PH-03
June - Examination 2017 B.Sc. Pt. I Examination
Electromagnetism
{dÚwVMwå~H$s
Paper - PH-03
Time : 3 Hours ] [ Max. Marks :- 50
Note: The question paper is divided into three sections. A, B and C.
Write answer as per the given instructions.
{ZX}e : ¶h àíZ nÌ "A', "~' Am¡a "g' VrZ IÊS>m| ‘| {d^m{OV h¢& à˶oH$
IÊS> Ho$ {ZX}emZwgma àíZm| Ho$ CÎma Xr{OE&
Section - A 10
×
1 = 10 (Very Short Answer Questions) (Compulsory)Note: Answer all questions. As per the nature of the question delimit your answer in one word, one sentence or maximum upto 30 words. Each question carries 1 mark.
IÊS> - "A' (A{V bKw CÎmar¶ àíZ)
{ZX}e : g^r àíZm| Ho$ CÎma Xr{OE& Amn AnZo CÎma H$mo àíZmZwgma EH$ eãX, EH$ dm³¶ ¶m A{YH$V‘
30eãXm| ‘| n[agr{‘V H$s{O¶o& à˶oH$ àíZ
1
A§H$ H$m h¡&
643
PH-03 / 900 / 5 (2) (Contd.)
1) (i) Define gradient of a scalar function.
A{Xe joÌ H$s àdUVm H$mo n[a^m{fV H$s{OE&
(ii) Write down the differential and integral forms of Gauss's Law.
Jm°g Ho$ {Z¶‘ Ho$ AdH$b VWm g‘mH$b én {b{IE&
(iii) What do you mean by positive value of divergence of electric field?
{dÚwV joÌ Ho$ S>mBdO}Ýg Ho$ YZmË‘H$ hmoZo H$m ³¶m ‘Vb~
orAW© h¡&
(iv) What is curl of a conservative field?
g§ajr joÌ H$m H$b© ³¶m hmoVm h¡?
(v) Define one volt.
EH$ dmoëQ> H$mo n[a^m{fV H$s{OE&
(vi) What is formula of the torque on a dipole in an electric field?
{dÚwV joÌ ‘| pñWV {dÚwV {ÛY«wd na ~bmKyU© H$m gyÌ ³¶m hmoVm h¡?
(vii) Write down the relation among Electric field ^ hE , Polarization density ^ hP and electric Displacement ^ hD .
{dÚwV joÌ
^ hE, Y«wdU KZËd
^ hPVWm {dÚwV {dñWmnZ
^ hD‘|
nañna gå~ÝY {b{IE&
(viii) Write down the larmer frequency.
bma‘a Amd¥{Îm {b{IE&
(ix) Write down the magnetic field B near a long current carrying conductor.
bå~o Ymamdmhr MmbH$ Ho$ {ZH$Q> Mwå~H$s¶ joÌ
BH$m ‘mZ {b{I¶o&
(x) Define self inductance.
ñdàoaH$Ëd H$mo n[a^m{fV H$s{OE&
Section - B 4
×
5 = 20 (Short Answer Questions)Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 5 marks.
(IÊS> - ~) (bKw CÎmar¶ àíZ)
{ZX}e : {H$Ýht Mma àíZm| Ho$ CÎma Xr{OE& Amn AnZo CÎma H$mo A{YH$V‘
200
eãXm| ‘| n[agr{‘V H$s{O¶o& à˶oH$ àíZ
5A§H$m| H$m h¡&
2) Prove lnr r r
4^ h= 2 for position vector r= xit+ yjt+ zkt.
pñW{V g{Xe
r= xit+ yjt+zktHo$ {bE
4^lnrh= rr2H$mo {gÕ H$s{OE&
3) State and prove Gauss's divergence theorem.
Jm°g H$m S>mBdO}Ýg à‘o¶ H$m H$WZ {bIH$a {gÕ H$s{OE&
4) Calculate the classical radius of an electron.
