• Tidak ada hasil yang ditemukan

EJMS-1908122

N/A
N/A
Protected

Academic year: 2024

Membagikan "EJMS-1908122"

Copied!
12
0
0

Teks penuh

(1)

Volume 2, Number 2, 2019, Pages 515-526 https://doi.org/10.34198/ejms.2219.515526

Received: August 4, 2019; Accepted: September 12, 2019 2010 Mathematics Subject Classification: 30C45, 30C50.

Keywords and phrases:multivalent function, extreme points, integral representation, linear operator.

Copyright © 2019 Asraa Abdul Jaleel Husien and Qassim Ali Shakir. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution,

On a Certain Subclass for Multivalent Analytic Functions with a Fixed Point Involving Linear Operator

Asraa Abdul Jaleel Husien1 and Qassim Ali Shakir2

1 Technical Institute, Diwaniya, Al-Furat Al-Awsat Technical University, Iraq e-mail: [email protected]

2College of Computer Science and Information Technology, University of Al-Qadisiyah, Iraq e-mail: [email protected]

Abstract

In the present paper, we study a subclass for multivalent analytic functions with a fixed point w defined in the unit disk U involving linear operator. Also, we obtain coefficient estimates, extreme points, integral representation and radii of starlikeness and convexity.

1. Introduction

Denote by A

(

p, w

)

the class of functions f of the form:

( ) ( ) ∑∞ ( ) ( )

=

++

+

=

1

,

n

p n p

n

p a z w p

w z z

f N (1.1)

which are analytic in the unit disk U =

{

z∈C: z <1

}

and w is a fixed point in U.

Let S

(

p, w

)

denote subclass of A

(

p, w

)

containing of functions of the form:

( ) ( ) ∑∞ ( ) ( )

= + +

+ − ≥ ∈

=

1

. ,

0

n

p p n

p n

p an z w a p

w z z

f N (1.2)

(2)

For the functions fS

(

p, w

)

given by (1.2) and gS

(

p,w

)

defined by

( ) ( ) ∑∞ ( ) ( )

= + +

+ − ≥ ∈

=

1

, ,

0

n

p n p n p

n

p b z w b p

w z z

g N

we define the Hadamard product of f and g by

( )( ) ( ) ∑∞ ( )

=

+ +

+

=

1

.

n

p p n

n p

p an b z w

w z z g f

For a∈R,c∈R\Z0, with Z0 =

{

0, −1, −2,...

}

, 0 δ<1, p∈N, τ >−p,

∈R β

α, with α+β− p <1 and fS

(

p,w

)

. The linear operator Lαp,,βw,,δτ

(

a,c

)

:

(

p w

)

S

(

p w

)

S , → , (see [3]) is defined by

( ) ( ) ( ) ∑∞ ( ) ( )

=

+ + δτ

β

α = − + ϕ α β δ τ −

1 ,

, ,

, , , , , , , , , ,

n

p n p

n p

w

p a c f z z w a c n p a z w

L (1.3)

where

( ) ( ) ( ) ( ) ( )

( ) (

1

) (

1

)

! .

1 , 1

, , , , ,

, a p p n

p p

p p c

n c

a

n n

n

n n

n n

β + α

− + +

+ τ β + δ

− + α

= + τ

δ β α

ϕ (1.4)

Now, we define the class Swp

(

λ,η,µ, τ,α,β,δ

)

consisting the functions

(

p w

)

S

f ∈ , such that

( )( ( ) ( )) ( )( ( ) ( ))

( )( (

,

) ( )) ( )( (

,

) ( ))

1,

, 2

,

, ,

, , ,

, , ,

, ,

, , ,

, ,

, <

µ ″

− η

′″ +

− λ

− ″

′″ −

δτ β τ α

δ β α

δτ β τ α

δ β α

z f c a z

f c a w

z

z f c a p

z f c a w

z

w p w

p

w p w

p

L L

L L

(1.5)

where 0≤ λ<1,0< η≤1,0≤µ <1, pN and p >2.

We note other studies of various other classes with different results, like, Ghanim and Darus [2], Najafzadeh and Rahimi [4], Shenan [5], Atshan and Wanas [1] and Wanas [6].

