MPH-01
December - Examination 2017 MSC (Previous) Physics Examination Classical Mechanics and Statistical Physics
{Magå‘V ¶m§{ÌH$s Ed§ gm§p»¶H$s ^m¡{VH$s
Paper - MPH-01
Time : 3 Hours ] [ Max. Marks :- 80
Note: The question paper is divided into three sections A, B and C. Write answers as per the given instructions, Check your paper code and paper title before starting the paper. In case of any discrepancy English version will be final for all purposes, For paper MPH-01 calculators are not allowed.
{ZX}e : ¶h àíZ nÌ VrZ IÊS>m| "A', "~' Am¡a "g' ‘| {d^m{OV h¡& à˶oH$
IÊS> Ho$ {ZX}emZwgma àíZm| Ho$ CÎma Xr{OE& àíZnÌ ewê$ H$aZo Ho$
nyd© àíZnÌ H$moS> Ed§ àíZnÌ erf©H$ Om±M b|& {H$gr ^r {dg§JVVm H$s pñW{V ‘| A§J«oOr ê$n hr ApÝV‘ hmoJm& nona
MPH-01Ho$ {bE Ho$b³¶wboQ>a H$s AZw‘{V Zht h¡&
Section - A 8
×
2 = 16(Very Short Answer Type Questions) (compulsory)
Note: Answer all questions as per the nature of the question. Delimit your answer in one word, one sentence of or maximum upto 30 words. Each question carries 02 marks.
780
MPH-01 / 800 / 6 (1) (P.T.O.)
MPH-01 / 800 / 6 (2) (Contd.)
IÊS> - "A'
(A{V bKw CÎma dmbo àíZ) (A{Zdm¶©)
{ZX}e : g^r àíZm| Ho$ CÎma Xr{OE& Amn AnZo CÎma H$mo àíZmZwgma EH$ eãX, EH$ dm³¶ ¶m A{YH$V‘ 30 eãXmo ‘o| n[agr{‘V H$s{OE& à˶oH$ àíZ 02 A§H$m| H$m h¡&
1) (i) Write Hamilton’s principle of least action.
h{‘ëQ>Z Ho$ ݶyZH$m¶© {gÕmÝV H$mo {b{I¶o&
(ii) What are Integrals of motion?
J{V Ho$ g‘mH$bH$ ³¶m h¢?
(iii) Write the lagrangian of a system of two interacting particle.
Xmo Aݶmoݶ {H«$¶m H$aZodmbo H$Um| Ho$ {ZH$m¶ Ho$ {bE boJaopÝO¶Z {b{I¶o&
(iv) What do you mean by the laboratory system and the centre of mass system in the body scattering problem.
{Û H$U àH$sU©Z g‘ñ¶m ‘| Amn à¶moJembm {ZH$m¶ Ed§ Ðì¶‘mZ Ho$ÝÐ {ZH$m¶ go ³¶m g‘PVo h¢?
(v) Define Intertial tensors. Write expression for I11, I22 and I33.
O‹S>Ëdr¶ Q>oÝga n[a^m{fV H$s{OE&
I11, I22Am¡a
I33Ho$ ì¶§OH$> {b{I¶o&
(vi) Write difference between Macroscopic and Microscopic parameter.
ñWyb Ed§ gyú‘ àmMbH$m| ‘| AÝVa {b{I¶o&
(vii) Define grand canonical ensemble.
d¥hV H$Zmo{ZH$b EoÝgoå~b H$s n[a^mfm {b{I¶o&
MPH-01 / 800 / 6 (3) (P.T.O.)
(viii) Write the Maxwellian distribution for velocities in spherical coordinates.
‘o³gdob doJ {dVaU H$mo Jmobr¶ {ZX}em§H$ ‘| {b{I¶o&
Section - B 4
×
8 = 32(Short Answer Type Questions)
Note: Answer any four questions. Each answer should not exceed 200 words. Each question carries 8 marks.
IÊS> - ~ (bKw CÎmar¶ àíZ)
{ZX}e : {H$Ýhr Mma àíZm| Ho$ CÎma Xr{O¶o& Amn AnZo CÎma H$s A{YH$V‘
200 eãXm| ‘| n[agr{‘V H$s{OE& à˶oH$ àíZ 8 A§H$m| H$m h¡&
2) Find the equation of motion of one dimensional harmonic oscillator using Hamilton’s principle.
h‘rëQ>Z Ho$ {gÕmÝV H$m Cn¶moJ H$a EH${d‘r¶ XmobH$ H$s J{V H$m g‘rH$aU kmV H$s{OE&
3) How does the Lagrangian dxdt
1
L= -b l2 transform when we change to the coordinate q and
“time” τ through the equations.
x = q coshλ + τ sinhλ t = q sinhλ + τ coshλ ?
dxdt 1
L= -b l2
{H$g àH$ma go n[ad{V©V hmoVm h¡ O~ {ZX}em§H$
qVWm g‘¶
τH$mo {ZåZ g‘rH$aUm| Ho$ ê$nmÝVaUm| Ûmam n[ad{V©V {H$¶m OmVm h¡?
