• Tidak ada hasil yang ditemukan

Sensors and Actuators A: Physical

N/A
N/A
Protected

Academic year: 2023

Membagikan "Sensors and Actuators A: Physical"

Copied!
10
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Sensors and Actuators A: Physical

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Current sensor optimization based on simulated transfer function under partial discharge pulses

Douglas Nascimento

a,b

, Shady S. Refaat

c

, Hermes Loschi

a,b,d,∗

, Yuzo Iano

e

, Euclides Chuma

e

, Waseem El-Sayed

a,b

, Amr Madi

a,b

aFacultyofComputer,ElectricalandControlEngineering,UniversityofZielonaGora,ZielonaGora,Poland

bFacultyofElectricalEngineering,MathematicsandComputerScience(EEMCS),UniversityofTwente,Enschede,Netherlands

cElectricalandComputerEngineeringDepartment,TexasA&MUniversityatQatar,Doha,Qatar

dDepartmentofElectricalandElectronicEngineering,UniversityofNottingham,Nottingham,UnitedKingdom

eSchoolofElectricalandComputerEngineering,UniversityofCampinas,SãoPaulo,Brazil

a rt i c l e i nf o

Articlehistory:

Received19November2020 Receivedinrevisedform23April2021 Accepted7May2021

Availableonline11May2021

Keywords:

High-frequencycurrenttransformer Partialdischarges

Sensormodelling Physicaleffects

a b s t ra c t

Thetimemeasurementefficiencyofthepartialdischarge(PD)reliesonthesignal-to-noiseratio(SNR) andgainofthehigh-frequencycurrenttransformer(HFCT)sensor.However,thePD’stimemeasurement efficiencydecreaseswiththenoisecoupledtotheHFCTinonsitemeasurements.Toovercomethatset- back,thispaperproposesonepre-processing,throughmodellingandsimulation,consideringthephysical effects,featuresoftheelectricalcircuitandcoilconstructionparametersoftheHFCT.Themaingoalisto reachreasonablehighSNRunderthestronginfluenceofbackgroundnoises.Thisinvestigationaimsto validatethehypothesisofimprovementordeteriorationoftheHFCTsignalresponsethroughatransfer functionoptimization.Thisresearcheffort’scontributionsarethreefold:1.GenerationofPDpulsesig- nalandnoiseaddition;2.HFCTmodelling,simulation,andfrequencyresponseanalysis;and3.Models performanceevaluationandvalidationofhypothesis.Inconclusion,thepre-processingapproachstands outasameanstorobustifyandprovidefreedomtotheelectricutility,makingupforaneventualneedto redefinethephysicalandgeometricalparametersoftheHFCTsensorunderspecificbackgroundnoisefor maintenancetestspurpose.Accordingtoacyber-physicalsystemframework,experimentscorroborate theproject’sgoalstocontributetothePDpatternmonitoringinonsitemeasurementsandincorporate robustnesstosignalswithlowSNRs.

©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Thedielectricmaterialdegradationinelectricalsystemsisgen- erally associatedwiththepartialdischarges(PD)[1],unleashed withinvoids,andcracksinconductor–dielectricinterfacesinsolid insulation systems(bubbles), inthecase ofliquid dielectricsor corona,ingaseous[2].Undertheelectricinsulationsystem’soper- atingstressconditions,thevoltageacrossthedamagedinsulation,

ThispublicationwasmadepossiblebytheUniversityofTwente.Thestatements madehereinaresolelytheresponsibilityoftheauthor.

Correspondingauthor.

E-mailaddresses:[email protected](D.Nascimento),

[email protected](S.S.Refaat),[email protected](H.Loschi), [email protected](Y.Iano),[email protected](E.Chuma), [email protected](W.El-Sayed),[email protected](A.Madi).

URLs:http://www.uz.zgora.pl(D.Nascimento),http://www.loschihermes.com (H.Loschi).

withinbubbles,cracks,voids,mayexceeditsdielectric strength leadingtoelectricdischargesinthedielectric,reducingthestiff- nessandfinallyleadingtototalorpartialfailureoftheinsulation [3].

Thus,itisrecommendedtomakequalityandcompliancetests by PDanalysis. Also, considering cyber-physical systemframe- works (e.g. [4]), the analysis of PD can be extrapolated as an redundantcomponent of power systems onalerting the active agents(electricalutilities,stakeholders,powersystemcompanies) inadvancewhenanycomponentitisabouttocollapseduetoPD.

ThePDtestsareclassifiedaccordingtothemeasuringtechnique, andelectricmethodsarewidelyused[1].Electricalmethodscan beperformedonhighvoltageelectricalequipmentsuchaspower transformers,instrumenttransformers,medium,highandextra- highvoltagecables,highvoltagebushingsandrotarymachines[5].

Furthermore,theelectricalmethodsaredividedintoconventional andnon-conventional.ConventionalPDmethodsareperformed followingIEC60270-HighVoltagetestingtechniques:PartialDis-

https://doi.org/10.1016/j.sna.2021.112825

0924-4247/©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

ingthroughtheinductivecouplingofelectriccurrentistheHigh FrequencyCurrentTransformer(HFCT)[7].

The time measurement efficiency of the PD relies on the signal-to-noise (SNR) ratio and gain of theHFCT sensor. How- ever, the PD’s time measurement efficiency decrease with the noisecoupledtotheHFCTinonsitemeasurements.Traditionally, thePDmeasurementapproachconsidersthenoiseremovalusing mathematical algorithmsandefficientsoftwareinthetimeand frequency domain,suchasspectral subtractiondenoising(SSD), discrete wavelet transform(DWT),wavelet shrinkagedenoising (WSD),PrincipalComponentAnalysis(PCA)[10,11],andComplex DaubechiesWavelet(CDW)[12,13].Overall,enablingthecorrect understandingofthePDphenomenonmagnitudeinonsitemea- surements.