(3)

2. Main Results

In the first theorem, we find sharp coefficient estimates for the class

(

λ,η,µ, τ,α,β,δ

)

.

wp

S

Theorem 2.1. Let fS

(

p, w

)

. Then fSwp

(

λ, η,µ, τ, α,β, δ

)

if and only if

( )( ) ( ( ) ) ( )

= + + − +η−µ+λ + − ϕ α β δ τ +

1

, , , , , , , 2 1

n

p

an

p n c

a p

n n

p n p n

(

1

) (

η−µ+λ

(

2

) )

,

p p p (2.1)

where 0≤ λ<1,0 <η≤1,0≤µ <1 and ϕ

(

a,c,α,β, δ, τ,n, p

)

is given by (1.4).

The result is sharp for the function f given by

( ) (

z z w

)

p

f = −

( ) ( ( ) )

( )( ) ( ( ) ) ( ) (

z w

)

n p

p n c

a p

n n

p n p n

p p

p +

τ − δ β α ϕ

− + λ + µ

− η +

− + +

− λ + µ

− η

− −

, , , , , , , 2 1

2 1

(

n1

)

. (2.2) Proof. Suppose that the inequality (2.1) holds true and

(

zw

)

∈∂U, where ∂U denotes the boundary of U. Then, we find from (1.5) that

(

zw

)(

Lαp,,βw,,δτ

(

a,c

) ( ))

f z ′″ −

(

p−2

)(

Lαp,,βw,,δτ

(

a,c

) ( ))

f z

(

)( ( ) ( ))

′″ +

(

η−µ

)( ( ) ( ))

λ

z w Lαp,,βw,,δτ a,c f z Lαp,,βw,,δτ a,c f z

( )( ) ( ) ( )

=

++

τ δ β α ϕ

− + +

=

1

, 2

, , , , , , 1

n

p n p

n z w

a p n c

a p

n p n n

(

1

) (

η−µ+λ

(

2

) )(

)

2

p p p z w p

( )( )

=

− + +

1

1

n

p n p n

( )

(

η−µ+λ + −2

) (

ϕ , ,α,β,δ,τ, ,

)

+

(

)

+ 2

× n p a c n p an p z w n p

(4)

( )( ) ( ) ( )

=

++

τ δ β α ϕ

− + +

1

, 2

, , , , , , 1

n

p p n

n z w

a p n c

a p

n p n n

(

−1

) (

η−µ+λ

(

−2

) )

2

p p p z w p

( )( )

=

− + +

+

1

1

n

p n p n

( )

(

η−µ+λ + −2

) (

ϕ , ,α,β, δ,τ, ,

)

++ 2

× n p a c n p an p z w n p

( )( ) ( ( ) ) ( )

= + + − +η−µ+λ + − ϕ α β δ τ +

=

1

, , , , , , , 2 1

n

p

an

p n c

a p

n n

p n p n

(

−1

) (

η−µ+λ

(

−2

) )

≤0.

p p p

Hence, by maximum modulus theorem, we conclude fSwp

(

λ, η,µ, τ, α,β, δ

)

. Conversely, suppose that fSwp

(

λ,η, µ,τ,α,β, δ

)

. Then from (1.3), we have

( )( ( ) ( )) ( )( ( ) ( ))

(

)( ( ) ( ))

′″+

(

η−µ

)( ( ) ( ))

λ

− ″

′″ −

δτ β τ α

δ β α

δτ β τ α

δ β α

z f c a z

f c a w

z

z f c a p

z f c a w

z

w p w

p

w p w

p

, ,

, 2

,

, ,

, , ,

, , ,

, ,

, , ,

, , ,

L L

L L

( )( ) ( ) ( )

( ) ( ( ) )( ) ( )( )

( )

( ) ( ) ( )

2

1 2 1

2

, , , , , , , 2

1 2

1

, , , , , , , 1

+ +

=

=

+ +

− τ

δ β α ϕ

− + λ + µ

− η

×

− + +

− λ + µ

− η

− τ

δ β α ϕ

− + +

=

p p n

n n

p n

p p n

n

w z a p n c

a p

n

p n p n w

z p

p p

w z a p n c

a p

n p n n

.

