• Tidak ada hasil yang ditemukan

Solutions to Problem Set 7

N/A
N/A
Protected

Academic year: 2025

Membagikan "Solutions to Problem Set 7"

Copied!
3
0
0

Teks penuh

(1)

Solutions to Problem Set 7

EE419: Digital Communication Systems Check the solutions for possible bugs!

1. The received signalz[k] =cs[k] +n[k], wheren[k]∼N(0, N0) is white Gaussian ands[k]∈ {−1,1}

isiiduniform independent ofn[k]. Thei-th entry ofαis given byαi= E[s[k]z[k+i]] (the index iruns fromP to−P).

αi= E[cs[k]s[k+i] +s[k]n[k+i]] =

(c i= 0 0 i6= 0

The (i, l)-th entry ofφis given byφil= E[z[k+i]z[k+l]] (the indicesiandlrun fromP to−P).

φil= E[(cs[k+i] +n[k+i])(cs[k+l] +n[k+l])] =

(|c|2+N0 i=l

0 i6=l

Hence,

copt=

 0 ... c/(|c|2+N0)

... 0

and MSE=1− |c|2

|c|2+N0

= N0

|c|2+N0

for allP.

2. The received signal z[k] = s[k] +cs[k−1] +n[k], wheren[k]∼ N(0, N0) is white Gaussian and s[k]∈ {−1,1}isiiduniform independent ofn[k]. Thei-th entry ofαis given byαi= E[s[k]z[k+i]]

(the indexiruns fromP to−P).

αi = E[s[k]s[k+i] +cs[k]s[k+i−1] +s[k]n[k+i]] =





1 i= 0 c i= 1 0 else

The (i, l)-th entry ofφis given byφil= E[z[k+i]z[k+l]] (the indicesiandlrun fromP to−P).

φil= E[(s[k+i]+cs[k+i−1]+n[k+i])(s[k+l]+cs[k+l−1]+n[k+l])] =









1 +|c|2+N0 i=l c i=l+ 1

c i=l−1

0 else

ForP = 0,copt= 1/(1 +|c|2+N0) and MSE=1− 1 1 +|c|2+N0

= |c|2+N0 1 +|c|2+N0

. ForP = 1,

copt =

1 +|c|2+N0 c 0

c 1 +|c|2+N0 c

0 c 1 +|c|2+N0

−1

 c

1 0

with a similar formula for MSE. The caseP = 2 is omitted.

(2)

3. The received signalz[k] =P

m=0(−c)ms[k−m]+n[k], wheren[k]∼N(0, N0) is white Gaussian and s[k]∈ {−1,1}isiiduniform independent ofn[k]. Thei-th entry ofαis given byαi= E[s[k]z[k+i]]

(the indexiruns fromP to−P).

αi= E

" X

m=0

(−c)ms[k]s[k+i−m] +s[k]n[k+i]

#

=

((−c)i i≥0

0 else

The (i, l)-th entry ofφis given byφil= E[z[k+i]z[k+l]] (the indicesiandlrun fromP to−P).

φil = E P

m1=0(−c)m1s[k+i−m1] +n[k+i] P

m2=0(−c)m2s[k+l−m2] +n[k+l]

=













 1

1− |c|2+N0 i=l (−c)d

1− |c|2 i=l+d, d= 1,2,· · · (−c)d

1− |c|2 i=l−d, d= 1,2,· · · For P = 0, copt = (1− |c|2)/(1 +N0−N0|c|2) and MSE=1− 1− |c|2

1 +N0−N0|c|2. For P = 1 and P = 2, substitute the above values into the fomulae.

4. Suppose H(z) = PM

l=−Mhlz−l resulting in z[k+i] = PM

l=−Mh[l]s[k+i−l] +n[k+i]. Let b[k+i] =PM

l=−Mh[l]s[k+i−l] be the symbol component inz[k+i]. We see that

b[k+P] ... b[k]

... b[k−P]

=

h[−M] · · · h[0] · · · h[M] 0 · · · 0

0 h[−M] · · · h[0] · · · h[M] · · · 0

... ... ... ... ... ... ... ... ...

