• Tidak ada hasil yang ditemukan

Automata for Real-time Systems

N/A
N/A
Protected

Academic year: 2024

Membagikan "Automata for Real-time Systems"

Copied!
47
0
0

Teks penuh

(1)

Automata for Real-time Systems

B. Srivathsan

Chennai Mathematical Institute

(2)

Lecture 2:

Timed languages and timed

automata

(3)

L5:={(abcd.Σ, τ )|τ3−τ1 ≤2 andτ4−τ2 ≥5}

Interleaving distances

0 1 2 3 4 5 6 7

a b c d

q0 a q1 q2 q3 q4

{x}

b {y}

x1,c y5,d Σ

Exercise:Prove thatL5cannot be accepted by a one-clock TA.

(4)

ninterleavings⇒neednclocks

n+1 clocks more expressive thannclocks

(5)

{(ak, τ)|τi+2−τi≤1 for alli≤k−2}

q0 q1 q2

a {x}

a,y1

a,x1 {y} {x}

(6)

{(ak, τ)|τi+2−τi≤1 for alli≤k−2}

q0 q1 q2

a {x}

a,y1

a,x1 {y}

{x}

(7)

Timed automata

Runs

1 clock<2 clocks< . . .

(8)

L6:={(ak, τ )|τiis some integer for eachi}

0 1 2 3 4 5 6 7

a a a

Claim: No timed automatoncan acceptL6

(9)

L6:={(ak, τ )|τiis some integer for eachi}

0 1 2 3 4 5 6 7

a a a

Claim: No timed automatoncan acceptL6

(10)

Step 1: SupposeL6=L(A)

Letcmaxbe the maximum constant appearing in a guard ofA

Step 2: For a clockx, x=dcmaxe+1 and x=dcmaxe+1.1

satisfy the same guards

Step 3: (a; dcmaxe+1)∈L6and soAhas an accepting run (q0,v0)−−−−−−−−−→δ=dcmaxe+1 (q0,v0+δ)−→a (qF,vF)

Step 4: By Step 2, the following is an accepting run (q0,v0) δ

0=dcmaxe+1.1

−−−−−−−−−−→(q0,v00)−→a (qF,v0F) Hence(a; dcmaxe+1.1)∈L(A)6=L6

Thereforeno timed automatoncan acceptL6

(11)

Step 1: SupposeL6=L(A)

Letcmaxbe the maximum constant appearing in a guard ofA Step 2: For a clockx,

x=dcmaxe+1 and x=dcmaxe+1.1 satisfy the same guards

Step 3: (a; dcmaxe+1)∈L6and soAhas an accepting run (q0,v0)−−−−−−−−−→δ=dcmaxe+1 (q0,v0+δ)−→a (qF,vF)

Step 4: By Step 2, the following is an accepting run (q0,v0) δ

0=dcmaxe+1.1

−−−−−−−−−−→(q0,v00)−→a (qF,v0F) Hence(a; dcmaxe+1.1)∈L(A)6=L6

Thereforeno timed automatoncan acceptL6

(12)

Step 1: SupposeL6=L(A)

Letcmaxbe the maximum constant appearing in a guard ofA Step 2: For a clockx,

x=dcmaxe+1 and x=dcmaxe+1.1 satisfy the same guards

Step 3: (a; dcmaxe+1)∈L6and soAhas an accepting run (q0,v0)−−−−−−−−−→δ=dcmaxe+1 (q0,v0+δ)−→a (qF,vF)

Step 4: By Step 2, the following is an accepting run (q0,v0) δ

0=dcmaxe+1.1

−−−−−−−−−−→(q0,v00)−→a (qF,v0F) Hence(a; dcmaxe+1.1)∈L(A)6=L6

Thereforeno timed automatoncan acceptL6

(13)

Step 1: SupposeL6=L(A)

Letcmaxbe the maximum constant appearing in a guard ofA Step 2: For a clockx,

x=dcmaxe+1 and x=dcmaxe+1.1 satisfy the same guards

Step 3: (a; dcmaxe+1)∈L6and soAhas an accepting run (q0,v0)−−−−−−−−−→δ=dcmaxe+1 (q0,v0+δ)−→a (qF,vF)