However,thispaperaimstovalidatethehypothesisofimprove- ment or deterioration of the HFCT signal response, through a transferfunctionoptimization,foraneventualredefinitionofphys- icalandgeometricalparametersoftheHFCTsensor.Thus,through theinvestigationofthephysicaleffects,modelling,andsimulation oftheHFCT,appliedtotimemeasurementsofthePDunderthe stronginfluenceofbackgroundnoises,expectedtoreachreason- ablehigherSNR.Therefore,themethodologyproposedinthispaper goesbeyondatraditionalsensoroptimizationapproach[14].It’s consideredHFCT’soptimizationandon-fieldemulationtaskstothe PDmeasurementsbyimplementingadditivewhiteGaussiannoise (AWGN)miscellaneous.

Theproposedmethodologywasdividedanddevelopedlinearly basedonthreestepsasshown inFig.1: 1.PDpulsegeneration andnoiseaddition;2.ModellingoftheHFCTsensor;and3.Per- formanceevaluation.Step1comprisesthePDsignalgeneration, modeledbytravelingwavesmethod[15]andapplicationofchar- acteristicbackgroundnoisethroughAWGNtothesignalgenerated [1].Instep2,HFCTsensormodellingwasperformed,basedonthe ElectromagnetismLaws,accordingto[16],whereasthefrequency responseswerecarriedoutbasedon[14].Instep3,HFCTmodels werecreatedbasedonthevariationofconstructiveandelectrical parametersandsubsequentevaluationofTFs(TransferFunctions) performance[12].InFig.1s(i)representsthePDinputsignal,r(i) denotesnoise(AWGN),Z(i)meanstheTFsoftheHFCTmodels(g(s)) underanalysisand,iisthediscretetimeindex.

Traditionally,thedesignprocessofasensorusesstatisticaloper- atorscustomarilyappliedasthelastevaluationstep,i.e.,step3of Fig.1.Themaingoalofstatisticaloperatorsistoevaluatethesen- sorresponseperformanceregardingthesimilarityandprediction quality.Itisdonebycomparingtheoutput“pre-processed”signal fromthesensorandtheexactinputsignal(inthispaper,PDpulse) [12,13,17,18].Thereforeinthispaper,theHFCTsensorperformance was evaluatedbymean squarederror(MSE) and cross-relation (XCORR).AnoptimalresponsenearzeroisexpectedforMSEand oneforXCORR,consideringthenormalization.Thereby,thepredic- tionandsimilarityofHFCTsensorperformancedrivethedecision onwhichisthebestmodel,bothintermsofelectricalandgeomet- ricalparameters,i.e.,thebestfittedHFCTsensormodel.

Therestofthispaperisorganizedasfollows.Section2addresses thePDmechanisms,itsgeneration,andnoiseaddition,andinSec- tion3isexplainedtheHFCTmodellingandsimulation.Section4

tothePDpulsesareestablishedinstandard[6],e.g.apparentload (q),pulserepetitionrate(n),phaseangle()andtime(t)ofpulse occurrence.

Therepresentationof PDsignals isconductedthrough three categoriesofstandards[19]:1.resolvedphasedata,suchasthe −q−ndiagram(Fig.2a.);2.resolvedtimedata,i.e.q−twave- form–whereqistheloadmagnitudeandttheanalysisinterval,or V−t–whereVrepresentsthevoltageovertimet;3.signaldata thatareneitherresolvedphasenorresolvedtime,e.g.theq−V diagram–magnitudevariationofdischargepulsebytestvoltage amplitudeorthePulseSequenceAnalysis(PSA)diagram–inthat datarelatedtoPDpulsesshouldbesavedasasequence[3].

2.1. PDpulse

The characteristics of PD current pulse are analyzed using parametersrisetime(Tr),pulsewidth(Tw)andfalltime(Tf).All thePDcurrentpulsesarefromtheorigintimet0 ofthevoltage step,whichreferstothetimewhentheincreasingvoltagehas10%

ofinitialvoltage(V0).Thatis,Trregardsthetimeintervalbetween 10%and90%ofthepulseamplitude,Tfisthetimeintervalbetween 90%and10%ofthepulseamplitude,andTwisthetimeinterval between50%oftherisingsignaland50%ofthefallsignal,pulse height,andmaximumpulseamplitude(100%ofthepulsemagni- tude)[19].Therefore,thePDcurrentpulseexpressedbyequation (1)isbasedonthemodelingofthetravelingwavesconceptofPD pulsesinhighvoltagecables[15]:

V(t)=V0.(10˛t−10ˇt), (1) where˛andˇaretimeconstantsparametersrelatedtothecable signalwaveform[15].Thus,consideringOHM’sLawI(t)=U(t)/R andresistanceas1,thePDcurrentpulse’sinitialvaluewaswith themagnitudearound200mA,asdescribedinstudiesaddressing PDpulses[16].Therefore,thepulseparametersassumed inthis paperare:peakat246mA,Trof0.34435s,Tf =3.2174s,Twof 1.8503s,˛as7.108,andˇas3.109.

2.2. AdditivewhiteGaussiannoise

InPDanalysisthebackgroundnoiseisthesignalsdetecteddur- ingits onsite measurement. However,external totheDUT [6].

