Chapter 3 Biogenic mineral growth modification in presence of High-Molecular-Weight
4.3. Gel mediated Magnetite mineralization
4.3.3. Summary
The advantage of gel diffusion technique over other non-gel adsorption processes is that, it is capable of characterizing the effects of matrix molecules on mineralization by using very small quantities of material. Again due to constraints of stirring and evaporation, it is difficult to reduce the volume of a solution reaction to less than a few milliliters without the use of gels. On the other hand, a biomolecule can be dissolved or suspended in a small volume of gel where it is ‘‘trapped’’ by diffusion [4.43], allowing precipitation studies to be done in 100 µL or less. These methods provide a portrait of how matrix molecules act to nucleate, inhibit, or modify mineral formation, and how the structural features of these molecules affect the mineralization process. We have shown the versatility of this process by characterizing eight different biologically important minerals from agarose gel matrix.
It is speculated that agarose gels mainly play a role of control on the diffusion process of reactant ions, which might have relevant biological implications.
TH-1865_04612201
Chapter-4 Precursor synthesis and applications of inorganic materials References
[4.1] H. F. Janos, Nanoparticles and Nanostructured Films, Preparation, Characterization and Applications, Wiley/VCH, Weinheim, (1998).
[4.2] J. H. Smatt , N. Schuwer , M. Jarn , W. Lindner , M. Linden, Micropor. Mesopor. Mat. 112 (2007) 308.
[4.3] H. Thakuria, B. M. Borah, G. Das, J. Mol. Cat. A 274 (2007) 1.
[4.4] K. Nakamoto, Infrared and Ramman Spectra of Inorganic and Coordination Compounds. 5th Ed. John Wiley & Sons. Inc. New York (1997).
[4.5] R. A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds, Academic Press, Inc., New York and London, 1971, pp. 220.
[4.6] V. Biju, M. Abdul Khadar, Spectrochim. Acta, Part A: Mol. Biomol. Spect. 59 (2003) 121.
[4.7] J. A. Gaddsden, Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworth, London, (1975).
[4.8] Y. Meng, D. Chen, X. Jiao, J. Phys. Chem. B 110 (2006) 15212.
[4.9] Y. Liu, W. Ren, L. Y. Zhang, X. Yao, Thin Solid Films 353 (1999) 124.
[4.10] B. Gillot, M. El Guendouzi, M. Laarj, Mater. Chem. Phys. 70 (2001) 54.
[4.11] P. M. Sousa, A. J. Silvestre, N. Popovici, M. L. Paramês, O. Conde, Mat. Sci. Forum 20 (2004) 455.
[4.12] O. Seiferth, K.Wolter, B. Dilmann, G. Klivenyi, H.-J. Freund, D. Scarano, A. Zecchina, Surf. Sci. 421 (1999) 176.
[4.13] Taubert, G. Wegner, J. Mater. Chem. 12 (2002) 805.
[4.14] J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Chem. Mater. 14 (2002) 4172
[4.15] L. Guo, S. H. Yang, C. L. Yang, P. Yu, J. N. Wang, W. K. Ge, G. K. L. Wong, Appl. Phys. Lett. 76 (2000) 2901.
[4.16] S. A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84 (1998) 2287.
[4.17] H. M. Xiao, L. P. Zhu, X. M. Liu, S. Y. Fu, Solid State Commun. 141 (2007) 431.
[4.18] (a) S. Thota, J. Kumar, J. Phys. Chem. Solids 68 (2007) 1951, (b) J. Nogues, I.K. Schuller, J. Magn.
Magn. Mater. 192 (1999) 203.
[4.19] Y. Ichiyanagi, Y. Kimishima, S. Yamada, J. Magn. Magn. Mater. e1245 (2004) 272.
[4.20] (a) M. Tadic, D. Markovic , V. Spasojevic , V. Kusigerski,M. Remskar, J. Pirnat, Z. Jaglicic, J. Alloy Compd. 441 (2007) 291, (b) A. Oles, F. Kajzar, M. Kucab,W. Sikora, Magnetic Structures Determined by Neutron Diffraction, Panstwowe Wydawnictwo Naukowe, Warszawa- Krakow (1976) p. 372, (c) C.