Step 4: By Step 2, the following is an accepting run (q0,v0) δ

0=dcmaxe+1.1

−−−−−−−−−−→(q0,v00)−→a (qF,v0F)

Hence(a; dcmaxe+1.1)∈L(A)6=L6

Thereforeno timed automatoncan acceptL6

(14)

Step 1: SupposeL6=L(A)

Letcmaxbe the maximum constant appearing in a guard ofA Step 2: For a clockx,

x=dcmaxe+1 and x=dcmaxe+1.1 satisfy the same guards

Step 3: (a; dcmaxe+1)∈L6and soAhas an accepting run (q0,v0)−−−−−−−−−→δ=dcmaxe+1 (q0,v0+δ)−→a (qF,vF)

Step 4: By Step 2, the following is an accepting run (q0,v0) δ

0=dcmaxe+1.1

−−−−−−−−−−→(q0,v00)−→a (qF,v0F) Hence(a; dcmaxe+1.1)∈L(A)6=L6

Thereforeno timed automatoncan acceptL6

(15)

L7={( (ab)k, τ )|τ2i+2−τ2i+1< τ2i−τ2i−1for eachi ≥1}

Convergingabdistances

0 1 2 3 4 5 6 7

a b a b a b

Exercise:Prove thatno timed automatoncan acceptL7

(16)

L7={( (ab)k, τ )|τ2i+2−τ2i+1< τ2i−τ2i−1for eachi ≥1}

Convergingabdistances

0 1 2 3 4 5 6 7

a b a b a b

Exercise:Prove thatno timed automatoncan acceptL7

(17)

L7={( (ab)k, τ )|τ2i=i and τ2i+2−τ2i+1 < τ2i−τ2i−1}

Pivoted convergingabdistances

>1

0 1 2 3 4

b b b b

a a a a

τ2i+2τ2i+1<τ2iτ2i−1 τ2i+2τ2i<τ2i+1τ2i−1

1<τ2i+1τ2i−1

q0 a q1 q2

{x}

y=1,b {y} x>1,a

{x}

(18)

L7={( (ab)k, τ )|τ2i=i and τ2i+2−τ2i+1 < τ2i−τ2i−1}

Pivoted convergingabdistances

>1

0 1 2 3 4

b b b b

a a a a

τ2i+2τ2i+1<τ2iτ2i−1 τ2i+2τ2i<τ2i+1τ2i−1

1<τ2i+1τ2i−1

q0 a q1 q2

{x}

y=1,b {y} x>1,a

{x}

(19)

L7={( (ab)k, τ )|τ2i=i and τ2i+2−τ2i+1 < τ2i−τ2i−1}

Pivoted convergingabdistances

>1

0 1 2 3 4

b b b b

a a a a

τ2i+2τ2i+1<τ2iτ2i−1 τ2i+2τ2i<τ2i+1τ2i−1

1<τ2i+1τ2i−1

q0 a q1 q2

{x}

y=1,b {y} x>1,a

{x}

(20)

L7={( (ab)k, τ )|τ2i=i and τ2i+2−τ2i+1 < τ2i−τ2i−1}

Pivoted convergingabdistances

>1

0 1 2 3 4

b b b b

a a a a

τ2i+2τ2i+1<τ2iτ2i−1 τ2i+2τ2i<τ2i+1τ2i−1

1<τ2i+1τ2i−1

q0 a q1 q2

{x}

y=1,b {y}

x>1,a {x}

(21)

Timed automata

Runs

1 clock<2 clocks< . . . Role of max constant

Timed regular lngs.

(22)

Timed automata

Runs

1 clock<2 clocks< . . . Role of max constant

Timed regular lngs.

