Maulana Azad National Urdu University M.Tech I Semester Examination, March 2023 Paper - MTCS111PCT : Advanced Algorithm
6 , p :
Time : 3 hrs Marks : 70
@ c Z
* ] :
» V ß Z Î Ð V x Ó X ì è S g á Z Z ® Å V / n Æ [ Z C Ù X x Î z Ô zx z Ô w Zz z : ì 6 , V & ] Ñ Z Î p ! 6 , t
Z
[ b i Ñ ì ò X ì
C X Ù Z Î
Æ w ò i Ñ [ Z » w Z Î C Ù X ] Ñ Z Î á zZ [ Z ¿ & * * %æFN ( à { & ] Ñ Z Î è z c ] Ñ Z Î ò i Ñ
10~ w Zz z
.1(10 x 1 = 10 Marks)
X ì
1a
V / 6 , ì
X
(200)Î z ã ½ [ Z » w Z Î C Ù X ¶ [ Z Æ V ß Z Î õ 0 * ð Ã Ã D ¨ ( ¤ Ð ~ k ÔZ ] Ñ Z Î
8~ zx z
.2(5 x 6 = 30 Marks)
X ] Z
6a Æ w Z Î C Ù
V / 6 ,
ì
(500)Î õ 0 * ã ½ [ Z » w Z Î C Ù X ¶ [ Z Æ V ß Z Î & ð Ã Ã D ¨ ( ¤ Ð ~ k XZ ] Ñ Z Î
5~ x Î z
.3(3 x 10 = 30 Marks)
X ] Z
10a Æ w Z Î C Ù
Zz z w
(1)
w Z Î '
' ì '
X
Best-case Time ComplexityÅ
Quick Sort (i)O (nlogn) (d) O (n) (c) O(logn) (b) O(n2) (a)
ã Å
C 6 ì ,
?
Method¾
Prim's Algorithm (ii) Dynamic Programming (d) Greedy (c) Branch and Bond (b) Divide and Conquer (a)H Y Y ì
?
Solve= fg Æ
Dynamic ProgrammingÃ
ProblemsРy à Р~ y Z
(iii)Binary Search (b) Merge Sort (a)
Quck Sort (d) Longest Common Subsequence (c)
ß
(
/9 ) X ì @ * w E Z »
Elementary Number Theoritical NotationH
Rabin-Karp Algorithm (iv)» gx à ' ' ' ì '
X
PRAM~
Parallel Computing (v)Z
~ y Ð ð Ã
7
(d) Pre-RAM (c) Processing RAM (b) Parallel RAM (a)' ' Æ ' a E Z
w
@ ì *
?
Master's Theorem (vi)Solving Iterative Relations (b) Solving Recurrency(a) Calculating time complexity of any code (d) Analysis Loops (c)
' ' ì '
X
Worst Case ComplexityÅ
KMP Algorithm (vii)Z
~ y Ð ð Ã
7
(d) O (n+m) (c) O(nm) (b) O(n) (a)1/3
Å zg ¢
] C ì
?
ArraysÄ a Æ ä
ImplementÃ
Boyer-Moore Algorithmz{ ´ Æ
Textg Zz
Pattern (viii)Z
~ y Ð ð Ã
7
(d) 3 (c) 2 (b) 1 (a) Û ë Z
@ ì *
X
SolutionsÆ
Problems' ' '
Bellman Ford Algorithm (ix)Sorting (b) All Pur Shortest path (a)
Network Flow (d) Single Source Shortest Path (c)
Comparision
Ä a Æ ä
SortÃ
Array arr{1, 5, 6, 8, 2} b ñ D w E Z Ã
Counting Sort (x) ä
Ð V
?
0 (d) 9 (c) 7 (b) 5 (a)
z
zx
Å
Worst Caseg Zz
Averge Case, Best CaseX z
SortÃ
Array b ñ D w E Z »
Cocktail Sort (2)¥
x z
X
Time Complexity5 1 4 2 8 0 7 6
D
T ?
»
MatchÄ
Valid Hitsg Zz
Spurious HitsÐ = fg Æ
Rabin-karp Algorithm (3)n
c
*
ì H
X
Patternó
Textg Zz ì
q=11 "string matching modula' Text = T = < 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3>Pattern = P = < 2 6>
Z » E
w D
ñ i
z
X
Master's Method (4)Recurrence :
¥ Ù x
X
Order of Paranthesization»
Optimal Chain Multiplication»
Matricesg e b
(5)Æ
! g *
~ } ,
Ð N
X
NP Completeg Zz
P, NP, NP-hard (6)Ã w V fg Æ
=
X
Cook's Theorem (7)Longest Common
» k Z Â
Input StringsV â z
X=<a,a,ab,a,b>g Zz
Y=<b,a,a,b,>, b
(8)¥ Ù x
X
SusbsequenceTime Complexity
Å
Worst Caseg Zz
Average Case, Best Case» k gZ Zz K
Algorithm»
Quick-sort (9) ,
X
SortÃ
Data b n X N C
42 34 75 23 21 18 90 67 78
2/3
z x Î
¥
x ,
X
Johnson's All Pair Shortest Path»
Graph b n ? ì @ * x » £
Johnson's Algorithms (10)Z Ã q - w V Æ
B
Parallel Merge Sorting AlgorithmX ì
(Best) Sorting Algorithm y à a Æ
Parallel (11)Ò
y , X
¥
x ,
X
Best ComplementsÅ k gZ Zz N
Step-by-StepÃ
Knuth-Moris Pratt Algorithm (12)¯ N
X
Spanning Treeg Zz , Ý q
Minimum cost»
Graph= fg Æ
Krushkal's Algorithm (a) (13)fg Æ
=
X
Problemq - Z Ã
PRAM Model (b)Shortest Path
»
Graph b ñ D w E Z Ã
Dijkstra AlgorithmX /õG ÉÀ
Algorithm»
Bellman's Ford (14)¥
x , X
/ /
2/3 /