• Tidak ada hasil yang ditemukan

Multistaging nonuniform area of resonator based fluidic acousticpump Sensors and Actuators A: Physical

N/A
N/A
Protected

Academic year: 2024

Membagikan "Multistaging nonuniform area of resonator based fluidic acousticpump Sensors and Actuators A: Physical"

Copied!
7
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Sensors and Actuators A: Physical

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Multistaging of nonuniform area resonator based fluidic acoustic pump

Sonu K. Thomas

a,∗

, Akash B

b

, Thiruchengode M. Muruganandam

b

aDepartmentofMechanicalEngineering,IndianInstituteofTechnology,Madras,Chennai600036,India

bDepartmentofAerospaceEngineering,IndianInstituteofTechnology,Madras,Chennai600036,India

a r t i c l e i n f o

Articlehistory:

Received13June2019

Receivedinrevisedform22October2019 Accepted11November2019

Availableonline14November2019

Keywords:

Acousticcompressor Standingwavepump Fluidicdiodes Multistaging

a b s t r a c t

Feasibilityofmultistagingofanonuniformarearesonatorbasedfluidicpump,bothinseriesaswellasin parallel,isdiscussedincomparisonwithsinglestagepump.Multistaginguptotwostageswascarriedout inthisstudy.Multistagingwassuccessfulinachievinghigherflowratesandhigherbackpressuresthan asinglestagepump.Seriespumpdelivered1.8timesthepressureforzeroflowrate,whereasparallel pumpdelivered2.3timestheflowrateatzerobackpressure.Ofallthreeconfigurations,singlestage pumpwasfoundtohavethebestefficiencybasedontheinputpowerrequirements.Itwasalsofound thattheacousticinteractionsbetweenthestagescanaffecttheperformanceofthepump.

©2019ElsevierB.V.Allrightsreserved.

1. Introduction

Conventional pumps for gases, typically use moving parts, whichhavethedrawbackoffatigueandfailure.Oneofthemajor failingcomponentsisthemechanicalvalveusedinthesepumpsfor flowcontrol.Itisunfavorabletousesuchpumpswherereliabilityis moreimportantthanefficiency.Forinstance,conventionalpumps arehighlyunsuitabledevicesforMEMSapplications[1],handling ofextremelypoisonousandcorrosiveliquids[2,3].Therearemany no-moving-partsvalvesbasedpumps studiedextensively inlit- erature[4–10].Arecentadditiontono-movingpartvalvepump technologyisthevalve-lessstandingwavepump.Nabavietal.[11]

andNabaviandMongeau[12],usedastandingwaveproducedin aresonatorasthesourceforanoscillatoryflowandcombinedit withfluidicdiodesforflowrectification.Asmentionedbefore,flu- idicdiodeswerebeingusedextensivelyinmicro-pumps.Nabavi etal.[11]essentiallyusedthestandingwaveastheactuationmech- anismasopposedtocavitydisplacementasinthecaseofStemme andStemme[13].Moreover,Nabavietal.[11]alsoshowedthatthe pumpedflowrateisproportionaltothestandingwavepeakpres- sure.Thisworkmarkedthebeginningoffluidicacoustic(standing wave)pumps.Initsmostbasicform,fluidicacousticpumpcon- sistsofanactuationmechanismtoestablishastandingwaveina

Correspondingauthor.

E-mailaddress:[email protected](S.K.Thomas).

resonator,whereinthepressureoscillationisamplified.Resulting highpressureoscillationisrectifiedusingfluidicdiodes.

Itiswellknownthatforcedoscillationsinsideauniformarea closedduct,ingeneral,cannotattainarbitrarilyhighpeakpressure amplitudesbecauseofshockformation[15,16].Lucasetal.[17]

andLawrensonetal.[18]overcamethislimitationbyusingnonuni- formarearesonators.Theycombinedthesenonuniformresonators withmechanicalvalvestoproducemeanflow. Further,Thomas andMuruganandam[19,20]designedafluidicacousticpumpcom- biningnonuniformresonatorandno-moving-partvalves(fluidic diodes).Theperformanceofthesepumpswillprimarilydependon theshapeofresonatorandthetypeofrectifyingelementsused.

