λm|2(krk22−|xTr|2)
kΛmk42 . Then again by DKW Theorem 1.2.5 we have Xm/2= 0.Now forj= 0 : (m−2)/2 consider
µ4Aj =
r
|λj−λm−j|2|xTr|2
kΠm/2(Λm−RΛm)k42 +|λm−j|2kΛ(krk22−|xTr|2)
mk42 , if |λ|>1, r
|λj−λm−j|2|xTr|2
kΠm/2(Λm−RΛm)k42 +|λj|2(krkkΛ22−|xTr|2)
mk42 , if |λ| ≤1.
Then by DKW Theorem 1.2.5 applied to4Aj we have
Xj=
(|λj|2λm−j− |λm−j|2λj)xTr(QT1r)(QT1r)T
|λm−j|2kΠm/2(Λm−RΛm)k22(krk22− |xTr|2), if |λ|>1, (|λj|2λm−j− |λm−j|2λj)xTr(QT1r)(QT1r)T
|λj|2kΠm/2(Λm−RΛm)k22(krk22− |xTr|2), if |λ| ≤1,
forj= 0 : (m−2)/2.Therefore we have
ηS2(λ, x,P) =
r
2|xTr|2
kΠm/2(Λm−RΛm)k22 +(2kΠm/2RΛmk2+|λkΛm/2|2)(krk22−|xTr|2)
mk42 , if |λ|>1, r
2|xTr|2
kΠm/2(Λm−RΛm)k22 +(2kΠm/2Λmk2+|λkΛm/2|2)(krk22−|xTr|2)
mk42 , if |λ| ≤1.
Simplifying the expressions of4Aj forj= 0 :m/2 we obtain the desired result. ¥
Analogous to theT-palindromic polynomial we conclude that if K is aT-anti-palindromic polynomial such that P(λ)x+ K(λ)x= 0 then K(z) =4P(z) + (I−xxH)TN(z)(I−xxH) for some T-anti-palindromic polynomial N,where4P is given in Theorem 5.3.3.
Remark 5.3.4. If |xTr|=krk2,then kQT1rk2= 0. In such a case, considering Xj = 0, j = 0 :m, we obtain the desired results.
Next we consider H-palindromic/H-anti-palindromic polynomials. To make the presen- tation simple we proceed as follows.
Letz=a+i b∈C.Define a map vec :C→R2by vec(z) =
à re(z)
im(z)
!
.Further define a map M:C→R2×2 byM(z) =
Ã
re(z) −im(z) im(z) re(z)
!
. Then the following hold:
• vec(z) = Σ vec(z),where Σ =
à 1 0 0 −1
! .
• vec(z1z2) =M(z1)vec(z2), z1, z2∈C.
• M(z) =M(z)T.
Assume that λ∈C, andajj ∈C.Then if we havePm
j=0λiajj =xHrthen applying the map vec both sides we obtain
vec(
Xm
j=0
λiajj) = vec(xHr) ⇒ Xm
j=0
M(λi)vec(ajj) = vec(xHr). (5.1)
Theorem 5.3.5. Let S be the space ofH-palindromic polynomials. Assume that P∈S and (λ, x)∈C×Cn. Settingr:=−P(λ)x,we have the following.
1. Let mbe odd. Then
ηFS(λ, x,P) =
√1 m+1
p2krk22− |rHx|2≤√
2η(λ, x,P), if|λ|= 1
√2 q
kbrk22+krkkΛ22−|xHr|2
mk22 , if|λ| 6= 1.
η2S(λ, x,P) =
η(λ, x,P), if|λ|= 1
√2 r
kbrk22+kΠ(m+1)/2RΛkΛmk2 (krk22−|xHr|2)
mk42 , if|λ|>1
√2 r
kbrk22+kΠ(m+1)/2ΛmkΛk2 (krk22−|xHr|2)
mk42 , if|λ|<1.
wherebr= h
H0 H1 . . . H(m−1)/2 i†
vec(xHr) and
Hj=
re(λj) +re(λm−j) −im(λj) +im(λm−j) im(λj) +im(λm−j) re(λj)−re(λm−j)
, j= 0 : (m−1)/2.