(23)

Timed regular languages

Timed languages

L06=L(A)

Timed regular languages L=L(A)

L0

L

Definition

A timed language is calledtimed regularif it can beacceptedby a timed automaton

(24)

L=L(A)

L

L0 L0=L(A0)

LL0

LL0=L(A)

A= (Q,Σ,X,T,Q0,F) A0= (Q0,Σ,X0,T0,Q00,F0)

A= (QQ0, Σ, XX0, TT0, Q0Q00, FF0) L(A)∪ L(A0) =L(A)

Timed regular languages areclosedunderunion

(25)

L=L(A)

L

L0 L0=L(A0)

LL0

LL0=L(A)

A= (Q,Σ,X,T,Q0,F) A0= (Q0,Σ,X0,T0,Q00,F0) A= (Q×Q0, Σ, XX0, T, Q0×Q00, F ×F0)

T: (q1,q01) a,gg

0

−−−−−−−→(q2,q20)if

RR0

q1 a,g

−−−−→q2T and q01 a,g

0

−−−−→q02T0

R R0

(26)

L : a timed language overΣ Untime(L) ≡ {w∈Σ | ∃τ.(w, τ)∈L}

Untiming construction

Forevery timedautomatonAthere is afinite automatonAus.t.

Untime(L(A) ) =L(Au)

more about this later. . .

(27)

Complementation

Σ :{a,b}

L = {(w, τ)| there is anaat some timetand no action occurs at timet+1}

L = {(w, τ)| everyahas an action at a distance 1 from it}

Claim: No timed automatoncan acceptL

Decision problems for timed automata: A survey

Alur, Madhusudhan.SFM’04: RT

(28)

Complementation

Σ :{a,b}

L = {(w, τ)| there is anaat some timetand no action occurs at timet+1}

L = {(w, τ)| everyahas an action at a distance 1 from it}

Claim: No timed automatoncan acceptL

Decision problems for timed automata: A survey

Alur, Madhusudhan.SFM’04: RT

(29)

Step 1: L = {(w, τ)| everyahas an action at a distance 1 from it} SupposeLis timed regular

Step 2: LetL0 = {(ab, τ)| alla’s occur before time 1 and no twoa’s happen at same time} ClearlyL0is timed regular

Step 3: Untime(L∩L0 )should be a regular language

Step 4: But, Untime(L∩L0) ={anbm|m≥n},not regular!

ThereforeLcannot be timed regular

(30)

Step 1: L = {(w, τ)| everyahas an action at a distance 1 from it} SupposeLis timed regular

Step 2: LetL0 = {(ab, τ)| alla’s occur before time 1 and no twoa’s happen at same time} ClearlyL0is timed regular

Step 3: Untime(L∩L0 )should be a regular language

Step 4: But, Untime(L∩L0) ={anbm|m≥n},not regular!

ThereforeLcannot be timed regular

(31)

Step 1: L = {(w, τ)| everyahas an action at a distance 1 from it} SupposeLis timed regular

Step 2: LetL0 = {(ab, τ)| alla’s occur before time 1 and no twoa’s happen at same time} ClearlyL0is timed regular

Step 3: Untime(L∩L0 )should be a regular language

Step 4: But, Untime(L∩L0) ={anbm|m≥n},not regular!

ThereforeLcannot be timed regular

(32)

Step 1: L = {(w, τ)| everyahas an action at a distance 1 from it} SupposeLis timed regular

Step 2: LetL0 = {(ab, τ)| alla’s occur before time 1 and no twoa’s happen at same time} ClearlyL0is timed regular

Step 3: Untime(L∩L0 )should be a regular language

Step 4: But, Untime(L∩L0 ) ={anbm|m≥n},not regular!

ThereforeLcannot be timed regular

(33)

Step 1: L = {(w, τ)| everyahas an action at a distance 1 from it} SupposeLis timed regular

Step 2: LetL0 = {(ab, τ)| alla’s occur before time 1 and no twoa’s happen at same time} ClearlyL0is timed regular

Step 3: Untime(L∩L0 )should be a regular language

Step 4: But, Untime(L∩L0 ) ={anbm|m≥n},not regular!

(34)

L

L

Timed regular languages arenot closedundercomplementation

(35)

Timed automata

Runs

1 clock<2 clocks< . . . Role of max constant

Timed regular lngs.

Closure under∪,

Non-closure under complement

ε -transitions

(36)

Timed automata

Runs

1 clock<2 clocks< . . . Role of max constant

Timed regular lngs.