Sincethefrequency ofoperationishighinsuchpumps, simple diffuser/nozzleshapedflowpassagesaregenerallyusedasfluidic diodes.ThomasandMuruganandam[14] gavea comprehensive reviewofsuchacousticpumps,withmoreemphasisgiventothe fluidicaspect.

Asignificantpartoftheversatilityofconventionalpumpsliesin theircapabilitytobemultistaged.Multistagingcanquicklyimprove theperformanceofthefluidicacousticpumpandprovidehigher flowrateorhigherpressurefordifferentapplications.Thiswork exploresifmultistaging canachievea wider rangeof pressures andflowratescomparedtoasinglepump.Inthecaseofacous- ticcompressors,theonlyseriousattempttheauthorscouldfindin publishedacademicliteraturewasbyEl-Sabbagh[21],whereitwas proposedtousedoublecavityplacedbacktobackwithapistonin between.Thisconfigurationcanresultineffectivelyincreasingthe flowrate.SimilararrangementwasdesignedbyKawahashietal.

https://doi.org/10.1016/j.sna.2019.111751 0924-4247/©2019ElsevierB.V.Allrightsreserved.

(2)

2 S.K.Thomas,A.BandT.M.Muruganandam/SensorsandActuatorsA301(2020)111751 [22].Anotherattempttowardsmultistagingcanbeseeninapatent

byDooley[23].

Itisclearfromtheliteraturethat,thereishardlyanyworkon multistagingoffluidicacousticpumps.Thepresentworkinvesti- gatesthefeasibilityoftwo multistagedconfigurationsinvolving fluidicacoustic pumps:series and parallel.The performance of thesemultistagepumpsiscomparedtothatofsinglestagepump.

Seriesmultistaging is expectedtoproduce double thepressure ratio,whileparallelconfigurationisexpectedtogivedoublethe flowrateofasinglestagepump.Ambientairwasusedasthework- ingfluidinthisstudy.Compressedairisanimportantmediumfor transportandstorageofenergyacrossarangeofindustrialpro- cesses.Thisworkisexpectedtotakefluidicacousticpumpsastep closertowardstechnologicalfeasibilitybyenhancingtheirperfor- manceandadaptability.

2. Experimentalsetup

Inthissection,thebasicsingleresonatorandthediodecon- figurationare describedfirst.Thenextsubsectionsdescribethe seriesandparallelmultistagepumpconfigurations, followedby instrumentationused.

2.1. Singleresonatorpumpgeometry

Fig.1showstheschematicoftheexperimentalsetupforasingle stagefluidicacousticpump.Astainlesssteelconicalresonatorwith 15mmwallthicknessisdrivenbyaloudspeaker,whichinturn isdrivenbythepoweramplifier.Thespeakersaredrivenatthe fundamentalresonancefrequencyoftheresonatortoestablisha standingwave insidetheresonator.Conicalgeometryischosen owingtoitseaseofmanufacturing.Thegeometryisdescribedby Eqn.(1)

A(x)=(ax+b)2 (1)

where,A istheresonator crosssectional areain mm2,x isthe lengthoftheresonatormeasuredfromitssmallend,a=0.133,b

=17.84mmand0≤x≤200mm.Here,‘a’isrelatedtothedegreeof non-uniformityoftheconeand‘b’givestheradiusatthesmallend oftheresonator(where,x=0).

Apairoffluidicdiodes,oneforinflowandtheotherforoutflowis constructedoutofstainlesssteelconicaldiodeelementsarranged inspecificconfigurations(seeFig.1).Forbetterclarity,onlythe internaldimensionsofthefluidicdiodeareshowninitszoomed view.Fluidicdiodesforinflowandoutflowarethreadedtoaflange atthesmallendoftheconicalresonator.Theinflowdiodeiskept opentotheatmospherewhiletheoutflowdiodewasconnected toapressuretank.Dimensionsofthediodeshavebeenadopted fromtheperformancebasedonpreviousexperimentsonfluidic acousticpump[20].Theoutflowisthencollectedinthepressure tankfittedwithanexitflowcontrolvalve,whichisusedtocontrol thebackpressureactingonthepump.Abubbleflowmeterisused tomeasuretheoutflow.