Let Ej:= kΛ1
mk22[λm−jxrHPx+λjPxrxH].Forj= 0 : (m−1)/2 define 4Aj :=
λj
kΛmk22xrHxxH+Ej, if |λ|= 1 eTjbrxxH+Ej, if |λ| 6= 1 and 4Am−j = 4AHj . Then 4P(z) = Pm
j=0zj4Aj is a unique polynomial such that 4P∈S,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).Next define
4Aj:=
λj
kΛmk22xrHxxH+Ej− xHr λm−jPxrrHPx
kΛmk22 (krk22− |xHr|2), if |λ|= 1 eTjrxxb H+Ej− eTjr λb j λm−j PxrrHPx
|λm−j|2 (krk22− |xHr|2), if |λ|>1 eTjrxxb H+Ej−eTjbr λj λm−j PxrrHPx
|λi|2 (krk22− |xHr|2) , if |λ|<1 forj= 0 : (m−1)/2with4Am−j=4AHj .Then4P(z) =Pm
j=0zj4Ajis a polynomial such that4P∈S,P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).
2. Let mbe even. Then
ηFS(λ, x,P) =
√1 m+1
p2krk22− |rHx|2≤√
2η(λ, x,P), if|λ|= 1 q
(2kbrk22− |eTm/2br|2) + 2krkkΛ22−|xHr|2
mk22 , if|λ| 6= 1.
η2S(λ, x,P) =
η(λ, x,P) if|λ|= 1
r
(2kbrk22− |eTm/2br|2) +(2kΠm/2RΛmk22+|λkΛm/2|2)(krk22−|xHr|2)
mk42 , if|λ|>1 r
(2kbrk22− |eTm/2br|2) +(2kΠm/2Λmk22+|λkΛm/2|2)(krk22−|xHr|2)
mk42 , if|λ|<1.
wherebr=h
H0 H1 . . . H(m−2)/2 Hm/2 i†
vec(xHr)and
Hj = Ã
re(λj) +re(λm−j) −im(λj) +im(λm−j im(λj) +im(λm−j) re(λj)−re(λm−j)
!
, j = 0 : (m−2)/2,
Hm/2 =
à re(λm/2) im(λm/2)
! .
LetFj:= kΛ1
mk22[λm−jxrHPx+λjPxrxH]andGm/2:=kΛ1
mk22[λm/2xrHPx+λm/2PxrxH].
Then for j= 0 : (m−2)/2,define
4Aj:=
λj
kΛmk22xrHxxH+Fj, if |λ|= 1 eTjbrxxH+Fj, if |λ| 6= 1
,4Am/2:=
λm/2
kΛmk22xrHxxH+Gm/2, if|λ|= 1 eTm/2brxxH+Gm/2,
if|λ| 6= 1 and 4Am−j = 4AHj . Then 4P(z) = Pm
j=0zj4Aj is a unique polynomial such that 4P∈S,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).Next define
4Aj :=
λj
kΛmk22xxHrxH+Fj− λm−j rHx PxrrHPx
kΛmk22 (krk22− |rHx|2), if |λ|= 1 eTjbrxxH+Fj− eTjbr λj λm−j PxrrHPx
|λm−j|2 (krk22− |xHr|2), if |λ|>1 eTjbrxxH+Fj−eTjbr λj λm−j PxrrHPx
|λi|2 (krk22− |xHr|2) , if |λ|<1
4Am/2 :=
λm/2
kΛmk22xxHrxH+Gm− λm/2 rHx PxrrHPx
kΛmk22 (krk22− |rHx|2), if|λ|= 1 eTm/2brxxH+Gm/2−eTm/2r Pb xrrHPx
(krk22− |xHr|2), if|λ| 6= 1.
and 4Am−j = 4AHj . Then 4P(z) = Pm
j=0zj4Aj is a polynomial such that 4P ∈ S,P(λ)x+4P(λ)x= 0and|||4P|||2=ηS2(λ, x,P).
Proof: Let P∈Sgiven by P(z) =Pm
j=0zjAj.First suppose thatmis odd. By Theorem 5.2.2 there exists4P∈S,such that4P(λ)x+ P(λ)x= 0.Define
4Aj:=Q
à ajj aHj bj Xj
!
QH, Xm−j =XjH, j= 0 : (m−1)/2,
where Q= [x, Q1] is a unitary matrix. Since4P(λ)x+ P(λ)x= 0,we have
à Pm
j=0λjajj
P(m−1)/2
j=0 λjbj+P(m−1)/2
j=0 λm−jaj
!