Bbo³Q´>m°Z H$s {Magå‘V {ÌÁ¶m Ho$ ‘mZ H$m AmH$bZ H$a|&
5) Prove that (i) curl = B= n0J (ii) divergence B = 0
{gÕ H$s{OE -
(i)H$b©
= B= n0J (ii)S>mBdO}Ýg
B = 06) Define electrical susceptibility and relative permittivity. Establish a relation between them.
{dÚwV àd¥{Îm VWm Amno{jH$ {dÚwVerbVm H$mo n[a^m{fV H$s{OE& BZ‘o gå~ÝY ñWm{nV H$s{OE&
7) A uniform electric field of 6 × 105 Volt/meter is applied on O2 gas.
Calculate induced polarizability. (Given a = 16.4 ×10–41 Farad-m2 and N = 2.7 × 1025 molecule/m3).
PH-03 / 900 / 5 (4) (Contd.)
Am°³grOZ J¡g na EH$ g‘mZ {dÚwV joÌ
6 × 105dmoëQ>/‘rQ>a bJmZo na ào[aV Y«wdUVm H$s JUZm H$s{OE& {X¶m J¶m h¡ Am°³grOZ J¡g H$s AmpÊdH$
Y«wdUVm
16.4 ×10–41’¡$amS> - ‘rQ>a
2VWm
O2H$m AUw KZËd
2.7 × 1025AUw/‘rQ>a
3&
8) Explain the inconsistancy of Ampere's Law and write down it's modified form.
Epån¶a Ho$ {Z¶‘ H$s Ag§J{V H$mo g‘PmB¶o VWm BgHo$ g§emo{YV én H$mo {b{I¶o&
9) Derive an expression for charging of a condenser in a R-C circuit.
EH$
R-Cn[anW ‘| g§Ym[aÌ Ho$ AmdoeZ H$m ì¶§OH$ ì¶wËnÞ H$s{OE&
Section - C 2
×
10 = 20 (Long Answer Questions)Note: Answer any two questions. You have to delimit your each answer maximum upto 500 words. Each question carries 10 marks.
(IÊS> - g) (XrK© CÎmar¶ àíZ)
{ZX}e : {H$Ýht Xmo àíZm| Ho$ CÎma Xr{O¶o& AnZo CÎma H$mo A{YH$V‘
500
eãXm| ‘| n[agr{‘V H$aZm h¡& à˶oH$ àíZ
10A§H$m| H$m h¡&
10) Define divergence of a vector and derive an expression for divergence of a vector in Cartesian coordinate system. Explain its physical significance.
{H$gr g{Xe Ho$ S>mBdO}Ýg H$mo n[a^m{fV H$s{OE VWm H$mVu¶ {ZX}em§H$
nÕ{V ‘| g{Xe Ho$ S>mBdO}Ýg H$m ì¶§OH$ kmV H$s{OE& BgH$s ^m¡{VH$
gmW©H$Vm H$mo g‘PmB¶o&
11) Derive an expression of Clausius-Mossotti relation for dielectric medium.
{H$gr namd¡ÚwV ‘mܶ‘ Ho$ {bE ³bm°{g¶g ‘mogmoQ>r gå~ÝY kmV H$s{OE&
12) What do you mean by magnetic vector potential? Derive the poisson equation for magnetic vector potential and write down expression of its solution.
Mwå~H$s¶ g{Xe {d^d go Amn ³¶m g‘PVo h¡? BgH$m nm°¶gZ g‘rH$aU kmV H$s{OE VWm BgHo$ hb H$m ì¶§OH$ {b{IE&
13) Obtain all the four Maxwell's equation related to electromagnetic field.
{dÚwV Mwå~H$s¶ joÌ go gå~pÝYV ‘¡³gdob Ho$ g‘rH$aUm| H$mo kmV H$s{OE&