Closure under∪,

Non-closure under complement

ε -transitions

(37)

L6:={(ak, τ )|τiis some integer for eachi}

ε ε ε ε

0 1 2 3 4 5 6 7

a a a

q0

x=1, ε, {x}

x=1,a,{x}

(38)

L6:={(ak, τ )|τiis some integer for eachi}

ε ε ε ε

0 1 2 3 4 5 6 7

a a a

q0

x=1, ε, {x}

x=1,a,{x}

Claim: No timed automatoncan acceptL6

(39)

L6:={(ak, τ )|τiis some integer for eachi}

ε ε ε ε

0 1 2 3 4 5 6 7

a a a

q0

x=1, ε, {x}

x=1,a,{x}

Claim: No timed automatoncan acceptL6

(40)

ε-transitions

ε-transitionsadd expressive powerto timed automata.

However, they add poweronlywhen a clock isresetin anε-transition.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit.Fundamenta Informaticae’98

(41)

ε-transitions

ε-transitionsadd expressive powerto timed automata. However, they add poweronlywhen a clock isresetin anε-transition.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit.Fundamenta Informaticae’98

(42)

Timed automata

Runs

1 clock<2 clocks< . . . Role of max constant

Timed regular lngs.

Closure under∪,

Non-closure under complement

ε -transitions

More expressive

−−→ε without resetTA

(43)

Recall...

Huge system Property

Higher-level description Higher-level description

AutomatonA AutomatonB

translation translation

Model-Checker

L(A)⊆ L(B)?

(44)

L(A)⊆ L(B) iff

L(A) ∩ L(B) =∅

non-closure under complementthe abovecannot be donefor TA!

(45)

L(A)⊆ L(B) iff

L(A) ∩ L(B) =∅

non-closure under complementthe abovecannot be donefor TA!

(46)

Course plan

Timed automaton

Emptiness L(A) =∅?

Inclusion L(A)⊆ L(B)?

Decidable Complexity Better algos

Undecidable Variations of TA for decidability

One-clock Alternation Event-clock, Integer reset L.1

L.2

L.3 L.4

L.5, L.6 L.7, L.8 L.9, L.10 L.11-12

L.13-18

Special topics

Diagonal constraints Infinite timed words Example from industry L.19

L.20-21 L.22

(47)

Course plan

Timed automaton

Emptiness L(A) =∅?

Inclusion L(A)⊆ L(B)?

Decidable Complexity Better algos

Undecidable Variations of TA for decidability

One-clock Alternation Event-clock, Integer reset L.1

L.2

L.3 L.4

L.5, L.6 L.7, L.8 L.9, L.10 L.11-12

L.13-18

Special topics

Diagonal constraints Infinite timed words Example from industry L.19

L.20-21 L.22

Referensi

Dokumen terkait

1) Telah dibuat perangkat pengujian mutu fisik beras secara real time dengan menggunakan teknologi pengolahan citra dan JST. Perangkat ini terdiri dari

This research have demonstrated the feasibility of using Global Positioning System (GPS) in near real-time mapping for flood monitoring system especially in providing positions

OPTION 1 Approx drive time: 50 minutes Road conditions: S QS MR U Distance approx: 24km Traffic density: L M 1 After turning onto Windsor Road from Pitt Street continue and then 2

Symbol Description n Number of tasks Ti ith task ei Execution requirement of ith task pi Period of ith task wti Weight of ith task rpi Remaining period ofTi at any moment time

S.∗, and Vyasarayani, C.P., “Reduced ordered modelling of time delay systems using Galerkin approximations and eigenvalue decomposition”, International Journal of Dynamics and Control,

Conditions Yes No 1 Poor marks to get admitted into regular mode 2 Lack of time due to livelihood 3 Low fees structure in Distance Mode 4 Easy Curriculum 5 Job related promotion 6

2019 6th International Conference on Electric Vehicular Technology ICEVT November 18-21, 2019, Bali, Indonesia 978-1-7281-2917-4/19/$31.00 ©2019 IEEE 46 Real-Time Image Processing

The development of real-time communication network based on Zigbee and Ethernet for Photovoltaic systems • Phan Quoc Dung • Dao Ngoc Dat • Le Chi Hiep Power Electronics