• Tidak ada hasil yang ditemukan

MT-03 December - Examination 2019 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry and Mathematical Programming Paper - MT-03

N/A
N/A
Protected

Academic year: 2025

Membagikan "MT-03 December - Examination 2019 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry and Mathematical Programming Paper - MT-03"

Copied!
6
0
0

Teks penuh

(1)

MT-03

December - Examination 2019 B.A. / B.Sc. Pt. I Examination

Co-ordinate Geometry and Mathematical Programming

Paper - MT-03

Time : 3 Hours ] [ Max. Marks :- 46

Note: The question paper is divided into three sections A, B and C. Use of non-programmable scientific calculator is allowed in this paper.

{ZX}e : àíZ nÌ VrZ IÊS>m| "A', "~' Am¡a "g' ‘| {d^m{OV h¡& Bg àíZnÌ

‘| Zm°Z-àmoJ«m‘o~b gmB§Q>r{’$H$ Ho$ëHw$boQ>a Ho$ Cn¶moJ H$s AZw‘{V h¢&

Section - A 6

×

1 = 6

(Very Short Answer Type Questions)

Note: Section - A contains seven (06) Very Short Answer Type Questions, Examinees have to attempt all questions. Each question is of 01 marks and maximum word limit may be thirty words.

IÊS> - "A' (A{V bKw CÎmar¶ àíZ)

{ZX}e : IÊS> "E' ‘| gmV (06) A{VbKwCÎmamË‘H$ àíZ h¢, narjm{W©¶m|

H$mo g^r àíZmo H$mo hb H$aZm h¢& à˶oH$ àíZ Ho$ 01 A§H$ h¡ Am¡a A{YH$V‘ eãX gr‘m Vrg eãX h¢&

678

(2)

1) (i) Write general equation of a sphere.

Jmobo H$m ì¶mnH$ g‘rH$aU {b{IE&

(ii) Write co-ordinates of centre of a conic section.

em§H$d n[aÀN>oX Ho$ Ho$ÝÐ Ho$ {ZX}em§H$ {b{IE&

(iii) Write Matrix form of a Linear Programming problem.

a¡{IH$ àmoJ«m‘Z g‘ñ¶m H$m ‘o{Q´>³g ñdê$n {b{IE&

(iv) Write equation of a enveloping cone.

AÝdbmonr e§Hw$ H$m g‘rH$aU {b{IE&

(v) Define a objective function.

CÔoí¶ ’$bZ H$mo n[a^m{fV H$s{OE&

(vi) Define optimal solution.

BîQ>V‘ hb H$mo n[a^m{fV H$s{OE&

Section - B 4

×

5 = 20

(Short Answer Type Questions)

Note: Section - B contains Eight Short Answer Type Questions.

Examinees will have to answer any four (04) question. Each question is of 05 marks. Examinees have to delimit each answer in maximum 200 words.

(IÊS> - ~) (bKw CÎmar¶ àíZ)

{ZX}e : IÊS> "~r' ‘| AmR> bKw CÎma àH$ma Ho$ àíZ h¢, narjm{W©¶m| H$mo {H$Ýhr

^r Mma (04) gdmbm| Ho$ Odm~ XoZm h¢& à˶oH$ àíZ 05 A§H$m| H$m h¡&

narjm{W©¶m| H$mo A{YH$V‘ 200 eãXm| ‘| à˶oH$ Odm~ n[agr{‘V H$aZo h¢&

2) Define:

(1) Conic Section (2) Sphere (3) Cylinder with suitable examples.

C{MV CXmhaUm| go n[a^m{fV H$s{OE&

(1) em§H$d (2) Jmobm (3) ~obZ

(3)

3) Find the equation to the enveloping cone to the sphere x2+ y2+z2+2x-2y- =2 0 with its vertex at (1, 1, 1)

Jmobo

x2+ y2+z2+2x-2y- =2 0

Ho$ Cg AÝdbmonr e§Hw$ H$m g‘rH$aU kmV H$s{OE {OgH$m erf©

(1, 1, 1)

h¡&

4) Find the dual of the following Linear Programming Problem.

{ZåZ{b{IV a¡{IH$ àmoJ«m‘Z g‘ñ¶m H$s Û¡Vr {b{IE&

(A{YH$V‘)

(Maximise) Zp=3x1+4x2

x x

2 1+3 2#16

(à{V~§Y)

(s.t.) 5x1+2x2#20 x x1 2, $0

5) Solve the following Transportation problem.

{ZåZ{b{IV n[adhZ g‘ñ¶m H$mo hb H$s{OE&

O O O b

D D D D a

5 8 12 300

7 6 10 600

13 14 9 700

10 13 11 400

700 400 300

j

i 1

2 3

1 2 3 4

6) Find the equation of the sphere which passes through , ,^a b nh and the circle x2+ y2=a z2; =0.

{~ÝXþ

^a b n, , h

Am¡a d¥Îm

x2+ y2=a z2; =0

go JwOaZo dmbo Jmobo H$m g‘rH$aU kmV H$s{OE&

7) Find all feasible solution of the following:

{ZåZ{b{IV {ZH$m¶ Ho$ g^r gyg§JV hb kmV H$s{OE&

x1+x2+2x3=12

x x x

3 1+5 2+8 3=50 , ,

x x x1 2 3$0

(4)

8) Prove that the sphere which cuts two spheres S1=0 and S2=0 orthogonally, will also cut lS1+mS2=0 orthogonally.