=
à xHr QH1 r
! .
Consequently, the minimum norm solution of P(m−1)/2
j=0 λjbj+P(m−1)/2
j=0 λm−jaj =QH1r is given by
bj= λj
kΛmk22QH1r, aj = λm−j
kΛmk22QH1 r, j= 0 : (m−1)/2.
Note that for |λ| = 1, we have xHr = λmxHr. Hence the minimum norm solution of
Pm
j=0λjajj =xHrisajj =kΛλj
mk22xHr, j= 0 :m.Therefore we have
4Aj = Q
λj
kΛmk22xHr kΛλm−j
mk22(QH1 r)H
λj
kΛmk22QH1 r Xj
QH,
4Am−j = 4AHj , j= 0 : (m−1)/2.
Setting Xj = 0 givesηSF(λ, x,P) = √m+11 p
2krk22− |rHx|2. Simplifying the expressions for 4Ajs we obtain the desired result.
Next, let|λ| 6= 1. The value ofajj for the equationPm
j=0λjajj =xHr, j= 0 : (m−1)/2 is achieved after employing the condition ajj =am−j,m−jj= 0 : (m−1)/2 in equation (5.1) which becomes
(m−1)/2X
j=0
(M(λj) +M(λm−j)Σ)vec(ajj) = vec(xHr) and the solution is given by ajj =eTjbrwhere
b r=h
H0 H1 . . . H(m−1)/2
i†
vec(xHr) and
Hj=
à re(λj) +re(λm−j) −im(λj) +im(λm−j) im(λj) +im(λm−j) re(λj)−re(λm−j)
! . Thus we obtain,
4Aj=Q
eTjbr λm−j(QkΛH1r)H
mk22
λjQH1r
kΛmk22 Xj
QH, j= 0 : (m−1)/2.
SettingXj= 0,we obtainηFS(λ, x,P) =√ 2
q
kbrk22+krkkΛ22−|xHr|2
mk22 .Simplifying the expressions of4Ajs we obtain the desired result.
Next we consider spectral norm. If|λ|= 1 applying DKW Theorem 1.2.5 to4Ajwe have µ4Aj = kΛkrk2
mk22 and
Xj=−xHr λm−jQH1 r(QH1r)H
kΛmk22 (krk22− |xHr|2), j= 0 : (m−1)/2.
This gives, η2S(λ, x,P) = √krkm+12 =η(λ, x,P).Simplifying the expressions for 4Ajs we obtain the desired result.
Further, for|λ| 6= 1,we consider,
µ4Aj =
q
|eTjr|b2+|λm−j|2kΛ(krk22−|xHr|2)
mk42 , if|λ|>1 q
|eTjr|b2+|λi|2 (krkkΛ22−|xHr|2)
mk42 , if|λ|<1
forj= 0 : (m−1)/2.Then by DKW Theorem 1.2.5 we have
Xj=
−eTj|λbr λm−jj λ|2m−j(krkQ22H1−|xr(QHH1r|2r))H, if|λ|>1
−eTjbr λ
j λm−j QH1r(QH1r)H
|λi|2 (krk22−|xHr|2) , if|λ|<1.
This gives
η2S(λ, x,P) =
√2 r
kbrk2+kΠ(m+1)/2RΛkΛmk2 (krk22−|xHr|2)
mk42 , if|λ|>1
√2 r
kbrk2+kΠ(m+1)/2ΛmkΛk2(krk22−|xHr|2)
mk42 , if|λ|<1.
Simplifying the expressions of4Aj for allj = 0 : (m−1)/2 we obtain the desired result.
Now suppose that P∈ S and m is even. Notice that Am/2 =AHm/2. By Theorem 5.2.2 there exists a polynomial 4P∈S such that4P(λ)x+ P(λ)x= 0.Define
4Aj := Q Ã
ajj aHj bj Xj
!
QH, Xm−j =XjH, j= 0 : (m−2)/2,
4Am/2 := Q
à am/2,m/2 aHm/2 am/2 Xm/2
!
QH, Xm/2=Xm/2H . Since4P(λ)x+ P(λ)x= 0, we have
à Pm
j=0λjajj
P(m−2)/2
j=0 λjbj+P(m−2)/2
j=0 λm−jaj+λm/2am/2
!