2.2. Seriesmultistage

Fig.2showstheschematicoftheseriesmultistagefluidicacous- ticpump.Thisconfigurationconsistedoftwopairsoffluidicdiodes, tworesonatorsandtwodrivers.Thedriverswereelectricallycon- nectedinparallel.Eachdrivercoulddrawpowercomparableto singlestagecasedriver.Theinflowdiodeofthefirstresonator(R1) wasopentotheatmospherewhileitsoutflowdiodewasconnected toahollowtube(nodiode).Thishollowtubereplacedtheinflow diodeofthesecondresonator(R2).Thus,theonlydiodepresent inthesecondresonatorisanoutflowdiode,whichisconnected

tothetank-controlvalve-bubbleflowmeterarrangement.Itwas foundthatwithaninflowdiodeinR2,flowfromR1wasimpeded bytheinflowdiodeinR2,howeverthiswasnotthecasewhenthe inflowdiodewasreplacedbyatube.

2.3. Parallelmultistage

Fig.3 shows theschematicof theparallel multistagefluidic acousticpump.Thisconfigurationwaseffectivelytwosinglestage pumpsconnected togetherat theoutlets.Here also,thedrivers wereelectricallyconnectedinparallel.Theinflowdiodesofboth resonatorswereopentotheatmospherewhiletheoutflowdiodes ofbothresonatorswereconnectedtoawyejunction.Theoutlet ofthewyejunctionisconnectedtothetank-controlvalve-bubble flowmeterarrangement.

2.4. Measurementtechniqueandinstrumentation

Eachresonatorwasdrivenatthefundamentalmodeofvibra- tion.Sinusoidalinputatthefundamentalmodefrequencyfrom afunctiongenerator(TektronixAFG30220B)wasusedtoexcite aloudspeakerhorndriver(Capital 2165/150W).Foreachpump configuration,twodifferentvoltagelevelsviz.,15Vand25Vwere suppliedwiththehelpofadigitalmulti-meter(YokogawaModel 73201).Correspondingpowerinputlevelsweremeasuredusing awattmeter(MECO-G150V-5A).Theresolutionofthewattmeter andvoltmeterwere2Wand0.01V,respectively.

Twokindsofpressuredatawereacquired.Acousticpressure amplitudeatthesmallendoftheconicalresonatorswasmonitored usingapiezoelectricpressuretransducer(PCBModel113B28).The meanpressuresinsidethepressuretank(inallcases)andinsideR2 inthecaseofseriesmultistagingweremeasuredusingasolidstate piezo-resistivesensor(OmegaPX140).

Outflowwasmeasuredusingabubble flowmeter (Teledyne Hastings-Raydist,100mltube),intermsoflitersperminute(LPM), asintheearlierwork[20].Themovementofthebubblewascap- turedusingahigh-speedcamera(PCODIMAX)setataframerate of500Hz.Thevolumetraversedandthecorrespondingtimetaken areusedtocalculatethevolumeflowrate(seeEqn.2).Inorderto obtainflowrateatdifferentbackpressures,acontrolvalvewasused tovarythebackpressure.Forzeroflowratebackpressure,thecon- trolvalvewascompletelyclosedandforzerobackpressureflow rate,thecontrolvalvewascompletelyopen.Theleastbackpressure possibleinthisarrangementwasaround35Pa.Thesebackpressure andflowratereadingswereusedtocharacterizethepump.Flow rateinLPMwascomputedaccordingtoEqn.(2)

QLPM=Volumetraversesdbybubble (ml) Timeelapsed(s) × 60

1000 (2)

3. Resultsanddiscussion

Allexperimentswereconductedwithambientairasthepump- ingfluidatatemperatureof23–250Candhumidityintherangeof 65–70%RH.Thefundamentalmodefrequencyofthenonuniform resonatorwasfoundtobe915Hzforallthepumpconfigurations.