<1

(5)

So, we obtain

( )( ) ( ) ( )

( ) ( ( ) )( ) ( )( )

( )

( ) ( ) ( )

. 1

, , , , , , , 2

1 2

1

, , , , , , , 1 Re

2 1

2 1

2

<

















− τ

δ β α ϕ

− + λ + µ

− η

×

− + +

− λ + µ

− η

− τ

δ β α ϕ

− + +

+ +

=

=

+ +

p n p

n n

p n

p n p

n

w z a p n c

a p

n

p n p n w

z p

p p

w z a p n c

a p

n p n n

By letting

(

zw

)

→1, through real values, we have

( )( ) ( ( ) ) ( )

= + + − +η−µ+λ + − ϕ α β δ τ +

1

, , , , , , , 2 1

n

p

an

p n c

a p

n n

p n p n

(

1

) (

η−µ+λ

(

2

) )

.

p p p

Corollary 2.1. Let fSwp

(

λ,η,µ, τ,α,β,δ

)

. Then

( ) ( ( ) )

(

n p

)(

n p

) (

n

(

n p

) ) (

a c n p

)

p p

an p p

, , , , , , , 2 1

2 1

τ δ β α ϕ

− + λ + µ

− η +

− + +

− λ + µ

− η

≤ −

+

(

n ≥1

)

. In the next result, we discuss extreme points for the class Swp

(

λ,η,µ,τ, α,β, δ

)

. Theorem 2.2. Let fp

( ) (

z = zw

)

p and

( ) ( )

p

p

n z z w

f + = −

( ) ( ( ) )

( )( ) ( ( ) ) ( ) (

z w

)

n p

p n c

a p

n n

p n p n

p p

p +

τ − δ β α ϕ

− + λ + µ

− η +

− + +

− λ + µ

− η

− −

, , , , , , , 2 1

2 1

(

n1

)

. Then fSwp

(

λ, η,µ, τ, α,β, δ

)

if and only if it can be expressed in the form
(6)

( ) ∑∞ ( )

= γ + +

=

0

,

n

p n p

n f z

z

f (2.3)

where

= +

+ ≥ γ =

γ

0

. 1 ,

0

n p n p

n

Proof. Let the f of the form (2.3). Then

( ) ( )

( )

 −

γ + γ

=

= + p

n p n p

pf z z w

z f

1

( ) ( ( ) )

( )( ) ( ( ) ) ( ) ( )

−  τ

δ β α ϕ

− + λ + µ

− η +

− + +

− λ + µ

− η

− − z w n+p

p n c

a p

n n

p n p n

p p

p

, , , , , , , 2 1

2 1

( ) ( ) ( ( ) )

( )( ) ( ( ) ) ( )

= + + − +η−µ+λ + − ϕ α β δ τ

− λ + µ

− η

− −

=

1 1 2 , , , , , , ,

2 1

n p

p n c

a p

n n

p n p n

p p

w p z

( )

n p.

p

n+ zw + γ

× Now,

( )( ) ( ( ) ) ( )

( ) ( ( ) )

= − η−µ +λ −

τ δ β α ϕ

− + λ + µ

− η +

− + +

1 1 2

, , , , , , , 2 1

n p p p

p n c

a p

n n

p n p n

( ) ( ( ) )

(

n p

)(

n p

) (

n

(

n p

) ) (

a c n p

)

n p

p p

p γ +

τ δ β α ϕ

− + λ + µ

− η +

− + +

− λ + µ

− η

× −

, , , , , , , 2 1

2 1

=

+ = −γ ≤ γ

=

1

. 1 1

n

p p

n

Thus fSwp

(

λ,η,µ, τ,α,β,δ

)

.

Conversely, let fSwp

(

λ,η,µ,τ,α,β,δ

)

. It follows from Corollary 2.1 that

( ) ( ( ) )

( )( ) ( ( ) ) ( ) (

1

)

.

, , , , , , , 2 1

2

1 ≥

τ δ β α ϕ

− + λ + µ

− η +

− + +

− λ + µ

− η

≤ −

+ n

p n c

a p

n n

p n p n

p p

an p p

(7)

Setting

( )( ) ( ( ) ) ( )

( ) ( ( ) )

n p

p

n a

p p

p

p n c

a p

n n

p n p

n +

+ − η−µ+λ −

τ δ β α ϕ

− + λ + µ

− η +

− +

= +

γ 1 2

, , , , , , , 2 1

(

n1

)

and

= γ +

= γ

1

, 1

n p n

p we have

( ) ( ) ∑∞ ( )

=

++

=

1 n

p p n

p an z w

w z z f

( ) ( ) ( ( ) )

( )( ) ( ( ) ) ( )

= + + − +η−µ+λ + − ϕ α β δ τ

− λ + µ

− η

− −

=

1 1 2 , , , , , , ,

2 1

n p

p n c

a p

n n

p n p n

p p

w p z

( )

n p

p

n+ zw + γ

×

( ) (( )

n p

( ))

n p

n

p

p z w f z

w

z + +

=

γ

=

1

( ) ∑ ( )

= + +

= +  − + γ



 − γ

=

1 1

1

n

p n p p n

n p

n z w f z

( ) ∑∞ ( ) ∑ ( )

=

= + +

+

+ = γ

γ + γ

=

1 0

,

n n

p n p n p

n p n p

pf z f z f z

that is the required representation.