=
à xHr QH1 r
! .
The minimum norm solution of P(m−2)/2
j=0 λjbj+P(m−2)/2
j=0 λm−jaj+λm/2am/2 = QH1r is given by
bj = λj
kΛmk22, aj= λm−j
kΛmk22, am/2= λm/2 kΛmk22.
Note that for |λ| = 1, we have xHr = λmxHr. Hence the minimum norm solution of Pm
j=0λjajj =xHris given byajj = kΛλj
mk22xHr, j= 0 :m.Therefore we have
4Aj = Q
λj
kΛmk22xHr kΛλm−j
mk22(QH1 r)H
λj
kΛmk22QH1 r Xj
QH,
4Am/2 = Q
λm/2
kΛmk22xHr kΛλm/2
mk22(QH1 r)H
λm/2
kΛmk22QH1 r Xm/2
QH,
4Am−j = 4AHj , j= 0 : (m−2)/2, which gives, ηSF(λ, x,P) = √m+11 p
2krk22− |rHx|2. Simplifying the expressions of4Aj for j = 0 :m/2 we obtain the desired result.
Now let |λ| 6= 1. Then the value of ajj from the equation Pm
j=0λjajj = xHr, j = 0 :
(m−2)/2 is achieved after employing the conditionajj =am−j,m−j, j = 0 : (m−2)/2 and am/2,m/2∈Rin equation (5.1) which becomes
(m−2)/2X
j=0
(M(λj) +M (λm−j)Σ)vec(ajj) +M(λm/2)vec(am/2,m/2) = vec(xHr).
The solution is then given byajj =eTjbr, j= 0 :m/2 where b
r= h
H0 H1 . . . H(m−2)/2 Hm/2 i†
vec(xHr) and
Hj = Ã
re(λj) +re(λm−j) −im(λj) +im(λm−j) im(λj) +im(λm−j) re(λj)−re(λm−j)
!
, j= 0 : (m−2)/2, and
Hm/2 =
à reλm/2 imλm/2
! .
Therefore we obtain,
4Aj = Q
eTjbr λm−j(QkΛH1r)H
mk22
λjQH1r
kΛmk22 Xj
QH,
4Am/2 = Q
eTm/2rb λm/2 (kΛQH1r)H
mk22
λm/2QH1r
kΛmk22 Xm/2
QH,
4Am−j = 4AHj , j= 0 : (m−2)/2.
Setting Xj = 0 =Xm/2, j= 0 : (m−2)/2 we obtain
ηFS(λ, x,P) = s
(2kbrk22− |eTm/2r|b2) + 2krk22− |xHr|2 kΛmk22 . Simplifying the expressions for 4Ajs we obtain the desired result.
Next we consider spectral norm. Note that for |λ| = 1, we have xHr =λmxHr. Conse- quently, λj rHx =λm−j xHr. Consider µ4Aj = kΛkrk2
mk22. Applying DKW Theorem 1.2.5 to 4Aj,we have
Xj=−λm−j rHx QH1 r(QH1 r)H
kΛmk22 (krk22− |rHx|2), Xm/2=−λm/2 rHx QH1r(QH1r)H kΛmk22 (krk22− |rHx|2)
which givesηS2(λ, x,P) = √krkm+12 .Simplifying the expressions for 4Ajs we obtain the desired result.
If|λ| 6= 1 consider
µ4Aj =
q
|eTjr|b2+|λm−j|2kΛ(krk22−|xHr|2)
mk42 , if|λ|>1 q
|eTjr|b2+|λi|2 (krkkΛ22−|xHr|2)
mk42 , if|λ|<1 µ4Am/2 =
s
|eTm/2br|2+|λm|2 (krk22− |xHr|2) kΛmk42
forj= 0 : (m−2)/2.Then again by DKW Theorem 1.2.5 we have
Xj =
−eTj|λbr λm−jj λ|2m−j(krkQ22H1−|xr(QHH1r|2r))H, if|λ|>1
−eTjbr λ|λij|2λ(krkm−j22Q−|xH1r(QHr|H12)r)H, if|λ|<1, Xm/2 = −eTm/2br QH1r(QH1r)H
(krk22− |xHr|2) forj= 0 : (m−2)/2.This gives
ηS2(λ, x,P) =
r
(2kbrk22− |eTm/2br|2) +(2kΠm/2RΛmk22+|λkΛm/2|2)(krk22−|xHr|2)
mk42 , if|λ|>1 r
(2kbrk22− |eTm/2br|2) +(2kΠm/2Λmk22+|λkΛm/2|2)(krk22−|xHr|2)
mk42 , if|λ|<1.
