EE6110 Adaptive Signal Processing Problem Set 2 Solutions
1.
Xˆ = RXYR−y1Y RXY = E
S0
S1
Y0∗ Y1∗
=
E(S0(S0+V0)∗) E(S0(S1+ 0.5S0+V1)∗) E(S1(S0+V0)∗) E(S1(S1+ 0.5S0+V1)∗)
=
1 0.5 0 1
RY = E Y0
Y1
Y0∗ Y1∗
=
E((S0+V0)(S0+V0)∗) E((S0+V0)(S1+ 0.5S0+V1)∗) E((S1+ 0.5S0+V1)(S0+V0)∗) E((S1+ 0.5S0+V1)(S1+ 0.5S0+V1)∗)
=
2 0.5 0.5 2.25
Xˆ =
1 0.5 0 1
2 0.5 0.5 2.25
−1
Y
= 4 7
2 12
−
1
2 2
Y
Sˆ0 = 8
17Y0+ 2 17Y1
Sˆ1 = − 2
17Y0+ 8 17Y1.
1
2. Case i: ∆ = 0
Sˆi = α0Yi+α1Yi−1+α2Yi−2 ,k0HY where,k0H = [α0, α1, α2]
Y =
Yi Yi−1
Yi−2
Yi = Si+ 0.5Si−1+Vi RY = E Y YH
=
RY(0) RY(1) RY(2) R∗Y(1) RY(0) RY(1) R∗Y(2) R∗Y(1) RY(0)
where,RY(k) = E YiYi∗
−k
RSiY = E SiYH
=
E(SiYi∗) E SiYi−∗1
E SiYi−∗2
E(SiYi∗) = E(Si(Si+ 0.5Si−1+Vi)∗) = 1 E SiYi∗
−1
= E(Si(Si−1+ 0.5Si−2 +Vi−1)∗) = 0 E(SiYi∗) = E(Si(Si−2+ 0.5Si−3 +Vi−2)∗) = 0
RY(0) = E(YiYi∗)
= E((Si+ 0.5Si−1+Vi)Yi∗)
= E(SiYi∗) + 0.5E(Si−1Yi∗) +E(ViYi∗)
= 1 + 0.25 + 1
= 2.25 RY(1) = E YiYi∗
−1
= E (Si+ 0.5Si−1+Vi)Yi∗−1
= E SiYi∗−1
+ 0.5E Si−1Yi∗−1
+E ViYi∗−1
= 0 + 0.5 + 0
= 0.5 RY(0) = E(YiYi∗)
= E((Si+ 0.5Si−1+Vi)Yi∗)
= E SiYi∗−2
+ 0.5E Si−1Yi∗−2
+E ViYi∗−2
= 0
kH0 = RXYR−Y1
=
1 0 0
2.25 0.5 0 0.5 2.25 0.5
0 0.5 2.25
−1
=
0.4688 −0.1096 0.0244
2
Case (ii) ∆ = 1
Sˆi−1 = α0Yi+α1Yi−1 +α2Yi−2
RSi−1Y =
E(Si−1Yi∗) E Si−1Yi∗
−1
E Si−1Yi∗
−2
=
0.5 1 0
kH0 =
α0 α1 α2
= RSi−1YR−Y1
=
0.5 0 1 R−Y1
The model and equation for general L and ∆ is in Section 5.4 of [Sayed].
3.
X = XC+Z Assume XC and Z are zero-mean
Xˆ = K0(Y −E(Y)) whereK0RY =RXY RXY = E
XYH
= E((XC +Z)(Y −E(Y)))
= E(XC(YH)−E(Y))
= RXcY
RY = E (Y −E(Y))(Y −E(Y))H Therefore, ˆXC =K0(Y −E(Y)) = ˆX.
3