In the following theorem, we establish integral representation for functions belongs to the class Swp

(

λ, η,µ, τ,α,β,δ

)

.

Theorem 2.3. Let fSwp

(

λ,η,µ,τ,α,β,δ

)

. Then

( ) ( ) ( ) ( )

( ) ( ( ) )

∫ ∫

ηµ ψ λψ+

τ =

δ β α

z z z

w

p dt dt dt

t w

t

p z t

f c a

0 0 2 3

0 1

1 1

, 1 ,

,

, ,

1 exp 2

, L

where ψ

( )

z <1, zU.
(8)

Proof. By putting

( )( ( ) ( ))

( ( ) ( ))

Q

( )

z

z f c a

z f c a w

z

w p

w p

″ =

− ′″

δτ β α

δτ β α

, ,

, ,

, ,

, ,

, ,

L L

in (1.5), we have

( ) ( )

1,

2 <

µ

− η + λ

+

z Q

p z Q

or equivalently

( ) ( )

2

( )

,

( ( )

1,

)

.

U z z

z z Q

p z

Q = ψ ψ < ∈

µ

− η + λ

+

So

( ( ) ( ))

( ( ) ( ))

( ) ( )

( ) (

1

( ) )

, 2 ,

,

, ,

, ,

, ,

, ,

z w

z

p z z

f c a

z f c a

w p

w p

λψ

− + ψ µ

= η

′″

δτ β α

δτ β α

L L

after integration, we get

(( ( ) ( )) ) ( ) ( )

( ) ( ( ) )

ηµ ψ λψ+

″ =

δτ β α

w z

p dt

t w

t

p z t

f c a

0 1

1 1

, 1 ,

,

, .

1 , 2

log L Therefore

( ( ) ( )) ( ) ( )

( ) (

1

( ) )

.

exp 2 ,

0 1

1 1

, 1 ,

,

,

 

λψ

− + ψ µ

= η

δτ β α

w z

p dt

t w

t

p z t

f c a L

By integration once again, we have

( ( ) ( )) ( ) ( )

( ) (

1

( ) )

.

exp 2

, 2

0 0 1

1 1

, 1 ,

,

, dt dt

t w

t

p z t

f c

a z z

w

pβ δτ =

ηµ ψ λψ+

Lα

Also, after integration, we conclude that

( ) ( ) ( ) ( )

( ) ( ( ) )

3

0 2

0 0 1

1 1

, 1 ,

,

, 1

exp 2

, dt dt dt

t w

t

p z t

f c

a z z z

w

pβδτ =

∫ ∫

ηµ ψ λψ+

Lα

and this the required result.

Theorem 2.4. If fSwp

(

λ,η,µ,τ,α,β,δ

)

, then f is starlike of order θ
(9)

(

0≤ θ< p

)

in the disk zw <r1, where

( )( )( ) ( ( ) ) ( )

(

1

)( ) ( (

2

) )

.

, , , , , , , 2 inf 1

1 1

n

n p p n p p

p n c

a p

n n

p n p p r n





− λ + µ

− η θ

− +

τ δ β α ϕ

− + λ + µ

− η +

− + θ

= +

The result is sharp for the function f given by (2.2).

Proof. It is sufficient to show that

( ) ( )

( )

θ

p p

z f

z f w

z for zw < r1. (2.4)

But

( ) ( )

( )

( )

( ) ( )

. 1

1 1

1 1

= +

= +

= + +

= + +

=

′ −

n p n n n

p n n

n

p p n

p n n

p p n

n

w z a

w z na

w z a w

z

w z na z p

f z f w z

Thus (2.4) will be satisfied if

, 1

1

1 ≤ −θ

= +

= +

p w z a

w z na

n p n n n

n p

n

or if

( )

( )

= + − ≤

θ

− θ

− +

1

, 1

n

n p

n z w

p a p

n (2.5)

with the aid of (2.1), (2.5) is true if

( )

(

p

)

z w n

p

n

θ

− θ

− +

( )( ) ( ( ) ) ( )

(

1

) ( (

2

) )

,

, , , , , , , 2 1

− λ + µ

− η

τ δ β α ϕ

− + λ + µ

− η +

− +

≤ +

p p

p

p n c

a p

n n

p n p n

(10)

or equivalently w z

( )( )( ) ( ( ) ) ( )

( )( ) ( ( ) )

n

p p

n p p

p n c

a p

n n

p n p p n

1

2 1

, , , , , , , 2 1





− λ + µ

− η θ

− +

τ δ β α ϕ

− + λ + µ

− η +

− + θ

≤ +

(

n1

)

, which follows the result.