Simplifying the expressions of4Ajs we obtain the desired result.¥
It is evident from the proof of Theorem 5.3.5 that, if K is a H-palindromic polynomial such that P(λ)x+ K(λ)x = 0 then K(z) = 4P(z) + (I−xxH)TN(z)(I−xxH) for some H-palindromic polynomial N,where4P is given in Theorem 5.3.5.
Remark 5.3.6. If |xHr|=krk2,thenkQH1 rk2= 0. In such a case, consideringXj= 0, j = 0 :m, we obtain the desired results.
Theorem 5.3.7. Let S be the space of H-anti-palindromic polynomials. Assume that P∈S and(λ, x)∈C×Cn. Settingr:=−P(λ)x, we have the following.
1. mbe odd:
ηFS(λ, x,P) =
√1 m+1
p2krk22− |rHx|2≤√
2η(λ, x,P), if|λ|= 1
√2 q
kbrk22+krkkΛ22−|xHr|2
mk22 , if|λ| 6= 1.
η2S(λ, x,P) =
η(λ, x,P), if|λ|= 1
√2 r
kbrk22+kΠ(m+1)/2RΛkΛmk2 (krk22−|xHr|2)
mk42 , if|λ|>1
√2 r
kbrk22+kΠ(m+1)/2ΛmkΛk2 (krk22−|xHr|2)
mk42 , if|λ|<1.
wherebr= h
H0 H1 . . . H(m−1)/2 i†
vec(xHr) and
Hj= Ã
re(λj)−re(λm−j) −im(λj)−im(λm−j) im(λj)−im(λm−j) re(λj) +re(λm−j)
! .
Let Ej:= kΛ1
mk22[λjPxrxH−λm−jxrHPx].Then for j= 0 : (m−1)/2 define
4Aj:=
λj
kΛmk22xrHxxH+Ej, if|λ|= 1 eTjbrxxH+Ej, if|λ| 6= 1 and4Am−j =−4AHj . Then 4P(z) = Pm
j=0zj4Aj is a unique polynomial such that 4P∈S,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).Next define
4Aj:=
λj
kΛmk22xrHxxH+Ej+ xHr λm−jPxrrHPx
kΛmk22 (krk22− |xHr|2), if |λ|= 1 eTjrxxb H+Ej+ eTjr λb j λm−j PxrrHPx
|λm−j|2 (krk22− |xHr|2), if |λ|>1 eTjrxxb H+Ej+eTjbr λj λm−j PxrrHPx
|λi|2 (krk22− |xHr|2) , if |λ|<1 for j = 0 : (m−1)/2 with 4Am−j = −4AHj . Then 4P(z) = Pm
j=0zj4Aj is a polynomial such that 4P∈S,P(λ)x+4P(λ)x= 0 and|||4P|||2=η2S(λ, x,P).
2. mis even:
ηFS(λ, x,P) =
√1 m+1
p2krk22− |rHx|2≤√
2η(λ, x,P), if|λ|= 1 q
(2kbrk22− |eTm/2br|2) + 2krkkΛ22−|xHr|2
mk22 , if|λ| 6= 1.
η2S(λ, x,P) =
η(λ, x,P) if|λ|= 1
r
(2kbrk22− |eTm/2br|2) +(2kΠm/2RΛmk22+|λkΛm/2|2)(krk22−|xHr|2)
mk42 , if|λ|>1 r
(2kbrk22− |eTm/2br|2) +(2kΠm/2Λmk22+|λkΛm/2|2)(krk22−|xHr|2)
mk42 , if|λ|<1.
wherebr=h
H0 H1 . . . H(m−2)/2 Hm/2
i†
vec(xHr),
Hj =
à re(λj) +re(λm−j) −im(λj) +im(λm−j) im(λj) +im(λm−j) re(λj)−re(λm−j)
!