Accordingtothecharacteristics of time–frequencydomain,the disturbancescanbeclassifiedaswhitenoise(WN),DiscreteSpec- tralInterference(DSI),periodicpulseinterference(PPI),stochastic pulseinterference(SPI)[20].ConsideringPDaspulsesofastochas- ticandnon-stationarynature[21]andthat,consequently,thenoise acquiredintheonsitemeasurementsignalhasarandomcharac- teristic,itisimportanttoinserttheconceptofGaussianProcess.

AssumingthattheGaussianprocess(orrandomprocess)isrep- resentedbyX(t)intheintervalof[0,T],withtheweightofX(t)over certainfunctiong(t)andintegratingtheproductofg(t)X(t)within thatinterval,itisexpressedas:

Y=

T 0

g(t).X(t)dt, (2)

(3)

Fig.1. Overallchartflowoftheproposedmethodology.

Fig.2. OnlinemeasuringofPDbyusingHFCT:a)ExampleofonsitePDtest;b)SchematicrepresentationofthePDonsitemeasuring.

inwhichthemean-squarevalueofY(linearfunctionalvariableof X(t))asfiniteforcertainweightingfunctiong(t),Y issaidtobe Gaussian-distributedrandomvariableforeveryg(t)inthis class offunctions.Thatis,X(t)isaGaussianprocessifeveryY(t)isa Gaussianrandomvariable.Then,YrandomvariablehasaGaussian distributionifitsPDF(ProbabilityDensityFunction)hastheform givenbyEq.(3):

PDFY= 1

√2..Y

exp

(Y−Y)2 22

Y

, (3)

whereY isthemean,Y isthestandarddeviation,andY2isthe varianceofarandomYvariable.WhentheGaussianrandomvari- ableYisnormalizedtohaveY equals0andvarianceY2as1,the normalizedGaussiandistributioniscommonlywrittenasN(0.1) andthevalueofthesignalwillbefoundin±3for99.7%ofthe consideredtimeinterval.

TheWNisakindofGaussianprocess,withPSD(PowerSpec- trumDensity)constantregardlessofthefrequency.Thus,thewhite GaussiannoiseisusedasanAWGNofPDfromthepulsegenera- tor,inordertoemulatetheononsitecharacteristics.Therefore, knowingthattheSNRisgivenby20.log10Avs/Avn[12]–whereAvs

Table1

ClassificationofthemodelsbasedontheSNRinputlevels.

Label SNR(dB) AV NoiseAmp

PD1 −3 0.708 0.3474576

PD2 3 1.414 0.1739745

PD3 6 1.995 0.1233083

PD4 20 10 0.0246

PD5 40 100 0.00246

PD6 60 1000 0.000246

representstheinputDPsignalandAvndenotesnoise–sixdifferent conditionsofnoise.Fig.3showthenoisecondition(PD1toPD6), from−3dB(harshenvironment)to60dB(idealconditions)aswell astherespectivenormalizedfrequencysinglesidespectrumband (SSB)representedas|P1(f)|.

Table1showstheinputsignal246mAmixedon347mAaverage signal(AV)forPD1,wheretheSNR=−3dBintheworsescenario (distortedsignal).Whereas,thePDpulseismixedonidealnoise amplitudeinorderof106(PD6,SNR=60dB)(cleansignal).There- fore,thenoiselevelcontrolparameteristheSNRindB.Inthiscase, thevaluesofsignalswithAWGNwereusedasinputsignalstothe HFCTmodel.

(4)

Fig.3.PDpulsesgenerated(left)andtheirnormalizedfrequencysinglesidespectrumbandSSB(rightcolumn).

(5)

Fig.4.SchematicoftheHFCTsensormodel.

3. HFCTmodellingandsimulation

ThephysicalgeometryparametersoftheHFCTsensorisrelated toatoroidalcoilwrappedinacoreofhighrelativepermeability.

Theelectrical responseoftheHFCTsensor isbasedonthecon- structiveandelectricalaspects,givenby:geometry,thenumberof turns,ferromagneticcorematerialandloadresistance(terminal) [22].Therefore,thedependentcharacteristicsoftheHFCTgeometry aresecondarywindingresistance,parasiticcapacitanceandleak- ageinductance[22].Theelectricalandconstructiveparametersof theHFCTsensorarehighlightedinFig.4.

whereRListheterminalloadresistance,riistheinternalradius, roistheexternalradius,risthesensorradius(concentricraysat pointO),rcistheradiusofthecore,Nisthenumberofturnsof thesensorcoil(secondarycircuit),Ac isthecross-sectionalarea, lmisthepathofthemagneticflux(c),I(t)isthecurrentofthe secondarycircuitandVo(t)istheoutputvoltageofthecircuit,i.e., theHFCTsensoroutputsignal.

3.1. Constructiveaspectsbasedongeometry

Thecalculationofelectricalparameterswerecarriedoncon- sideringthereferences[16,22],andFig.4.Therefore,theradiusof theHFCTsensorisestimatedas,r=(ri+ro)/2,thelengthofflow pathisgivenby,lm=2..randtheradiusofthenucleusisgiven by,rc=(ro−ri)/2.Thediameterisexpressedasdrc=2.rc[m],the cross-sectionalareaofthecoreisAc=pi.rc2[m2],thelengthofthe windingpw=rc[m](thelengthofthewindingwasusedasthe samelengthasrc).Thecrosssectionalareaofthecoilwireisthe sameasAcforconvenience(hereisusedforsimulationpurpose only),thelengthofasinglecoilislc=2.pi.rc[m],andthelengthof thecompletecoilislw=lc.N[Nm](turn.meter).