x = q coshλ + τ sinhλ t = q sinhλ + τ coshλ
MPH-01 / 800 / 6 (4)
4) Determine the oscillations of system with two degrees of freedom
whose Lagrangian is 12 x y x y xy
12
L= ` -2+ -2j-
w
02` 2+ 2j+a(two identical one dimensional systems of eigenfrequency ω0 coupled by an interaction – αxy
{Û ñdVÝÌVm H$moQ>r Ho$ EH$ {ZH$m¶ H$s XmobZm| H$mo kmV H$s{O¶o {OgHo$
boJaopÝO¶Z$ H$m ‘mZ {ZåZ àH$ma h¡&
x y x y xy
12
12
L= ` -2+ -2j-
w
02` 2+ 2j+aXmo g‘ Xmo{bÌm| H$m {ZH$m¶ {OgHo$ à˶oH$ XmobH$ H$s AmB©JoZ Amd¥{Îm
ω0h¡ VWm do
– αxyAݶmoݶ {H«$¶m Ho$ Ûmam ¶wp½‘V h¡&
5) What is legendre transformation? Using Legendre transformation obtain Hamilton’s equation of motion from Langranges equation of motion.
boOoÝS´>o énmÝVaU ³¶m h¡? boOoÝS´>o ê$nmÝVaU H$m Cn¶moJ H$aVo hþE bJaoÝO g‘rH$aU go h{‘ëQ>Z H$m g‘rH$aU kmV H$s{O¶o&
6) Why are factors 1
N and 1 h3N introduced into the derivation of partition function of the ideal classical gas?
{Magpå‘V J¡g Ho$ {dVaU ’$bZ Ho$ ì¶wËnÝZ ‘|
N1VWm
1 h3NH$m JwUÌ
³¶m| {b¶m OmVm h¡&
7) What are physical significance of the various statistical quantities in the canonical ensemble.
H$Zmo{ZH$b EoÝgoå~b ‘| {d{^ÝZ gm§p»¶H$s am{e¶m| Ho$ ^m¡{VH$ ‘hËd H$mo
g‘PmB¶o&
MPH-01 / 800 / 6 (5)
8) Prove that the total radiation energy is proportional to the fourth power of temperature.
{gÕ H$s{OE {H$ {d{H$aU D$Om© H$m ‘mZ Vmn Ho$ MVwW©KmV Ho$ AZwH«$‘mZwnmVr hmoVm h¡&
9) Find the Maxwellian distribution for velocities in cylindrical coordinates in velocity space.
doJ AmH$me ‘| dobZmH$ma {ZX}em§H$mo ‘| dJm] H$m ‘¡³gdo{b{¶Z {dVaU kmV H$s{OE&
Section - C 2
×
16 = 32 (Long Answer Questions)Note: Answer any two questions. You have to delimit your each answer maximum up to 500 words. Each question carries 16 marks.
IÊS> - g (XrK© CÎmar¶ àíZ)
{ZX}e : {H$Ýhr Xmo àíZm| Ho$ CÎma Xr{O¶o& Amn AnZo CÎma H$s A{YH$V‘ 500 eãXm| ‘| n[agr{‘V H$s{OE& à˶oH$ àíZ 16 A§H$m| H$m h¡&
10) Determine the period of oscillations of a simple pendulum as a function of the amplitude of oscillations.
gabXmobH$ Ho$ AmdV©H$mb H$m ‘mZ XmobH$ Ho$ Am¶m‘ Ho$ ê$n ‘| kmV H$s{OE&
11) Find the principal moments of inertia of a hollow sphere about diameter.
ImoIbo Jmobo Ho$ ì¶mg Ho$ gmnoj ‘w»¶ O‹S>Ëd AmKyU©Zm| H$m ‘mZ kmV
H$s{OE&
MPH-01 / 800 / 6 (6)
12) Using poisson's bracket check that the transformation whether canonical or not canonical.
, cos ( )
e p pe
Q=` -2q- 2 2j1 P= -1 q
nm°¶gZ ~«oHo$Q> H$m Cn¶moJ H$aVo hþ¶o Om±M H$s{OE H$s
, cos ( )
e p pe
Q=` -2q- 2 2j1 P= -1 q
énmÝVaU Ho$Zmo{ZH$b h¡ AWdm Zht&
13) Find the entropy S(E, V, N) of an ideal gas of N classical monoatomic particles, with a fixed total energy E, combined in a d-dimensional box of volume V.
pñWa Hw$b D$Om© Ho$
N{Magpå‘V EH$bna‘mUwH$ H$Um| H$s EH$ AmXe© J¡g
H$s EoÝQ´>mo{n
S(E, V, N) dH$m ‘mZ {d{^Þ ~m°³g Ho$ Am¶VZ
V‘| kmV
H$s{OE&