, j= 0 : (m−2)/2, and
Hm/2 =
à −im(λm/2) re(λm/2)
! .
LetFj:= kΛ1
mk22[λjPxrxH−λm−jxrHPx]andGm/2:=kΛ1
mk22[λm/2PxrxH−λm/2xrHPx].
Then for j= 0 : (m−2)/2,define
4Aj :=
λj
kΛmk22xrHxxH+Fj, if |λ|= 1 eTjbrxxH+Fj, if |λ| 6= 1
,4Am/2:=
λm/2
kΛmk22xrHxxH+Gm/2, if|λ|= 1 i eTm/2brxxH+Gm/2,
if|λ| 6= 1 and4Am−j =−4AHj . Then 4P(z) = Pm
j=0zj4Aj is a unique polynomial such that 4P∈S,P(λ)x+4P(λ)x= 0 and|||4P|||F =ηSF(λ, x,P).Next define
4Aj :=
λj
kΛmk22xxHrxH+Fj+ λm−j rHx PxrrHPx
kΛmk22 (krk22− |rHx|2), if |λ|= 1 eTjbrxxH+Fj+ eTjbr λj λm−j PxrrHPx
|λm−j|2 (krk22− |xHr|2), if |λ|>1 eTjbrxxH+Fj+eTjbr λj λm−j PxrrHPx
|λi|2 (krk22− |xHr|2) , if |λ|<1
4Am/2 :=
λm/2
kΛmk22xxHrxH+Gm/2+ λm/2 rHx PxrrHPx
kΛmk22 (krk22− |rHx|2), if|λ|= 1 i eTm/2rxxb H+Gm/2+ieTm/2br PxrrHPx
(krk22− |xHr|2), if|λ| 6= 1.
and4Am−j =−4AHj forj= 0 : (m−2)/2.Then4P(z) =Pm
j=0zj4Aj is a polyno- mial such that4P∈S,P(λ)x+4P(λ)x= 0 and|||4P|||2=η2S(λ, x,P).
Proof: First assume thatm is odd. By Theorem 5.2.2 we know that there exists4P ∈S, such that4P(z)x+ P(z)x= 0.Define
4Aj:=Q
à ajj aHj bj Xj
!
QH, Am−j =−AHj , j= 0 : (m−1)/2.
Since4P(λ)x+ P(λ)x= 0, we have
à Pm
j=0λjajj
P(m−1)/2
j=0 λjbj−P(m−1)/2
j=0 λjaj
!
=
à xHr QH1 r
! .
The minimum norm solution of P(m−1)/2
j=0 λjbj−P(m−1)/2
j=0 λm−jaj =QH1 ris given by bj =
λj
kΛmk22 andaj =−kΛλm−j
mk22.
Note that for |λ| = 1, we havexHr =−λmxHr. Hence the minimum norm solution of Pm
j=0λjajj =xHrisajj =kΛλj
mk22xHr, j= 0 : (m−1)/2.Thus we have
4Aj = Q
λj
kΛmk22xHr −kΛλm−j
mk22(QH1r)H
λj
kΛmk22QH1r Xj
QH, 4Am−j = −4AHj j= 0 : (m−1)/2.
SettingXj= 0 we haveηS(λ, x,P) =√m+11 p
2krk22− |rHx|2.Simplifying the expressions for 4Aj forj= 0 : (m−1)/2 we obtain the desired result.
Now suppose that|λ| 6= 1.The the value ofajj fromPm
j=0λjajj =xHr, is achieved after employing the conditionajj =−am−j,m−j j= 0 : (m−1)/2.applying vec both sides by (5.1) we have
(m−1)/2X
j=0
(M(λj)−M(λm−j)Σ)vec(ajj) = vec(xHr)
which givesajj =eTjr, jb = 0 : (m−1)/2 wherebr= h
H0 H1 . . . H(m−1)/2 i†
vec(xHr) and
Hj=
à re(λj)−re(λm−j) −im(λj)−im(λm−j) im(λj)−im(λm−j) re(λj) +re(λm−j)
! .
Consequently we have
4Aj=Q
eTjbr −kΛλm−j
mk22(QH1r)H
λj
kΛmk22QH1r Xj
QH,4Am−j =−4AHj , j= 0 : (m−1)/2.