3.2. Electricalparameters

TheelectricalcircuitoftheHFCTwasanalyzedusinggrouped parameters originating in Fig. 4, and reduced to the electrical schemeshowninFig.5[23].

Inaddition,theelectricalparametersareprovidedinTable2.

Furthermore,thecorematerialelectricandmagneticspecification defined as: of1.6800×108 [.m](Cooper resistance),r of 2000(Relativepermeability),0 of4×10−7 [H/m](freespace permeability), of 0.0025[H/m] (absolute permeability),e0 of 8.8540×1012[F/m](freespaceelectricpermittivity),anderof1 (relativepermittivity),i.e.eisequalto8.8540×10−12[F/m](abso-

Fig.5.S-domaincircuitmodeled.

Table2

Modelingconstructiveparametersused.

Parameter Value Specification

do 0.1[m] Outerdiameter

r0 0.05[m] Outerradius

di 0.065[m] Innerdiameter

ri 0.0325[m] Innerradius

Np 1 Primarycircuitturns

Ns 10 Secondarycircuitturns

dw 0.0005[m] Wirediameter

rw 0.00025[m] Wireradius

Ac 2.4053×10−4[m2] Corearea

rc 0.0088[m] Careradius

drc 0.0175[m] Corediameter

r 0.0575[m] Sensorradius

lm 0.3613[m] Fluxpath

Aw 2.4053×10−4[m2] Coilcross-sectionarea

lc 0.0550[m] Oneturnlength

pw 0.0088[m] Coilstepback

lutepermittivity).Oncethecopperresistivityis =1.68×108 .m,thewindingresistanceofthesecondarycircuitis[16,22]:

Rs= .lw

Aw

. (4)

Thesecondarysensorvoltageisexpressedas:

vs(t)=−Mc.dip(t)

dt . (5)

Mutualinductanceisgivenby[16]:

Mc= Ns2..Ac

lm

, (6)

whereisgivenby=r·o,inwhichristherelativeper- meability(valueaccordingtothematerial)andoisthevacuum permeabilitywiththevalueof410−7H/m.TheNsisthenumberof turnsofthesecondary,i.e.windingofthesensor.Inleakageinduc- tance(alsocalledauto-inductance)[24],thecircularcoilmethod wasusedforsingleturninductanceandforrwrc,thus,based on:

Lloop=0.rc.log10

8.r

c

rw

−2

. (7)

Theresultingleakageinductancefortheentirecoilis:

Ls=Ns2.Lloop. (8)

SincetheapplicationisinHF,thevalueoftheparasiticcapac- itance (Cs) of the secondary winding must be estimated. The parasiticeffectwasestimatedusingtheanalyticalapproachof[24], inwhich:e0=8.854.1012(dielectricconstant),er=1(relative permittivityofair)ande=e0er(absolutepermittivity),therefore:

Cs= lw.pi.e acosh

pw

2.rw

. (9)

(6)

AlthoughLsandCsareintrinsictotheHFCTsensor,requiring thecalculationofthecapacitivenetworkandexperimentalcalcu- lation oftheHFCTsensordimensions,asdemonstratedby[24].

ThispaperisrestrictedtotheanalyticalcalculationofCsandLs sincesuchparametersarenotthepresentstudy’sinitialobjective.

Despitethis,thevaluesobtainedinthisstudywereconsistentwith [25].

Therefore,thefinalproposalTFconsideringthesecond-order polynomialexpressedbyequation(10)is:

F(s)=

−sMc.Np.RL Cs.RL.(Ls+Mc).Ns

s2+s

Cs.RL.Rs+Ls+Mc Cs.RL.(Ls+Mc)

+Cs.RRLs.(Ls+Mc)+RL

. (10)

Thefrequencyresonance(w0)inrad/s:

w0= RL

Cs.RL.(Ls+Mc). (11)

Also,thedampingcoefficient(),givenb:

= (Cs.RL.Rs+Ls+Mc)

Cs.RL.(Ls+Mc) 2.Cs.RL(Ls+Mc)

RL . (12)

Thevaluesofw0andprovidedataforsystembehaviorsince:

>1providesaoverdampedresponse(realanddifferentrootsand productoftwo1st-orderpoles);<1determineaunderdamped response(complexroots)ofthesystem;=1resultsincritically dampedresponse(realandequalroots).Thus,Fig.4canbemodeled accordingtoFig.5inthesdomain.NotethatReq1andReq2areequiv- alentresistancesfromresistiveassociationsinseries(betweenRs

andsLs)andinparallel(between1/sCsandRL),respectivelyand whosetotalequivalentresistanceisReq(seriesassociationbetween Req1andReq2).

3.3. Simulation

Inordertoassessthehypothesisofimprovementordeteriora- tionoftheHFCTsignalresponse,weconsidertheS-domainthrough a transfer function optimization, which means the frequency response.Fivedifferentmodelshavebeensettledasdescribedin Table3,whichweredividedintoreferenceandvariationgroups.

Thereferencemodel(PAD)isthestandardmodel,whereasRL(load resistance),Ns(numberofsecondaryturns)andr(relativeper- meability)arevariationmodels.Ontheotherhand,thevariation modelscalledN30,RL250,mur2300andRLNmurwereorganized totestthegeneralperformanceoftheHFCTsensor,withchanges initsparametersbasedonthePAD.

ThefiveTFs,consideringthecalculationsbasedonthespecified parametersinTable3,arepresentedinTable4.

TheBodediagramwasconsidered(Fig.6), toobtainthefre- quencyresponseoftheHFCTsensormodels,throughsimulation withMatlabsoftware.