{gÕ H$s{OE {H$ EH$ Jmobm Omo {H$ Jmobo

S1=0

d

S2=0

H$mo bmpå~H$ ê$n go H$mQ>Vm h¡, dh

lS1+mS2=0

H$mo ^r bmpå~H$ ê$n go H$mQ>oJm&

9) Solve following assignment problem.

{ZåZ{b{IV {Z¶VZ g‘ñ¶m H$mo hb H$s{OE&

AB DC

I II III IV 138

3819 2628 1926

174 1824

1126 1510

Section - C 2

×

10 = 20 (Long Answer Type Questions)

Note: Section - C contains 4 Long answer type questions. Examinees will have to answer any two (02) questions. Each question is of 10 marks. Examinees have to answer in maximum 500 words.

(IÊS> - g) (XrK© CÎmar¶ àíZ)

{ZX}e : IÊS> "gr' ‘| 4 àíZ h¢& narjm{W©¶m| H$mo {H$Ýhr ^r Xmo (02) gdmbm|

Ho$ Odm~ XoZm h¢& à˶oH$ àíZ 10 A§H$m| H$m h¢& narjm{W©¶m| H$mo A{YH$V‘ 500 eãXm| ‘| à˶oH$ Odm~ n[agr{‘V H$aZo h¡&

10) Solve the following LPP using Big M Method.

{ZåZ a¡{IH$ àmoJ«m‘Z g‘ñ¶m H$mo {~J

M

{d{Y go hb H$s{OE&

(A{YH$V‘)

(Maximise) Z=6x1+4x2 2x1+2x2#30

x 2x 3 1+ 2#24

(à{V~§Y)

(s.t.) x1+x2$3

, 0

x x1 2$

(5)

11) Solve the dual problem of the following linear programming problem

{ZåZ{b{IV a¡{IH$ àmoJ«m‘Z g‘ñ¶m H$s Û¡Vr {b{IE Ed§ CgH$m hb kmV H$s{OE&

(A{YH$V‘)

(Maximise) Zp=4x1+2x2 x x

3 1+ 2#27 2 x1+x2# 1

(à{V~§Y)

(s.t.) x1+2x2$30

, 0

x x1 2$

12) i) Two sphere of radii r

1 and r

2 cut orthogonally, prove that the radius of their common circle is

r1

Am¡a

r2

{ÌÁ¶m Ho$ Xmo Jmobo bmpå~H$ ê$n go H$mQ>Vo h¡& {gÕ H$s{OE {H$ C^¶{ZîR> d¥Îm H$s {ÌÁ¶m h¡

r r

r r

1 2

2 2 1 2

` + j

ii) Find equation of sphere passes through ( , 0, 0) ; , , ;a ^0 b 0h , ,c

0 0

^ h and origin.

‘yb {~ÝXþ d

( , 0, 0) ; , , ;a ^0 b 0h ^0 0, ,ch

go JwOaZo dmbo Jmobo H$m

g‘rH$aU kmV H$s{OE&

(6)

13) If ,i z are m - generators of Hyperboloid ax by

cz 1

2 2

2 2

2

+ + 2 = then prove that

tan 2i z 11 m - m

= + -

Also show that i-z is constant for given point of generator of m system.

¶{X A{Vnadb¶O Ho$

ax2 by cz 1 2

2 2

2

+ + 2 = m -

OZH$ na H$moB© {~ÝXþ

i z,

hmo Vmo àX{e©V H$s{OE

tan 2i-z =11+-mm

Am¡a Xem©B¶o {H$

m

{ZH$m¶ Ho$ {H$gr {XE OZH$ Ho$ {~ÝXþAm| Ho$ {bE

i-z

AMa hmoVm h¡&

Referensi

Dokumen terkait

{hñQ>m‘rZ J«mhr H$m dJuH$aU H$s{OE& {H$Ýhr Xmo Am¡f{Y Ho$ Zm‘ Ed§ g§aMZm {b{IE Omo {H$ H2 {hñQ>m‘rZ J«mhr {damoYr hm|& OR /AWdm What is meant by Neurochemical Transmission?. With the

^maV ‘| ñdmñ϶ Zr{V na g§{jßV {Q>ßnUr {b{IE& 3 What are the principles of social welfare administration given by Warner?. dmZ©a Ûmam àñVwV gm‘m{OH$ H$ë¶mU àemgZ Ho$ {gÕmÝV ³¶m

{gS>o{Q>d-{hßZmo{Q>H$ H$s n[a^mfm VWm dJuH$aU Xr{OE& 8 Write short note on ANY TWO: {H$Ýht Xmo na bKw ZmoQ> {b{IE… a Inhalational anesthetics / BÝhoboeZ EoÝgWr{g¶m b Dopamine

nmZrnV Ho$ àW‘ ¶wÕ ‘| amUm gm§Jm H$s namO¶ Ho$ H$maU ~VmB¶o& 4 Trace the freedom struggle of Maharana Pratap against Mughals... You have to delimit your each answer maximum up to 500

AbmCÔrZ {IbOr H$s {dO¶m| H$mo {dñVmanyd©H$ {b{IE& 3 “Independent regional states rose on the decline of the central power of the Delhi Sultanat”.. Write a note on any one such province