Setting Xj = 0 we obtain the minimum Frobenius norm of4Aj and hence we have
ηSF(λ, x,P) =√ 2
s
kbrk22+krk22− |xHr|2 kΛmk22 . Simplifying the expression of4Aj we obtain the desired result.
Next consider spectral norm. From the construction of 4Aj it is easily seen that the ηS2(λ, x,P) will be same as that given in Theorem 5.3.5 and hence desired results follow.
Now suppose that mis even. By Theorem 5.2.2 we know that there exists 4P∈Ssuch that 4P(λ)x+ P(λ)x= 0.Forj= 0 : (m−2)/2 define
4Aj :=Q Ã
ajj aHj bj Xj
!
QH,4Am/2=Q
à am/2,m/2 −aHm/2 am/2 Xm/2
! QH.
Since4P(λ)x+ P(λ)x= 0, we have
à Pm
j=0λjajj
P(m−2)/2
j=0 λjbj−P(m−2)/2
j=0 λm−jaj+λm/2am/2
!
=
à xHr QH1 r
! .
The minimum norm solution of P(m−2)/2
j=0 λjbj−P(m−2)/2
j=0 λm−jaj+λm/2am/2=QH1ris bj= λj
kΛmk22QH1r, aj =− λm−j
kΛmk22QH1r, am/2= λm/2 kΛmk22QH1r.
Note that for |λ| = 1, we havexHr =−λmxHr. Hence the minimum norm solution of Pm
j=0λjajj =xHrisajj = kΛλj
mk22xHr, j= 0 : (m−2)/2.Note thatam/2,m/2∈iR.Thus we
have
4Aj = Q
λj
kΛmk22xHr −kΛλm−j
mk22(QH1r)H
λj
kΛmk22QH1 r Xj
QH,
4Am/2 = Q
λm/2
kΛmk22xHr −kΛλm/2
mk22(QH1r)H
λm/2
kΛmk22QH1 r Xm/2
QH,
4Aj = −4AHm−j, j= 0 : (m−2)/2.
Setting Xj = 0 = Xm/2 givesηSF(λ, x,P) = √m+11 p
2krk22− |rHx|2 if|λ|= 1.Simplifying the expressions for4Aj we obtain the desired result.
Now suppose that|λ| 6= 1.The value of ajj from the equation Pm
j=0λjajj =xHr, j= 0 : (m−2)/2 is obtained after employing the conditionajj =−am−j,m−j j= 0 : (m−2)/2 and am/2,m/2∈iR.Then applying vec operator both sides, by (5.1) we haveajj =eTjvec(br), j = 0 : (m−2)/2 andam/2,m/2=i eTm/2vec(br) where
b r = h
H0 H1 . . . H(m−2)/2 Hm/2
i†
vec(xHr), Hj =
à re(λj) +re(λm−j) −im(λj) +im(λm−j) im(λj) +im(λm−j) re(λj)−re(λm−j)
!
, j= 0 : (m−2)/2, and
Hm/2 = Ã
−im(λm/2) re(λm/2)
! .
Consequently we have
4Aj = Q
eTjrb −kΛλm−j
mk22(QH1r)H
λj
kΛmk22QH1 r Xj
QH,
4Am/2 = Q
i eTm/2br −kΛλm/2
mk22(QH1r)H
λm/2
kΛmk22QH1 r Xm/2
QH,
4Aj = −4AHm−j, j= 0 : (m−2)/2.
Setting Xj = 0 =Xm/2 we obtain
ηFS(λ, x,P) = s
(2kbrk22− |eTm/2r|b2) + 2krk22− |xHr|2 kΛmk22 . Simplifying the expressions for 4Aj’s we obtain the desired result.
Next consider spectral norm. From the construction of4Ajit is easily seen thatηS2(λ, x,P) will be same as that given in Theorem 5.3.5 and hence the proof is similar.¥
It follows from the proof of Theorem 5.3.5 that, if K is aH-anti-palindromic polynomial
such that P(λ)x+ K(λ)x = 0 then K(z) = 4P(z) + (I−xxH)TN(z)(I−xxH) for some H-anti-palindromic polynomial N,where4P is given in Theorem 5.3.7.
Remark 5.3.8. If |xHr|=krk2,thenkQH1 rk2= 0. In such a case, consideringXj= 0, j = 0 :m, we obtain the desired results.