Also,inFig.6,thefrequencyresponseallowedtheanalysisof magnitudedata(dB)andphase(degrees)inthefrequencydomain.

Tables5and6showsthephysicalandelectricalparameters,respec- tively,calculatedandobtainedforallthemodels(PAD,N30,RL250, mur2300,andRLNmur),throughsimulationwithMatlabsoftware.

Fig.6.FrequencyresponseoftheHFCTsensormodels.

Table5

Performancebasedonthephysicalparametersobtainedforeachmodel.

Model Poles BW(Hz)

PAD s1=−2.92E+05 6.3104E+01 5.03E+09 s2=−4.65E+09

N30 s1=−3.24E+04 1.0930E+02 4.89E+08 s2=−1.55E+09

RL250 s1=−1.46E+06 1.2621E+01 1.32E+09

s2=−9.28E+08

mur2300 s1=−2.55E+05 6.7569E+01 4.95E+09 s2=−4.65E+09

RLNmur s1=−2.09E+05 3.0465E+01 1.32E+09 s2=−7.75E+08

Table6

Electricalstrayparametersobtainedforthemodels.

Model Rs() Ls(H) Cs(F)

PAD 3.84E-05 4.00E-06 4.30E-12

N30 1.15E-04 3.60E-05 1.29E-11

RL250 3.84E-05 4.00E-06 4.30E-12

mur2300 3.84E-05 4.00E-06 4.30E-12

RLNmur 7.68E-05 1.60E-05 8.60E-12

ThePAD’sgainreaches13.8dB(Fig.6),andintheresonance frequency,thereisa180phaseshift,accordingtoLenz’sLaw.In thecaseofvariationmodels(N30,RL250,mur2300,andRLNmur), whicharedescribedinTables5and6.Sincethesizeofthecore (ri,ro,r,andrc)wasmaintained,andtheRL,Nsandrwerealtered (Table3),distinctperformanceswereobtainedbetweentheHFCT sensormodels.

(7)

Fig.7. MSEoftheHFCTsensormodels.

TheBodediagram(Fig.6),showsthattheN30’sgainreaches 4.23dB.Also,Table5presentsthesmoothestresponseduetothe increaseintheto1.0930E+02.Inaddition,alsointheBodedia- gram(Fig.6),thereisaflattercurveatthecenterofphasecharge attributedtotheincrease(higherwindingturns)inthereactive characteristicsoftheCsandLsinrelationtothePAD.

UnlikemodelN30,themodelRL250hasadirectchangeinthe RL,i.e.,non-reactiveelectricalparameter.ComparativelytoPAD, theBodediagram(Fig.6),showsthehighergain(27.8dB).Con- sequently,Table5showstheRL250responseresultsinawider bandwidth,BW=1.32E+09Hz,anddecreasingon=1.2621E+ 01.

Inthemur2300,ther=2300,basedon[26],andbasedonthe Bodediagram(Fig.6),itisobservedthatthegainis13.8dB.The characteristic responseofmur2300isalmostthesamefor PAD, oncechangingr(Table3)doesnotchangethereactiveparameters (Tables5and6).Thus,thisendsupcausinganoverlappinginthe PADresponsecurve(Fig.6).

TheRLNmur’sgainreaches17.3dBintheBodediagram(Fig.6), corresponding to the intermediate response between the PAD, mur2300,andRL250models,regardingthecharacteristicsofthe reactiveparameters.

4. HFCTperformanceevaluation

BasedonthesimulationresultspresentedinSection3.3,Ithas beenconsideredadecreaseinmagnitudeandanincreaseinBW withincreasedwindingsinthesecondarycircuit(modelN30).In themodelN30, thereis aphase advanceconcerningfrequency.

Also,itwasfoundthatincreasingthevalueofr,inthecaseof mur2300,didnotleadtoaconsiderablechangeinmagnitudeand phaseresponse,comparedtoPAD.However,tocomplementthe HFCT performance evaluation analysis,the meansquared error (MSE)andcross-relation(XCORR)wereconsidered.

4.1. Dataanalysisevaluationmetrics

Twometricshasbeenusedinthispaper,theMSEandXCORR, betweensignalsobtained(Z(i))andtheinputsignals(s(i))(referto Fig.1).TheMSEisgivenby[12]:

MSE= 1 N

N

i=1

|z(i)−s(i)|2. (13)

TheMSEis generallyusedtoassessthedegreeof distortion causedby removingnoise froma signal,sothelower theMSE value,thesmallertheerror.Incontrast,theXCORRcoefficient( sz) isexpressedby[12]:

sz(n)=

N

n1

i=0

s(i).z(i+n). (14)

TheXCORRcoefficientassessesthesimilarityintheshapeofthe signals’wave;itwasnormalizedinorderthatazeroXCORRfactor indicatestotal asymmetrywhileanXCORRfactorof1indicates completesymmetry.Therefore,theXCORRisappliedbetweenthe Z(i)ands(i)(seeFig.1)ondiscrete-time.Also,sincethisEq.(14) returnsavector,thesequencesoftheXCORRhavebeennormalized.

TheMSEobtainedforallHFCTsensormodelsitisexpressedin Fig.7.TheMSEfortheRL250model(Fig.7)isthegreatestone.On theotherhand,increasingthenumberofwindings(N30model), thesimilaritybetweenthes(i)andtheZ(i)(HFCTsensorresponse) increases,giventhatthemutualinductanceisthehighestamong themodels,Mc=1.5mH,whileinthePADmodelthemutualinduc- tanceisMc=0.17mH,i.e.,anincreaseof20inthenumberofturns ofthewindingresultsinanincreaseof8.82timesthevalueofMc (seeEq.(6)).Furthermore,ithasbeenobservedthatfromSNR=6 dB,theMSEremainsbelow1forallthemodelsexceptingRL250.