Flowratesweremeasuredfortwodifferentdrivingvoltages;viz., 15Vand25V,atfourbackpressures,forallthepumpconfigura- tions.

Asmentionedintheprevioussections,eachpumpconfigura- tionhasa differentarrangement.Thus,thepowerconsumption ofthepumpwilldependuponitsspecificconfiguration.Table1 summarizesthepowerconsumptionfordifferentconfigurations.

Thesepowerconsumptionvaluesareusedtodeterminetheacous- ticpowerinput.

(3)

Fig.1.Schematicoftheexperimentalsetupforasinglestagepumpalongwithzoomedinviewofthefluidicdiodeconfiguration(onlyinternaldimensionsofthediodesare shown).

Fig.2.Seriesmultistagepumparrangement.

Table1

Powerconsumptionfordifferentpumpconfigurations.

PumpConfiguration Voltage(volts) Power(watts)

SingleStage 15 5

25 20

SeriesMultistage 15 16

25 60

ParallelMultistage 15 16

25 60

3.1. Pumpcharacteristicsandefficiency

Theperformanceofallthreepumpconfigurationscanbeunder- stoodintermsoftheircharacteristiccurves.Weassumealinearfit forthebackpressure-flowratedatawithaminimumcoefficient ofdeterminationof0.98.Thisisconsistentwiththefactthatthere arenosuddenchangesineitherflowrateorbackpressureoverthe rangeofoperation.Thelinearcharacteristiccurvecanbedescribed byEqn.(3)

(4)

4 S.K.Thomas,A.BandT.M.Muruganandam/SensorsandActuatorsA301(2020)111751

Fig.3.Parallelmultistagepumparrangement.

P=P0−kQ (3)

Where,Pisthemeanbackpressure,Qistheflowrate,P0isthezero flowmeanbackpressureandkistheslopeofthecharacteristic curve.

Thepowerinputthatisbeingmeasuredisthepowerinputto theloudspeakerdriverfromtheamplifier.However,loudspeak- ersareextremelypooratconvertingelectricalenergytoacoustic energy.Therefore,theoverallpumpefficiencyisnotatruemeasure oftheefficiencyofanygivenpumpingarrangement.Toremedythis, pumpefficiencyisdefinedasinEq.(4)

= Flowpoweroutput(Q×P)

Acousticpowerinput (4)

Thetypicalefficiency(electricaltoacousticconversion)ofthe loudspeakerisaround1%,whichisusedtofindtheinputacoustic power.

Theperformancecharacteristicsofallthreeconfigurationsfor bothdrivingvoltagelevelsareplottedsimultaneouslyinFig.4(a) and(b).Table2summarizestheresultsforallpumpconfigurations andalldrivingpowers.Withincreaseinvoltage,theperformance curvesforallthreeconfigurationsappeartobeshiftedupwards toahigherP0withmarginalincreaseinabsoluteslope’k’.Atboth drivingvoltages,seriesconfigurationdelivershigherzeroflowback pressuresthaneithersinglestageorparallelmultistage,whereas, parallelconfigurationattainsmuchhigherflowratesatlowback pressuresthaneithersinglestageorseriesconfiguration.Moreover, theparallelconfigurationachievesmorethandoubletheflowrate, whiletheseriesconfigurationachieveslessthandoubletheback pressures,compared tothesinglestagepump.Singlestageand parallelconfigurationshaveroughlythesameP0foragivendriving amplitude.

Theefficiencycharacteristicsofallthreeconfigurationsat15V and25VdrivingamplitudesareplottedinFig.5(a)and(b),respec- tively.The efficiencyvalues by definitionare zeroat zero flow conditionsandatzerobackpressureconditions.Thesinglestage configurationhashigherpeakefficiencythanbothseriesandpar- allelmultistageconfigurationsirrespectiveofdrivingamplitude.

Thisismostlikelyduetointeractionbetweenthetworesonators, andtheconnectionsbetweentheminmultistagedpumps.

