• Tidak ada hasil yang ditemukan

d

N/A
N/A
Protected

Academic year: 2024

Membagikan "d"

Copied!
10
0
0

Teks penuh

(1)

# History d- enumerative

invariantsofGLS.MS

Fan -Jarvis-Ruan 12013) G- finite

Polishchub-Vainttib (20/6) Purely algebraic

version

usingfactorizationsmatrix

Kiem - Li 12018) using co section localization

Fan-Jarvis - Ruan 12018) "Narrowsectors"

for general

GLSMS

G-can-Fontanne-F- Gvéré - convex hybrid

Kim -Shoemaker 120181 models

F- - Kim 12020 ) General

case

(2)

Thin ( CF -1=-0--1-1--5,2018)

Enumerative invariants for

convex hybrid models specialize

to FJRW theory

and to GW ' theory

as defined using the co section

localized virtual cycle .

Thm (Kim -04,2018) The cosection

localized virtual cycle agrees with

the Behrend- Fantechi virtual cycle .

Thm ( F- Kim , 2020) Thegeneral

GLSM invariants form a Coh FT.

(3)

Construction

Embedd Myrie in a tm°°ᵗh

Space

Mg ,r,d -7 Ug ,r,d

\

, .

. _

-

-

"

I

, .FI

I%-% -

Find a " virtual " matrix factorization

1kg ,r,d on ( Ug ,r,d,Ѱw☒r)

supported

[m ]; a := tdlbg.r.ae/chlKgisd)FeEetined

(4)

Construction of 1kg ,r,d

LG quasimap data :

C genus g curve

q-tgy-n.ir) marked points

É principal f- bindle

K : px

, Cly WEE

u :c PIV

(5)

vector

87% bundle:

L universal

curve

'

{ ( C , q , F , K ) }

d

RiT*&×n%) = [ A B)

(6)

RIT* (8%10)=[1--413]

her D= til 88%-7 extra

wantconstructtoa

toÉp*B ᵈ *a

c.se#w '

using

Ugarit c-

"

'tot A

2- (B)

" 24%8, Huh ↓p

= M " LUGG)

{ ( C , q , 8,15 ) }

01

zlt) =Mig,;D

odd 2

A

≈[Ñf*B←→Ap*B)

2

2 =) B -11 SuppCK)-2-1%7

= Mg, rid

(7)

Problems : In general

only exists locally on Ugigd

a-EIHYUg.ve/KlBH

Want: To find a matrix factorization which is

locally the Ko szul factorization

(8)

%¥T%

Factorizations come

from sheaves of CDGAS

:

* DM stalk

(A, d) sheaf of CDGAS over

we MCX , 0×3

a C- M( A-,) s.t.dk)=w

Then even -2, odd

A A

2 =D -1 a

graded leibnitz rule 22 __ w

- '

. this is a matrix factorization

(9)

- Idea :

To realize

e- HI ' ( tot A)¥1B))

we need to replace 75lb)

by a d- acyclic complex

but retain the CDGA structure

Thom-Sullivan

(B) É%%• # B) Th%%B

e- acyclic P5h%¥

coslhplicial

sheaf of ¥817S

CDGAS

(10)

Then

c- Tti ÉKIBL ,

and alla) = w

1kg ,r,d:=&h•G%TBÑ¥Hh%*Ñ

locally looks like

"

p*Ñ→←i ᵈᵈ p* ]

Referensi

Dokumen terkait

Table 6 The validation result from expert on learning design No Aspect No Indicator Ai A Feasibility of Characteristic 1 The suitability of learning theory in interactive learning