Therefore,inthecaseofPAD,N30,mur2300,andRLNmurtheZ(i) mustbeatleast2twicethes(i)toreachanacceptablemeasurement error.

(8)

Fig.8. XCORRoftheHFCTsensormodels.

TheXCORRobtainedforallHFCTsensormodelsitisexpressed inFig.8.TheXCORRanalysis(Fig.8)reinforcesthattheTFsmodeled forHFCTsensormodels,providesagoodperformanceforanSNR above6dB(Fig.7),andXCORRcoefficientvaluesupper0.5(e.g.

0.7645forN30model).

5. Conclusionsandprospects

Thispaperaddressedthephysicaleffects,modelling,andsimu- lationofthehigh-frequencycurrenttransformer(HFCT),appliedto timemeasurementsofthepartialdischarges(PD)underthestrong influenceofbackgroundnoises.

SeveralfactorslimitthefrequencyresponsesoftheN30,RL250, mur2300,andRLNmurmodels.IntherealHFCTsensor,thefre- quencyresponseentailsseveralparameters.Themainonesbeing reactive components with origin in construction and electrical phenomena since a coil has(i)capacitance and (ii)inductance, duetotheassociationofturns.Hence,thesereactivecomponents contribute to self-capacitanceand self-inductance, respectively.

However,state-of-the-artstudiesdescribethattheloadresistance valuemustbe50,duetotheresistivecouplingwiththemeasur- inginstruments,toeliminatelosses.Thepresentpaperemploysa variationofupto250toverifychangesinresponsetotheinput signalandperformanceevaluationundernoisyconditions.

Thus, thehypothesisofimprovement ordeterioration ofthe HFCTsignalresponse,throughatransferfunctionoptimization,for aneventualredefinitionofphysicalandgeometricalparametersof theHFCTsensor,canbevalidated,dependingonwhichparame- tersarechosentobechanged.Additionally,theHFCTmodelN30 providedmorereliableS-domainvaluesbyincreasingthenumber ofcoilturnsadaptivelytothenoisysignalcomparedtotheother modelsanalyzed,i.e.,RL250,mur2300,andRLNmur.

Therefore, the proposed transfer function optimization approachgivesarobustpre-processingbychangingthefeatures oftheHFCT’selectricalcircuitandcoilconstructionparametersto reachahighsignal-to-noise(SNR)ratio.Furthermore,thispaper

servesasaninspiration forpotentialsolutions throughartificial intelligence.In thisway,itis possibletooptimizetheelectrical parameterstoobtainidealcharacteristicsofmagnitudeandphase inthefrequency responsetorejectdifferentcharacteristic field noise(onsitemeasurement).

CRediTauthorshipcontributionstatement

DouglasNascimento:Conceptualization,Methodology,Inves- tigation, Data curation, Validation, Formal Analysis, Writing – original draft. Shady S. Refaat: Writing – review & editing, Resources, Project administration, Funding acquisition. Hermes Loschi:Datacuration,Visualization,Methodology,Writing–Orig- inal draft,Writing – review & editing.Yuzo Iano: Supervision, Writing–review&editing.EuclidesChuma:Writing–review&

editing.WaseemEl-Sayed:Writing–review&editing.AmrMadi:

Writing-review&editing.

References

[1]D.A.Nascimento,Y.Iano,H.J.Loschi,L.A.S.Ferreira,J.A.D.Rossi,C.D.Pessoa, Evaluationofpartialdischargesignaturesusinginductivecouplingaton-site measuringforinstrumenttransformers,Int.J.EmergingElectricPowerSyst.

19(1)(2018),http://dx.doi.org/10.1515/ijeeps-2017-0160.

[2]D.A.Nascimento,S.S.Refaat,A.Darwish,Q.Khan,H.Abu-Rub,Y.Iano, Investigationofvoidsizeandlocationonpartialdischargeactivityinhigh voltageXLPEcableinsulation.,in:InWCNPS2019-Workshopon CommunicationNetworksandPowerSystems,numberWcnps.IEEE.ISBN 9781728129204.doi:10.1109/WCNPS.2019.8896268,2019,pp.1–6.

[3]G.C.Montanari,A.Cavallini,Insulationconditionassessmentofpower equipmentsinelectricalassetsbasedonon-linemonitoringofpartial discharges,in:In2008InternationalConferenceonConditionMonitoringand Diagnosis.IEEE,ISBN9781424416219.doi:10.1109/CMD.2008.4580483, 2007,pp.7–12.

[4]V.Estrela,Os.Saotome,H.Loschi,J.Hemanth,W.Farfan,J.Aroma,C.

Saravanan,E.Grata,Emergencyresponsecyber-physicalframeworkfor landslideavoidancewithsustainableelectronics,Technologies6(2)(2018) 42,2227-7080.doi:10.3390/technologies6020042.

[5]A.Cavallini,G.C.Montanari,A.Contin,F.Puletti,Anewapproachtothe diagnosisofsolidinsulationsystemsbasedonPDsignalinference,IEEEElectr.

(9)

InsulationMag.19(2)(2003)23–30,http://dx.doi.org/10.1109/MEI.2003.

1192033.

[6]IEC.IEC60270-High-voltagetesttechniques-Partialdischarge measurementsTechniques.TechnicalReport40,2015.