Intheseriesarrangement,thefirstresonator(R1)pumpsairinto thesecondresonator(R2)inordertoraisethemeanpressureinside

it.R2thenpumpsairathigherpressureintothetank.Themean pressureinR2intheseriesconfigurationwasmeasuredforallthe cases.Thisdataalongwiththetankmeanpressureispresentedin Fig.6atdifferentflowratessettings.Itisevidentthatforagiven driving,asthebackpressureincreases,themeanpressureinR2 isalsoincreasing.Atthezeroflowconditions,thepressureinR2 iscomparable tothepressureinthetank. Forallthecases,the pressureat25Vdrivingishigherthanthatfor15Vcases.

Table2alsoliststheacousticpeakpressureamplitude(ppk,R1 andppk,R2)atthesmallendoftheresonators(R1andR2)forall configurations.Increaseinthesmallendamplitudewithincreasein drivingamplitudeisevidentacrossallconfigurations.FromTable2, themoststrikingobservationregardingtheacousticdataisthatthe differencebetweenthesmallendamplitudesismorepronounced inthecaseoftheseriesconfigurationascomparedtoparallelcon- figuration.R1hasanamplitudecomparabletothatofsinglepump resonatorwhilethatofR2isreducedtohalfatbothdrivingvolt- ages.Thiscouldbeduetotheusageofplaintubeinsteadofinflow diodeinthecaseofR2.

Anotherobservationisthattheresonatorsmallendacoustic pressureamplitudedropsbyabout31%whentheresonatorsare connectedtogetherinparallelconfiguration(seeTable2).Onecan alsonotethat,R2pressuresareabout10%higherthanR1pressures.

Thismaybeduetosomeintrinsicdissimilaritiesbetweenthetwo resonatorsanddrivers.

3.2. Commentsonmultistaging 3.2.1. Flowandbackpressure

Intheseriesmultistaging,itisexpectedthatthemeanpressures willbedoubledforagivenflowrate.However,itcanbeseenfrom Table2,thebackpressureatzeroflowrateisroughly1.8timesfor 15Vand1.6timesfor25V.Itwasobservedthatthepowerdrawn togetherbythedriverswasalmostthreetimesthatofthesingle stagepumpdriver(seeTable1).

Inthecaseofaparallelpumparrangement,onewouldexpect thattheflowrateswouldbedoubledatagivenbackpressure.In thiscasealso,itwasobservedthatthepowerdrawntogetherby thedriverswasalmostthreetimesthatofthesinglestagepump driver(seeTable1).Thustheexpectedflowratesmustbemore

(5)

Fig.4. Pumpcharacteristics(a)15Vand(b)25V.Errorbarsaresmallerthanthemarkersize.

Table2

Performanceparametersofallpumpconfigurationsat15Vand25V.

PumpConfiguration DrivingVoltage(V) P0(Pa) Qmax(LPM) peak(%) Slope(k)(Pa/LPM) ppk,R1(kPa) ppk,R2(kPa)

Single 15 419 2.24 8.6 168.6 14.2

25 961 4.31 9.8 197.6 21

Series 15 771 3.43 7.2 213.2 14.2 7.0

25 1546 5.67 6.2 265.9 21 9.6

Parallel 15 449 5.27 7.3 71.9 9.7 10.7

25 901 8.88 6.2 89.8 14.8 16.3

Fig.5.Pumpefficiency(a)15Vand(b)25V.

thantwice.Theactualflowrateriseis2.3timesthesinglestagefor 15V,and2.1timesat25Vdriving(seeTable2).

3.2.2. Acoustics

Oneofthemajorconsiderationsinthemultistageassemblyof thesepumpsistheinteractionbetweensoundwavesexitingthe resonatorsthroughthediodesandtheresonators.Itwasensured

thatboththedrivers,inbothseriesandparallelarrangement,were drivenwithoutanyphaselag.

