Subhajit Chakraborty Under the supervision of
Prof. Sebastian C. Peter
Systematic Assessment of Solvent Selection in Photocatalytic CO 2 Reduction
International Winter School 2021
Das, R.; Chakraborty, S.; Peter, S. C. ACS Energy Lett. 2021, 6 (9), 3270–3274.
Introduction
• Atmospheric CO 2 concentration 413.93 ppm upto October 2021
• Energy reaching to the earth surface from Sun 4.3*1020 J/h with that energy we can sustain 9200 h
Catalyst Light Additi Result
µmol/g/h
Article
MWCN T /TiO
28 W UV-A, full arc
TEOA H
2: 2360, CH
3OH: 3246
Carbon 2019, 147, 385 CMP3-
Pd
300 W (>295 nm) TEA H
2: 6076 Chem. Mater.
2019, 31, 305 CsPbBr
3NCs/GO
300 W (>400 nm) Ethyl acetate
CO: 5 J. Am. Chem.
Soc. 2017, 139, 5660 Cs
2AgBi
Br
6NCs
450 W Xe lamp (>420nm)
Ethyl acetate
CO: 2.35 Small 2018, 14, 1703762.
Phys. Chem. Chem. Phys. 2012, 14, 16745.
Catalyst Design (CS1)
Case Study
Case study-1 (reported catalyst) Pt/TiO 2 @g-C 3 N 4
Case study-2 (new catalyst) CsPbBr 3 /BCN
Phys. Chem. Chem. Phys. 2012, 14, 16745.
0 200 400 600 800 1000 1200 1400 1600 0
100 200 300 400 500 600 700
800 TiO2
Pt-TiO g-C3N4
Pt-TiO2@g-C3N4
-Z'' (ohm)
Z' (ohm)
0 20 40 60 80 100 120 140
0 1 2 3
Photocurrent(mA cm-2 )
Time (Second) TiO2 Pt-TiO2 g-C3N4
Pt-TiO2@g-C3N4
300 400 500 600 700
0 1 2 3 4 5 6
2.50 2.75 3.00 3.25 3.50 3.75 4.00 0
500 1000 1500 2000 2500 3000 3500 4000
2.93 eV 3.28 eV
(ahn)2(eV cm-1)2
Bandgap (eV) TiO2
Pt_TiO2 g-C3N4 Pt_TiO2@g-C3N4
377 nm
436 nm
Absorbance
Wavelength (nm)
.
350 400 450 500 550 600
0 20 40 60 80 100
Intensity (a.u.)
Wavelength (nm) TiO2 Pt_TiO2 g-C3N4
Pt_TiO2@g-C3N4
Phys. Chem. Chem. Phys. 2012, 14, 16745.
350 400 450 500 550 600
0 20 40 60 80 100
Intensity (a.u.)
Wavelength (nm)
TiO2 Pt_TiO2 g-C3N4
Pt_TiO2@g-C3N4
0 200 400 600 800 1000 1200 1400 1600 0
100 200 300 400 500 600 700
800 TiO2
Pt/TiO2 g-C3N4
Pt-TiO2/g-C3N4
Z'' (ohm)
Z' (ohm)
300 400 500 600 700
0 1 2 3 4 5 6
2.50 2.75 3.00 3.25 3.50 3.75 4.00 (ahn)2 (eV cm-1)2
Band gap (eV) 3.58 eV
3.42 eV 2.93 eV 3.38 eV
366 nm
436 nm
Absorbance
Wavelength (nm)
TiO2 Pt_TiO2 g-C3N4 Pt_TiO2/g-C3N4
-2 -1 +0 +1 +2 +3 +4
-1.08 V
+1.9 V
+3.11 V -0.31 V g-C3N4
Pt@TiO2 V vs. NHE (PH=7)
H+/H2
H2O/O2 +1.23 V
CH4 -0.24 V C2H4 -0.34 V CO -0.53 V
2.93 eV
3.42 eV
0 20 40 60 80 100 120 140
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Photocurrent (mA cm-2 )
Time (Second)
TiO2 Pt/TiO2 g-C3N4
Pt/TiO2@g-C3N4
(a)
(f) (c)
(e) (b)
(d) e
-e
-e
-e
-h
+h
+h
+h
+h
+CO
2H
2, CH
4CO
2H
2,CO, C
2H
4, CH
4H
2O, TEOA
O
2, TEOA
+T iO
2g -C
3N
4e
-Pt
Pt
Solvent Photolysis (CS1)
0 5 10 500 1000 1500 2000 5000 6000
EAA TEA
ACN TEOA