0 · · · 0 h[−M] · · · h[0] · · · h[M] 0

0 · · · 0 h[−M] · · · h[0] · · · h[M]

s[k+P+M] ... s[k+P]

... s[k]

... s[k−P]

... s[k−P−M]

 .

Denote the 2P+ 1×2P+ 2M+ 1 matrix above asH. The symbol component after filtering{z[k]}

byC(z) =PP

l=−Pclz−lis given by

x[k] =

c[−P] · · · c[o] · · · c[P] H

s[k+P+M] ... s[k+P]

... s[k]

... s[k−P]

... s[k−P−M]

. (1)

In a ZF-LE, we choosec= [c[−P]· · ·c[0]· · ·c[P]] so that x[k] =s[k] + X

d<|l|≤P+M

αls[k+l] + noise

2

(3)

for a suitable d. Notice that the interference from s[k+l], 1≤ |l| ≤dis expected to be nulled by the equalizer. Let hl denote the l-th column of H, whose columns are indexed from−P −M to P+M. The vector cneeds to be chosen such that

[c[−P]· · ·c[0]· · ·c[P]][h−d· · ·h0· · ·hd] = [0· · ·1· · ·0].

Existence of the ZF-LE for a particular d depends on the solvability of the above set of linear equations. Assuming the matrix above has full rank, a ZF-LE can be obtained for 1≤d≤P. 5. In a DFE, let the precursor be C(z) = P0

i=−Pc[i]z−i and the postcursor D(z) = PN

i=1d[i]z−i. Assuming correct slicer decisions, the input to the slicer y[k] can be written as

y[k] =s[k]∗(h[k]∗c[k]−d[k]) +n[k]∗c[k],

where ∗denotes convolution. Typically,D(z) is chosen to cancel a part ofH(z)C(z). Since p[i] =h[k]∗c[k]|i=

0

X

k=−P

c[k]h[i−k],

we let d[i] =p[i] for 1≤i≤N. Assuming this choice forD(z), the postcursor has been derived in terms of the precursor C(z) and the channel H(z). The precursor can now be determined to satisfy any criterion. In a ZF-DFE, we use (1) with c[i] = 0 for 1≤i≤P to solve for a suitable C(z). The ISI terms to be cancelled with the precursor have to be chosen carefully. The postcursor will then be calculated to cancel M terms in the resultant causal ISI.

6. Use a modifed version of the solution to Problem 5. Choose the postcursor in terms of the precursor and use the MMSE-LE formulation to findC(z) =P0

i=−Pc[i]z−i.

7. For finding the precursor, use the solution to Problem 3 with the indices for the matricesαandφ running only fromP down to 0. Use Problem 5 for finding the postcursor in terms of the precursor.

3

Referensi

Dokumen terkait

Pondok Rajeg temadap keberadaan TPA sampah Pondok Rajeg serta fkktor-&amp;or sang rnempengaruhin)a, (2) mengkaji faktor-faktor yang mempengaruhi k e s e d i i dan -

Z o n a Ti n g g i a n : Z o n a i n i d i i d e n t i f i k a s i pembentukannya berdasarkan keterdapatan sebaran zona tinggi (ZTM) pada anomali RTE dan residual

R E S E A R C H A R T I C L E Open Access Development and validation of the Evidence Based Medicine Questionnaire EBMQ to assess doctors ’ knowledge, practice and barriers regarding

Their procedure, when applied to the generation of a single bootstrap sample for thei-th local area is as follows: i For a given set of sample data, obtain empirical Bayes estimates of

To Give Address On World Peace Noted Pacifist S p e a k e r Makes Fourth Alfred Ap- pearance Thursday Morn- ing In College Assembly YOUTH MOVEMENT Travels Abroad Give Harris Close

file,~em­ photographic processing labora bers_of .certamtradeUnions here- ~~~~fdcr~~:atlbusinessesmight be~rtl:l1~th~at~~nus~i~~i~~~lto;~r:.~e~g Contillllcdallpagc4 IO~thi: ~~:k

Then the total structure function F2 of the hadron must be given by F2x, Q2 =X i Z 1 0 dziqiziF2i 1.12 where qiz is the probability to find quark i with momentum fraction z inside

EECS 492: Introduction to Artificial Intelligence March 7, 2002 Given all of the above, I would choose the following for a representation: m, c, b where m is the number of