It can beseen that, in seriesmultistaging, R1 performs just asgood asa singlestagepump,whileR2is havinglesserpeak pressures.Thismaybeduetotheinteractionbetweentheacous- ticwavesandtherectifiedflowenteringR2fromR1.Asseenin Fig.2,seriesarrangementhastheinflowdiodeoftheR2asasim-

(6)

6 S.K.Thomas,A.BandT.M.Muruganandam/SensorsandActuatorsA301(2020)111751

Fig.6. R2meanpressureandthetankmeanpressureatdifferentflowratesinthe caseofaseriesmultistagepump.Errorbarsaresmallerthanthemarkersize.

plestraighthollowtubeinsteadofadiode.Whendiodewasused instead,therewasnomeanpressureincreaseinR2.Thismaybe due totheinteractionbetweenthetwo fluidic diodes,but this wasnot investigatedfurther.Carewasalsotakentoavoidsud- denbendsinthepathofthetravellingwaveandtherectifiedflow, sincesuddenbendsinflowpathcorrespondtochangesinthechar- acteristicimpedance,whichcandirectlyhampertheperformance ofthesepumps.Theactuallengthoftheinterconnectingtubemay alsohaveaneffectduetoanyphasemismatchbetweenthetrav- elingwaveandthewaveinR2.Positionofdiodeelementsinthe interconnectingtubesisalsoafactorwhichcouldaffecttheoverall acousticbehavior,butthesedependencieswerenotinvestigatedin thisstudy.

Ontheotherhand,intheparallelarrangement,thepeakpres- suresarecomparableinR1andR2.Itisintriguingthattheindividual peakpressuresintheresonatorsarelowerthanthatofthesin- glestageresonator,even afterdriversdrawingroughly 3times thepower.Theoutputtubelengthswereensuredtobethesame forboththelegsofthewye.Thus,theremustbeaneffectofthe interactionbetweenthetwoflows/acousticwavesinthewye.

Thisalsodemonstratesthat,becauseofacoustics,multistaging ofacousticpumpsneedsmoreattentionthanmultistagingofcon- ventionalpumps.However,itappearsthatparallelarrangement haslesserinteractioneffectscomparedtoseriesarrangement.

4. Conclusion

Multistagefluidicacousticpumps,basedonnonuniformarea resonator,hasbeentestedinbothparallelandseriesconfigura- tions.Theresultsofmultistagepumpswerecomparedwithsingle stagepump.Higherbackpressuresofupto1.8timesthatofsingle stagepumphasbeenattainedusingseriesmultistagepump.Higher flowratesofupto2.3timesthatofsinglestagepumphasbeen achievedbyparallelstaging.Seriesstagepumpyieldedmaximum backpressureof1546Paat25V.Maximumflowrateof8.88LPM wasobtainedwithparallelstagepumpdrivenat25V.Maximum efficiencyof9.8%wasrecordedforsinglestagepumpoperating at25V.Themultistagepumpshadefficiencieslowerthanthatof singlestagepump.Bothseriesandparallelpumpsconsumedthree timestheelectricalpowercomparedtothesinglestagepump.

Fromtheacousticperformanceviewpoint,whenoperatingin series,thefirststageresonator(R1)wasfoundtooperateiden- ticaltothesinglestagepump,whilethesecondstageresonator (R2)washavinghighermeanpressuresandloweracousticpeak pressures.Ontheotherhand,whenoperatinginparallel,thepeak pressuresinbothresonatorswerelowercomparedtothesingle stagepump.Preliminaryinferenceisthatparallelmultistaginghas lesserperformancedegradationcomparedtoseriesmultistaging.

Thispaperonlypresentedthefeasibilitystudyformultistag- ingoffluidicacousticpumpsforachievinghigherflowratesand pressures.Theexactoptimumconfigurationforbestoperationof

thesemultistagedpumpsneedstobearrivedat.However,itisclear fromthestudythattheinteractionofacousticsineachoftheres- onators,diodes,connectingelementsandtank,makesthebehavior ofmultistagedacousticpumpsdifferentfromthatofconventional multistagedpumps.

ConflictofInterest

Allauthorshaveparticipatedin(a)conceptionanddesign,or analysis and interpretationof thedata; (b) draftingthe article orrevisingitcriticallyforimportantintellectualcontent;and(c) approvalofthefinalversion.

Thismanuscripthasnotbeensubmittedto,norisunderreview at,anotherjournalorotherpublishingvenue.