Theorem 2.5. If fSwp

(

λ,η,µ,τ,α,β,δ

)

, then f is convex of order θ

(

0≤ θ< p

)

in the disk zw <r2, where

( )( ) ( ( ) ) ( )

(

1

)( ) ( (

2

) )

.

, , , , , , , 2 inf 1

1 2

n

n p n p p

p n c

a p

n n

p n r p





− λ + µ

− η θ

− +

τ δ β α ϕ

− + λ + µ

− η +

− + θ

= −

The result is sharp for the function f given by (2.2).

Proof. It is sufficient to show that

( ) ( )

( )

+ θ

− ′′

p z p

f z f w

z 1 for zw < r2. (2.6)

But

( ) ( )

( )

( ) ( )

( ) ∑ ( ) ( )

=

+ +

=

+ +

− +

− +

=

′ +

− ′′

1

1 1

1

1

1

n

p n p

n p

n

p p n

n

w z a p n w

z p

w z a p n n z p

f z f w z

( )

( )

.

1 1

= +

= +

− +

− +

n

p n n n

n p

n

w z a p n p

w z a p n n

(11)

Thus (2.6) will be satisfied if

( )

( )

,

1

1 ≤ −θ

− +

− +

= +

=

+

p w z a p n p

w z a p n n

n

p n n n

n p

n

or if

( )( )

( )

= + − ≤

θ

− θ

− + +

1

, 1

n

n p

n z w

p a p

p n p

n (2.7)

with the aid of (2.1), (2.7) is true if

( )( )

(

p

)

z w n

p p n p

n

θ

− θ

− + +

( )( ) ( ( ) ) ( )

(

1

) ( (

2 2

) )

, , , , , , , ,

1

− λ + µ

− η

τ δ β α ϕ

− + λ + µ

− η +

− +

≤ +

p p

p

p n c

a p

n n

p n p n

or equivalently

( )( ) ( ( ) ) ( )

(

p

)(

n p

) ( (

p

) )

n

p n c

a p

n n

p n w p

z

1

2 1

, , , , , , , 2 1





− λ + µ

− η θ

− +

τ δ β α ϕ

− + λ + µ

− η +

− + θ

≤ −

(

n1

)

, which follows the result.

References

[1] W. G. Atshan and A. K. Wanas, Subclass of p-valent analytic functions with negative coefficients, Adv. Appl. Math. Sci. 11(5) (2012), 239-254.

[2] F. Ghanim and M. Darus, On new subclass of analytic univalent function with negative coefficient, I, Int. J. Contemp. Math. Sci. 3(27) (2008), 1317-1329.

[3] R. Kargar, A. Bilavi, S. Abdolahi and S. Maroufi, A class of multivalent analytic functions defined by a new linear operator, J. Math. Comp. Sci. 8 (2014), 326-334.

https://doi.org/10.22436/jmcs.08.04.01

(12)

[4] Sh. Najafzadeh and A. Rahimi, Application of differential subordination on p-valent functions with a fixed point, Gen. Math. 17(4) (2009), 149-156.

[5] J. M. Shenan, On a subclass of p-valent prestarlike functions with negative coefficient defined by Dziok-Srivastava linear operator, Int. J. Open Probl. Complex Anal. 3(3) (2011), 24-35.

[6] A. K. Wanas, Some properties of a certain class of multivalent analytic functions with a fixed point, International Journal of Innovative Science, Engineering & Technology 1(9) (2014), 336-339.

Referensi

Dokumen terkait

Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by-nc-nd/4.0/, which permits others to

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by-nc-nd/4.0/, which permits others to

1 No.1, Oktober 2023 ISSN: XXXXX This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted

Open Access This book is distributed under the terms of the Creative Commons Attribution- Noncommercial 2.5 License http://creativecommons.org/licenses/by-nc/2.5/ which permits any

Open Access This book is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, Analysis of Heavy Metal in Water used for Irrigation, Soil

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,