[7]F.Álvarez,F.Garnacho,J.Ortego,M.A.Sánchez-Urán,ApplicationofHFCTand UHFsensorsinon-linepartialdischargemeasurementsforinsulation diagnosisofhighvoltageequipment,Sensors(Switzerland)15(4)(2015) 7360–7387,http://dx.doi.org/10.3390/s150407360.

[8]IEC,IECTS62478-Highvoltagetesttechniques-Measurementofpartial dischargesbyelectromagneticandacousticmethods.Technicalreport,IEC, 2016.

[9]E.Gulski,W.Koltunowicz,T.Ariaans,G.Behrmann,R.Jongen,F.Garnacho,S.

Kornhuber,S.Ohtsuka,F.Petzold,M.Sanchez-Uran,K.Siodla,S.Tenbohlen, Guidelinesforpartialdischargedetectionusingconventional(IEC60270)and unconventionalmethods.TechnicalReport288,Cigré,2016.

[10]A.Martins,V.V.Estrela,EM-basedmixturemodelsappliedtovideoevent detection,PrincipalComponentAnalysis-EngineeringApplications(2012), http://dx.doi.org/10.5772/38129.

[11]A.M.Coelho,V.V.Estrela,F.P.Carmo,S.R.Fernandes,Errorconcealmentby meansofmotionrefinementandregularizedBregmandivergence.,in:In LectureNotesinComputerScience(includingsubseriesLectureNotesin ArtificialIntelligenceandLectureNotesinBioinformatics),volume7435LNCS ISBN9783642326387.doi:10.1007/978-3-642-32639-478,2012,pp.

650–657.

[12]R.Hussein,K.B.Shaban,A.H.El-Hag,Denoisingdifferenttypesofacoustic partialdischargesignalsusingpowerspectralsubtraction,HighVoltage3(1) (2018)44–50,2397-7264.doi:10.1049/hve.2017.0119.URL

http://digital-library.theiet.org/content/journals/10.1049/hve.2017.0119.

[13]R.Hussein,A.H.El-Hag,K.B.Shaban,Energyconservation-basedthresholding foreffectivewaveletdenoisingofpartialdischargesignals,IETScience, Measurement&Technology10(7)(2016)813–822,1751-8822.

doi:10.1049/iet-smt.2016.0168.URL

http://digital-library.theiet.org/content/journals/10.1049/iet-smt.2016.0168.

[14]C.Zachariades,R.Shuttleworth,R.Giussani,R.Mackinlay,Optimizationofa high-frequencycurrenttransformersensorforpartialdischargedetection usingfinite-elementanalysis,IEEESensorsJ.16(20)(2016)7526–7533, http://dx.doi.org/10.1109/JSEN.2016.2600272.

[15]H.A.Illias,H.R.Yon,A.H.A.Bakar,H.Mokhlis,G.Chen,P.L.Lewin,A.M.Ariffin, Modellingofpartialdischargepulsesinhighvoltagecableinsulationusing finiteelementanalysissoftware,in:2013IEEEElectricalInsulation

Conference,EIC2013,(June),doi:10.1109/EIC.2013.6554201,2013,pp.52–56.

[16]X.Hu,W.H.Siew,M.D.Judd,X.Peng,Transferfunctioncharacterizationfor HFCTsusedinpartialdischargedetection,IEEETransactionsonDielectrics andElectricalInsulation24(2)(2017)1088–1096,http://dx.doi.org/10.1109/

TDEI.2017.006115.

[17]YasinKhan,PartialdischargepatternanalysisusingPCAand

back-propagationartificialneuralnetworkfortheestimationofsizeand positionofmetallicparticleadheringtospacerinGIS,ElectricalEngineering 98(2016)29–42,doi:10.1007/s00202-015-0343-4.URL

https://link.springer.com/article/10.1007/s00202-015-0343-4.

[18]JankauskasAudriusLiudas,RekuvieneReginaSamaitis,VykintasMaˇzeika, Detectionandlocalizationofpartialdischargeinconnectorsofairpowerlines bymeansofultrasonicmeasurementsandartificialintelligencemodels, Sensors20(2021)1–21,doi:10.3390/s21010020.URL

https://www.mdpi.com/1424-8220/21/1/20#.

[19]M.Wu,H.Cao,J.Cao,H.L.Nguyen,J.B.Gomes,S.P.Krishnaswamy,An overviewofstate-of-the-artpartialdischargeanalysistechniquesfor conditionmonitoring,IEEEElectr.InsulationMag.31(6)(2015)22–35,http://

dx.doi.org/10.1109/MEI.2015.7303259.

[20]L.Satish,B.Nazneen,Wavelet-baseddenoisingofpartialdischargesignals buriedinexcessivenoiseandinterference,IEEETrans.Dielectr.Electr.Insul.

10(2)(2003)354–367,http://dx.doi.org/10.1109/TDEI.2003.1194122.

[21]A.L.Kupershtokh,D.I.Karpov,D.A.Medvedev,C.P.Stamatelatos,V.P.

Charalambakos,E.C.Pyrgioti,D.P.Agoris,Stochasticmodelsofpartial dischargeactivityinsolidandliquiddielectrics,IETSci.Measure.Technol.43 (3)(2007)303–311,http://dx.doi.org/10.1049/iet-smt:20060104.

[22]A.K.A.Hagh,S.J.Ashtiani,A.A.ShayeganiAkmal,Awideband,sensitivecurrent sensoremployingtransimpedanceamplifierasinterfacetoRogowskicoil, SensorsandActuators,A:Physical256(2017)43–50,09244247.

doi:10.1016/j.sna.2017.01.018.URL https://doi.org/10.1016/j.sna.2017.01.018.