Guilland, J. Phys. Radium 12 (1951) 489.
[4.21] M. Regulski, R. Przeniosło, I. Sosnowska, D. Hohlwein, R. Schneider, J. Alloy. Compd. 362 (2004) 236–240.
[4.22] L. E. T. Feliciano, A. J. A. de Oliveira, W. H. Schreiner, E. C. Pereira, J. Electroanal. Chem. 574 (2005) 333.
[4.23] (a) M. Sugimoto, J. Am. Ceram. Soc. 82 (1999) 269, (b) K. Raj, B. Moskowitz, R. Casciari, J. Magn.
Magn. Mater. 149 (1995) 174.
[4.24] Z. Sun, L. Liu, D. Z. Jia , W. Pan, Sens. Actuators B 125 (2007) 144.
[4.25] K. Nakamoto, Infrared and Ramman Spectra of Inorganic and Coordination Compounds. 5th Ed. John Wiley & Sons. Inc. New York (1997).
[4.26] F. Li, H.Wang, L.Wang, J.Wang, J. Magn. Magn. Mater. 309 (2007) 295.
[4.27] D. Fiorani, S. Vitiocoli, J.L. Dorman, J.L. Tholence, A.P. Murani, Phys. Rev. B 30 (1984) 2776
Chapter-4 Precursor synthesis and applications of inorganic materials
-118-
[4.28] D. Fiorani, S. Viticoli, J. Magn. Magn. Mater. 49 (1985) 83.
[4.29] (a) A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations, Wiley, New York (1995), (b) A. H. Nayfeh, B.
Balachandran, Applied Nonlinear Dynamics—Analytical, Computational and Experimental Methods, Wiley, Canada (1995), (c) M. P. Cartmell, Introduction to Linear Parametric and Non-linear Vibrations, Chapman and Hall, London (1990).
[4.30] S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard,, W. Tan, Langmuir 17 (2001) 2900.
[4.31] (a) G. A. Parks, Chem. Rev. 65 (1965) 177, (b) M. Kosmulski, J. Coll. Inter. Sci. 275 (2004) 214.
[4.31] X. H. Guan, G. H. Chen, C. Shang, J. Coll. Inter. Sci. 301 (2006) 419.
[4.32] N. Pernodet. M. Maaloum. B. Tinland. Electrophoresis 18 (1997) 55.
[4.33] D. Yang, L. Qi, J. Ma, Chem. Commun. (2003) 1180.
[4.34] C. I. D. Bica, R. Borsali, E. Geissler, C. Rochas, Macromolecules 34 (2001) 5275.
[4.35] H. M. F. Freundlich, Z. Phys. Chem. 57A (1906) 385.
[4.36] K. R. Hall, L. C. Eagleton, A. Acrivos, T. Vermeulen, Ind. Eng. Chem. Fund. 5 (1966) 212.
[4.37] Y. S. Ho, W. Chiu, C. Wang, Bioresource Technol. 96 (2005) 1285.
[4.38] W.G. Pitt, S.L. Cooper, J. Biomed. Mater. Res. 22 (1988) 359.
[4.39] C. D. Wilson, S.G. Roscoe, Langmuir 20 (2004) 7547.
[4.40] B. Klajnert, L. Stanislawska, M. Bryszewska, B. Palecz, Biochm. Biophy. Acta 115 (2003) 1648.
[4.41] A. Filenko, M. Demchenko, Z. Mustafaeva, Y. Osada, M. Mustafaev, Biomacromolecules 2 (2001) 270.
[4.42] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed.; Springer: New York, (2006).
[4.43] A. L. Boskey, M. Maresca, W. Ullrich, S. B. Doty, W. T. Butler, C. W. Prince, Bone Miner. 22 (1993) 147.
TH-1865_04612201
APPENDIX
Table 2.1A. Crystallographic refinement parameters of Ca-TMA co-ordination polymer.