Theauthorshavenoaffiliation withanyorganizationwitha directorindirectfinancialinterestinthesubjectmatterdiscussed inthemanuscript

References

[1]N.-T.Nguyen,X.Huang,T.K.Chuan,MEMS-micropumps:areview,J.Fluids Eng.124(2002)384–392,http://dx.doi.org/10.1115/1.1459075.

[2]R.Tippetts,AFluidicPumpforuseinNuclearFuelReprocessing,in:Proc.5th Int.FluidPowerSymp.,Bedford,1978.

[3]V.Tesaˇr,Safepumpingofhazardousliquids-Asurveyofno-moving-part pumpprinciples,Chem.Eng.J.168(2011)23–34,http://dx.doi.org/10.1016/j.

cej.2011.01.046.

[4]E.Stemme,G.Stemme,Avalvelessdiffuser/nozzle-basedfluidpump,Sensors ActuatorsAPhys.39(1993)159–167,http://dx.doi.org/10.1016/0924- 4247(93)80213-Z.

[5]T.Gerlach,M.Schuenemann,H.Wurmus,Anewmicropumpprincipleofthe reciprocatingtypeusingpyramidicmicroflowchannelsaspassivevalves,J.

Micromech.Microeng.5(1995)199–201,http://dx.doi.org/10.1088/0960- 1317/5/2/039.

[6]A.Olsson,G.Stemme,E.Stemme,Avalvelessplanarfluidpumpwithtwo pumpchambers,SensorsActuatorsAPhys.46–47(1995)549–556.

[7]A.Olsson,G.Stemme,E.Stemme,TheFirstValve-lessDiffuserGasPump, Proc.IEEETenthAnnu.Int.Work.MicroelectroMech.Syst.AnInvestig.Micro struct.Sensors,Actuators,Mach.Robot.,1997,http://dx.doi.org/10.1109/

MEMSYS.1997.581780.

[8]A.Olsson,G.Stemme,E.Stemme,Numericalandexperimentalstudiesof flat-walleddiffuserelementsforvalve-lessmicropumps,SensorsActuatorsA Phys.84(2000)165–175,http://dx.doi.org/10.1016/S0924-4247(99)00320-9.

[9]V.Tesaˇr,Valve-lessrectificationpumps,Encycl.Microfluid.Nanofluidics.

(2015)3399–3415,http://dx.doi.org/10.1007/978-1-4614-5491-51656.

[10]D.Rinderknecht,A.I.Hickerson,M.Gharib,Avalvelessmicroimpedance pumpdrivenbyelectromagneticactuation,J.Micromech.Microeng.15 (2005)861–866,http://dx.doi.org/10.1088/0960-1317/15/4/026.

[11]M.Nabavi,K.Siddiqui,J.Dargahi,Analysisoftheflowstructureinsidethe valvelessstandingwavepump,Phys.Fluids(1994)20(2008)1–10,http://dx.

doi.org/10.1063/1.3026074.

[12]M.Nabavi,L.Mongeau,Numericalanalysisofhighfrequencypulsatingflows throughadiffuser-nozzleelementinvalvelessacousticmicropumps, Microfluid.Nanofluidics7(2009)669–681,http://dx.doi.org/10.1007/s10404- 009-0427-4.

[13]G.Stemme,E.Stemme,Avalvelessdiffusernozzlebasedfluidpump,Sens.

ActuatorsAPhys.2(1993)156–167.

[14]S.K.Thomas,T.M.Muruganandam,Areviewofacousticcompressorsand pumpsfromfluidicsperspective,SensorsActuatorsAPhys.283(2018)42–53, http://dx.doi.org/10.1016/j.sna.2018.09.031.

[15]M.A.Ilgamov,R.G.Zaripov,R.G.Galiullin,V.B.Repin,Nonlinearoscillationsof agasinatube,Appl.Mech.Rev.49(1996)137–154,http://dx.doi.org/10.

1115/1.3101922.

[16]R.A.Saenger,G.E.Hudson,Periodicshockwavesinresonatinggascolumns,J.

Acoust.Soc.Am.32(1960)961–970,http://dx.doi.org/10.1121/1.1908343.