Only solvents under full arc CO
CH4 C2H4 H2
TEOA TEA EAA
0 5 10 15 20 Only solvents under visible light 25 CO
CH4 H2 0
10 250 500 750 2000 4000 6000 8000
EAA CsCO3
TEA ACN TEOA
Full arc, CO2, Catalyst CO
CH4 C2H4 H2
0 5 10 15 45 60 75
CsCO3 EAA TEOA TEA
ACN
Visible light, CO2, Catalyst CO
CH4 C2H4 H2
Ra te of prod uct formatio n ( m mol h -1 )*1 00 Ra te of prod uct formatio n ( m mol h -1 )* 100
ACN: Acetonitrile, TEOA: Triethanolamine, TEA: Triethyl amine
EAA: Ethyl acetate, CsCO 3 : 0.5 M CsCO 3 Solution 0
5 10 15 20 25 30 35 40
Visible light CsCO3
full arc
TEA EAA TEOA
ACN
Evolved O
2O
2evolved (theoretically)
CsCO3
Rate ( m mol h
-1)*100
0 5 10 15 20 25 30 35 40
Expected rate ( m mol h
-1)*100
CO
2→ CO + ½O
2CO
2+ H
2O → CH
4+ 2O
2H
2O → H
2+ ½O
2No. of moles of O
2evolved
= 2*n*CH
4+ ½*n* CO + ½*n* H
2Full arc: 200-2500 nm Light irradiation
Visible Light: 400-800 nm
Catalyst Design (CS2)
0 50 100 150 200
-6 -5 -4 -3 -2 -1 0
Photocurrent density (mA cm-2)
Time (S)
BCN/CsPbBr3 CsPbBr3
0 10 20 30
0 1000 2000 3000 4000 5000 6000 7000 8000
0 2 4 6 8 10 12 14
Rct (Ohm)103
BCN/CsPbBr3 CsPbBr3
-Z' (Ohm)
Z" (Ohm)*103 BCN/CsPbBr3
CsPbBr3
500 520 540 560 580
Intensity (a.u.)
Wavelength (nm) CsPbBr3
BCN/CsPbBr3
525 550 575 600 625 650
0 5 10 15 20 25 30
2.0 2.1 2.2 2.3 2.4
2.27 eV
2.29 eV (ahn)2 (eV cm-1)2
Bandgap (eV)
CsPbBr3/BCN CsPbBr3
Absorbance (a. u.)
Wavelength (nm)
2 0 0 nm
2 0 0 nm 1 0 0 1 0 0 n mn m
e -
e - e - CO 2 CO
OH -
h +
h + VBM
1.27V
CBM -1V -0.53 V
Cs PbBr
C B N
BCN
CsPbBr 3
Solvent Photolysis (CS2)
Full arc Visible light
BCN/CPB (l): Liquid phase reaction in CAN BCN/CPB (g): Vapor phase reaction By bubbling CO 2 through water
0 5 10 15 20 25 30 35
Visible light Full arc
CPB(g) BCN/CPB(g) BCN/CPB(g)
CPB(g)
Evolved O
2O
2evolved (theoretically)
Rate ( m mol h
-1g
-1)
0 5 10 15 20 25 30 35
Expected Rate ( m mol h
-1g
-1)
0 5 10 15 20 25 30
ND ND
Yield ( m mol/g )
CO
Guideline for solvent selection
UV-B UV-A UV-C
200 280 320
UV IR V isi ble
200 2400
400 800
Water
NaOH solution
CsCO 3 solution ACN
TEA
TEOA
EAA Strictly
prohibited Prohibited Should be avoided
Allowed Heat generation due to IR light should be considered IR
800 400
nm
nm
Visible
Summary
CO
2+ H
2O
Ex pec ted res ult Ov eres tim at ed In abs enc e of CO
2and c ataly s t
AC N
Photolysis
Highest Viewed paper in ACS Energy Lett. In August 2021
Acknowledgement
• Prof. C. N. R. Rao (FRS) for the constant support and encouragement
• Prof. Sebastian C Peter For constant guidance
• Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
• Council of Scientific & Industrial Research (CSIR)