CCDC No. 648775 Empirical formula C9 H12 Ca O10
Fw 320.27 Temp, K 273(2)
Radiation Mo Kα Wavelength 0.71073 Å Size, mm 0.45 x 0.36 x 0.31 crystal system Monoclinic Space group P2(1)/c a, Å 10.202(4) b, Å 16.449(7) c, Å 7.476(3) β, deg 102.316(2) V, Å3 1225.66(9)
Z 4 ρcalc mg/m3 1.730
µ 0.560 F(000) 512
GOF(S) 1.006 final R indices [I > 2σ(I)]
R1=0.0731 wR2=0.2037 R indices (all
data)
R1=0.0810 wR2= 0.2096
Refinment Full-matrix least- squares on F2.
Table 2.2A. Selected Bond length (Å) and bond angles (o) of Ca-trimesic acid complex.
Ca1 - O1 2.334(3) Ca1 - O3 2.469(3) Ca1 - O5 2.320(3) Ca1 - O7 2.476(4) Ca1 - O8 2.360(4) Ca1 - O9 2.413(3) Ca1 - O10 2.386(4)
O5 Ca1 O1 148.29(12) O1 Ca1 O3 131.44(11) O5 Ca1 O3 79.85(10) O5 Ca1 O8 106.76(14) O8 Ca1 O3 74.28(13) O3 Ca1 O7 131.17(12) O1 Ca1 O8 81.71(13) O10 Ca1 O3 124.41(14) O10 Ca1 O9 77.00(13) O5 Ca1 O10 83.31(13) O9 Ca1 O3 69.13(11) O9 Ca1 O7 158.97(13) O1 Ca1 O10 81.40(13) O5 Ca1 O7 72.31(13) O8 Ca1 O9 109.20(13) O8 Ca1 O10 160.70(15) O1 Ca1 O7 80.50(13) O10 Ca1 O7 91.58(14) O5 Ca1 O9 122.73(13) O8 Ca1 O7 76.46(13) O1 Ca1 O9 80.36(12)
Figure 4.1A. PXRD of the precursor salt of Cu with (a) oxalic acid, (b) succinic acid.
APPENDIX
-120-
Figure 4.2A. PXRD of the precursor salt of Ni with (a) oxalic acid, (b) malonic acid and (c) succinic acid.
Figure 4.3A. PXRD of the precursor salt of Co with (a) oxalic acid, (b) malonic acid and (c) succinic acid.
Figure 4.4A. PXRD of the precursor salt of Fe with (a) oxalic acid, (b) malonic acid and (c) succinic acid.
TH-1865_04612201
APPENDIX
Figure 4.5A. PXRD of the precursor salt of Mn with (a) oxalic acid, (b) malonic acid and (c) succinic acid.
Figure 4.6A. PXRD of the precursor salt of Mn with (a) oxalic acid, (b) malonic acid and (c) succinic acid.
Figure 4.7A. FT-IR of the Ni-organic acid precursor salt (a) before heating and (b) after heating.
Figure 4.8A. FT-IR of the Co-organic acid precursor salt (a) before heating and (b) after heating.
APPENDIX
-122-
Figure 4.9A. FT-IR of the Mn-organic acid precursor salt (a) before heating and (b) after heating.
Figure 4.10A. FT-IR of the Cr-organic acid precursor salt (a) before heating and (b) after heating.
Figure 4.11A. VSM initial M/H curveof ZnFe2O4 nanoparticle.
TH-1865_04612201
APPENDIX
Figure 4.12A. PXRD pattern of (a) ZnFe2O4, (b) CuFe2O4, (c) NiFe2O4, (d) CoFe2O4 and (e) MnFe2O4.
Figure 4.13A. VSM studies of (a) ZnFe2O4, (b) CuFe2O4, (c) NiFe2O4, (d) CoFe2O4 and (e) MnFe2O4.
APPENDIX
-124-
Figure 4.14A. FT-IR of Magnetite (black line), TMA modified magnetite(green line) and SA modified magnetite (red line).
Figure 4.15A. VSM of (a) TMA modified magnetite and (b) SA modified magnetite.
TH-1865_04612201