[17]T.S.Lucas,T.W.VanDoren,ResonantMacrosonicSynthesis,USPatent US5515684,1996.

[18]C.C.Lawrenson,B.Lipkens,T.S.Lucas,D.K.Perkins,T.W.VanDoren, Measurementsofmacrosonicstandingwavesinoscillatingclosedcavities,J.

Acoust.Soc.Am.104(1998)623–636.

[19]S.K.Thomas,T.M.Muruganandam,Nonuniformresonatorbasedvalve-less standingwavesuctionpumpforgases,SensorsActuatorsAPhys.261(2017) 40–48,http://dx.doi.org/10.1016/j.sna.2017.05.004.

[20]S.K.Thomas,T.M.Muruganandam,Acousticblowerusingfluidicdiodesanda nonuniformresonator,Int.J.FlowControl.7(2015)55–66,http://dx.doi.org/

10.1260/1756-8250.7.1-2.55.

[21]A.El-Sabbagh,Gas-FilledAxisymmetricAcousticResonators,Universityof Maryland,2005.

[22]M.Kawahashi,M.A.Hossain,T.Fujioka,AcousticCompressorWithTwo Resonators,US7443060B2,2008.

(7)

[23]K.A.Dooley,StandingWaveExcitationCavityFluidPump,US6672847B2, 2004.

Biographies

SonuKThomas,Ph.Dreceivedhisbachelor’sdegreeinAeronauticalEngineer- ingfromTheAeronauticalSocietyofIndiain2008.Recently,hereceivedhisMS andPhDinAerospaceEngineeringfromIndianInstituteofTechnology,Madrasin 2016.Currently,heisworkingasapostdoctoralresearcherinMechanicalEngi- neeringDepartment,IndianInstituteofTechnology,Madras.Hisresearchinterests includeductacoustics,gasdynamicsandfluidics.Inparticular-ductacousticsand itsapplicationsinfluidics.

AkashB.,receivedhisbachelor’sdegreeinMechanicalEngineeringfromUniversity ofKeralain2017.Recently,hereceivedhisMTechinAerospaceEngineeringfrom IndianInstituteofTechnologyMadrasin2019.Hisresearchinterestsincludegas dynamics,ductacousticsandnumericalsimulationofflows.

T.M.Muruganandam,Ph.DiscurrentlyaProfessorofAerospaceEngineeringin theIndianInstituteofTechnology,Madras.HereceivedhisPhDfromGeorgiaTech, Atlanta,USA,in2006andjoinedthefacultyofIndianInstituteofTechnologyMadras AerospaceDepartmentsoonafter.HehaswontheYoungFacultyRecognition AwardfromIndianInstituteofTechnologyMadrasin2015.Hisresearchinter- estsincludeadvanceddiagnosticsincombustion,ductacoustics,fluidicsandhigh speedflows.

Referensi

Dokumen terkait

The Use of Spiderman Short Story in Kompas Newspaper for Teaching Vocabulary and the Introduction to the Analysis of the function of each word and clause in a sentence(A case Study

Soil samples for physical properties (soil texture, bulk density, total pore, permeability, aggregate stability,and organic carbon) as well as amount of RO and soil loss

Pages: 175-185 Reflective Piece The Development and Use of a Novel Clinical Vignette as a Blended Learning Adjunct for Simulation-Based Learning During and Beyond COVID Andrew

the permission of the Author... Gr eenway for the use of the osm omete

Based on the research findings, the model for empowering students in entrepreneurship is to use a participatory and experiential approach, where ustadz, community and students are

Keywords: shark, acoustic telemetry, marine protected area, MPA, seagrass, coral reef, Bahamas INTRODUCTION Marine protected areas MPAs are key instruments for conserving and

LIST OF FIGURE Figure Figure 1 : DPMMK Business Process Figure 2: Class Diagram of DPMMK Member Figure 4: The Use Case Diagram for Displaying Infcm-nation Figure 5 : The Use

intrOductiOn Breastfeeding is considered the ideal method to provide newborns and infants with energy and nutrients for optimal growth, development, and good health.1 A study among