• Tidak ada hasil yang ditemukan

Corrigendum to “On a generalization of a conjecture of Grosswald” [J. Number Theory 216 (2020) 216–241]

N/A
N/A
Protected

Academic year: 2023

Membagikan "Corrigendum to “On a generalization of a conjecture of Grosswald” [J. Number Theory 216 (2020) 216–241]"

Copied!
3
0
0

Teks penuh

(1)

Journal of Number Theory 222 (2021) 426–428

Contents lists available atScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Corrigendum

Corrigendum to “On a generalization of

a conjecture of Grosswald” [J. Number Theory 216 (2020) 216–241]

Pradipto Banerjee, Ranjan Bera

IndianInstituteofTechnologyHyderabad,DepartmentofMathematics,Kandi, Sangareddy, Medak,Telangana502285,India

a r t i c l e i n f o a bs t r a c t

Article history:

Received15November2020 Receivedinrevisedform17 November2020

Accepted18November2020 Availableonline23December2020 CommunicatedbyS.J.Miller

MSC:

11R32 1C08 33C45 Keywords:

BesselPolynomials

GeneralizedLaguerrepolynomials Irreducibility

Galoisgroup

WeextendtheresultofLemma 4,[1] tothecasethate= 0 and= 1 whichwasmissingin[1] butusedintheproofof Theorem 1,[1].

©2020ElsevierInc.Allrightsreserved.

DOIoforiginalarticle:https://doi.org/10.1016/j.jnt.2020.02.013.

* Correspondingauthor.

E-mailaddresses:[email protected](P. Banerjee),[email protected](R. Bera).

https://doi.org/10.1016/j.jnt.2020.11.002

0022-314X/©2020ElsevierInc. Allrightsreserved.

(2)

P. Banerjee, R. Bera / Journal of Number Theory 222 (2021) 426–428 427

1. Thecorrection

Onpage15,[1], inCase (ii),itisclaimedinthefifthdisplaythatfore∈ {0,1},the followingholds.

1

p−1+ max

1

p−1, 1

p−2,2 log(2n+β) pslogp

> 1 k.

Thiswasobtainedbyarguing thatμe(g)1/k andthat μe(g)< 1

p−1+ max

1

p−1, 1

p−2,2 log(2n+β) pslogp

. (1)

Forthelatterestimate,wehadreferredtoLemma 4,[1].TheboundobtainedinLemma 4, [1], isvalidonlyfore≥.While,according to(b),Corollary 4,ife= 0,then= 1,i.e., e< .Thus,inorderforourargumentsto workincase (ii),wemustjustifythevalidity of(1) inLemma 4,[1],inthecasethate= 0 and= 1.Inthepresentnote,weachieve this.

Wefollow thenotationsof [1]. Inthecase underconsideration,e= 0 and = 1.By (b),Corollary 4[1],thisisthecaseifβ=2.Weletpbeaprimefactorofn−=n−1 satisfyingp>2+|β|= 2+|β|,as requiredinLemma 4, [1].Weareto establishthat

μ0(g)< 1

p−1+ max

1

p−1, 1

p−2,2 log(2n+β) pslogp

. (2)

Werecallfrom[1] that

μe(g) =μe,p(g) = max

ν(b0)−ν(bj)

j :e < j ≤n

where g(x) = n

j=0bjxj and ν(bj) is the highest power of p that divides bj. From Lemma 4,[1],wealreadyhavethat

μ1(g)< 1

p−1+ max

1

p−1, 1

p−2,2 log(2n+β) pslogp

.

Thus,inordertoestablish(2),itwouldsufficetoshow that ν(b0)−ν(b1)0.

Next,werecallfrom[1] that bj=

n

j

(2n+β−j)!

(n+β)! . Thus,

(3)

428 P. Banerjee, R. Bera / Journal of Number Theory 222 (2021) 426–428

b0/b1=(2n+β)!

(n+β)!

(n+β)!

n(2n+β−1)! =2n+β n .

Therefore,ν(b0)−ν(b1)>0 impliesthatp|(2n+β).Also,asperourhypothesis,pdivides n−1.Thus,pdivides2n+β−2n+ 2=β+ 2.Sincep>2+|β|,itmustbethatβ+ 2= 0.

Butthis isacontradictionsince|β|=2 inthis case.Ourassertionnowfollows.

References

[1]P.Banerjee,R.Bera,OnageneralizationofaconjectureofGrosswald,J.NumberTheory216(2020) 216–241.

Referensi

Dokumen terkait

Contents lists available atScienceDirect Journal of High Technology Management Research journal homepage:www.elsevier.com/locate/hitech Online technologies and sports: A new era for

Contents lists available atScienceDirect Microelectronics Reliability journal homepage:www.elsevier.com/locate/microrel Power switch failures tolerance of a photovoltaic fed