# History d- enumerative
invariantsofGLS.MS
• Fan -Jarvis-Ruan 12013) G- finite
• Polishchub-Vainttib (20/6) Purely algebraic
version
usingfactorizationsmatrix
• Kiem - Li 12018) using co section localization
• Fan-Jarvis - Ruan 12018) "Narrowsectors"
for general
GLSMS
• G-•can-Fontanne-F- Gvéré - convex hybrid
Kim -Shoemaker 120181 models
• F- - Kim 12020 ) General
case
Thin ( CF -1=-0--1-1--5,2018)
Enumerative invariants for
convex hybrid models specialize
to FJRW theory
and to GW ' theory
as defined using the co section
localized virtual cycle .
Thm (Kim -04,2018) The cosection
localized virtual cycle agrees with
the Behrend- Fantechi virtual cycle .
Thm ( F- Kim , 2020) Thegeneral
GLSM invariants form a Coh FT.
Construction
• Embedd Myrie in a tm°°ᵗh
Space
Mg ,r,d -7 Ug ,r,d
\
, .
. _
-
-
"
I
, .FI
↓ →n÷
I%-% -
• Find a " virtual " matrix factorization
1kg ,r,d on ( Ug ,r,d,Ѱw☒r)
supported
• [m ]; a := tdlbg.r.ae/chlKgisd)FeEetined
Construction of 1kg ,r,d
LG quasimap data :
• C genus g curve
• q-tgy-n.ir) marked points
• É principal f- bindle
• K : px
, Cly → WEE
• u :c → PIV
vector
87% bundle:
↓
L universal
curve
↓
'{ ( C , q , F , K ) }
d
RiT*&×n%) = [ A → B)
RIT* (8%10)=[1--413]
her D= til 88%-7← extra
wantconstructtoa
toÉp*B ᵈ *a
c.se#w ↓ ↑ '
using
≤ Ugarit c-
"
'tot A
2- (B)
" 24%8, Huh ↓p
= M " LUGG)
{ ( C , q , 8,15 ) }
01
zlt) =Mig,;D
odd 2
A
≈[Ñf*B←→Ap*B)
22 =) B -11 ✗ SuppCK)-2-1%7
= Mg, rid
Problems : In general ✗
only exists locally on Ugigd
a-EIHYUg.ve/KlBH
Want: To find a matrix factorization which is
locally the Ko szul factorization
%¥T%
Factorizations comefrom sheaves of CDGAS
:
• * DM stalk
• (A, d) sheaf of CDGAS over
• we MCX , 0×3
• a C- M( ✗ A-,) s.t.dk)=w
Then even -2, odd
A ⇐ A
2 =D -1 • a
graded leibnitz rule 22 __ w
- '
. this is a matrix factorization
- Idea :
To realize
✗ e- HI ' ( tot A)¥1B))
we need to replace 75lb)
by a d- acyclic complex
but retain the CDGA structure
Thom-Sullivan
✗ (B) É%%• # B) →Th%%B
e- acyclic P5h%¥
coslhplicial
sheaf of ¥817S
CDGAS
Then
• ✗ c- Tti ÉKIBL ,
• and alla) = w
1kg ,r,d:=&h•G%TBÑ¥Hh%*Ñ
locally looks like
"