[23]M.H.Samimi,ArashMahari,M.A.Farahnakian,H.Mohseni,Therogowskicoil principlesandapplications:Areview,IEEESensorsJournal15(2)(2015) 651–658,http://dx.doi.org/10.1109/JSEN.2014.2362940.

[24]L.Kütt,AnalysisandDevelopmentofInductiveCurrentSensorforPowerLine On-LineMeasurementsofFastTransients.PhDthesis,2012.

[25]B.Mi.Amna,U.Khayam,DesignandSimulationofHighFrequencyCurrent TransformerasPartialDischargeDetector.,in:InThe3rdIEEEConferenceon PowerEngineeringandRenewableEnergyICPERE2016,ISBN

9781509051083.doi:10.1109/ICPERE.2016.7904854,2016,pp.135–139.

[26]M.E.Kiziroglou,S.W.Wright,E.M.Yeatman,Coilandcoredesignforinductive energyreceivers,Sens.ActuatorsA:Phys.313(2020)112206,09244247.

doi:10.1016/j.sna.2020.112206.URL https://doi.org/10.1016/j.sna.2020.112206.

Biographies

DouglasNascimento,M.Sc.,receivedhis B.Sc.atUni- versity ofWestSantaCatarinaand M.Sc.inElectrical EngineeringfromtheUniversityofCampinas.Currentlyis aPh.D.candidateandEarlyStageResearcherintheETOPIA (EuropeanTrainingNetworkofPhDResearchersonInno- vativeEMIAnalysisandPowerApplications)Project,a jointdoctoralprogrammeunderTheEuropeanCommis- sion Horizon 2020initiative, MarieSkłodowska-Curie Actions, atTheUniversityofZielonaGóraandatThe University ofTwente.Heisa memberofInstituteof ElectricalandElectronicEngineers(IEEE),andElectro- magneticCompatibilitySociety(EMC-S)workingonTC-7 (TechnicalCommittee).Hisresearchareasaddresselectric vehicles,smartcities,sensors,EMCandEMI.Hehasexperienceinelectromag- neticmodeling,cableandsensordesign,simulationofelectriccircuits,andpartial dischargetests.

ShadyS.Reffat,Ph.D.,isapostdoctoralresearchassociate intheDepartmentofElectricalandComputerEngineer- ing,TexasA&MUniversityatQatar,amemberofthe InstituteofElectricalandElectronicEngineers(IEEE),a memberofTheInstitutionofEngineeringandTechnol- ogy(IET),amemberoftheSmartGridCenterExtension inQatar(SGC-Q),hehasworkedwithindustryforover fifteenyearsaselectricaldesignengineer.Hehaspub- lishedovertwentyjournalandconferencepapers.His researchinterestsincludeelectricalmachines,powersys- tem,smartgrid,energymanagementsystem,reliability ofpowergridandelectricmachinery,faultdetection,and conditionmonitoringinconjunctionwithfaultmanage- mentanddevelopmentoffaulttolerantsystems.Hehassuccessfullyrealizedmany potentialresearchprojects.

HermesLoschi,M.Sc.,wasbornin1990,SaoPaulo,Brazil.

HereceivedhismasterdegreeinElectricalEngineeringat theUniversityofCampinasandhisbachelor’sdegreein ControlandAutomationEngineeringatthePaulistaUni- versity.SinceApril2019,hestartedasaPh.D.studentin

“SmartCitiesEMCNetworkforTraining(SCENT)”project intheInstituteofAutomaticControl,ElectronicsandElec- tricalEngineeringattheUniversityofZielonaGora,Poland aswellasthefacultyofElectricalEngineering,Mathemat- icsandComputerScience(EEMCS)intheUniversityof Twente,Netherlands.Hisresearchareasarepowersys- tems,renewableenergies,sensors,EMCandEMI.

YuzoIano,Prof.Ph.D.,hasadegree(1972),amaster’s degree(1974)andadoctorate(1986)inElectricalEngi- neeringfromtheUniversityofCampinas(Unicamp).Since then, he wasa supervisorin 5postdoctoralprojects, 34doctoraltheses,59master’sdissertations,74under- graduatestudies,48undergraduateresearch, and198 otherorientations(TeacherInternshipProgram,projects, etc.).Authorof2booksandauthor/co-authorof8book chapters,and300publishedarticles.Hereceivedtwo InnovationAwards,Category“LicensedTechnology”,from InovaUnicampintheyears2013and2018,anAward forTeachingExcellenceinUndergraduateEducation,from theFacultyofElectricalandComputerEngineering,from theUniversityofCampinas(2012)anda“LifeMember”honorgrantedbytheInter- nationalInstituteofElectricalandElectronicsEngineers-IEEE(2018).Heiscurrently FullProfessorMS6inRDIDPofDecom/Feec/Unicamp.

EuclidesChuma,Ph.D.,iscurrentlyR&DManagerofPho- tonicsInnovationInstitute.Hecompletedhisdegreein MathematicsfromtheUniversityofCampinas(UNICAMP) (2003),graduatedegreeinNetworkandTelecommuni- cationsSystemsfromINATEL(2015),MScinElectrical EngineeringfromUNICAMP(2017),andPhDinElectri- calEngineeringinUNICAMP(2019).Hisresearchinterests includeantennas,microwave,millimeterwave,photon- ics,sensors,wirelesspowertransfer,andsoftwaredefined radio.

(10)

Twente,Netherlands.

Referensi

Dokumen terkait

Based on the data of pre survey at MTs Al AsrorSekampung especially at eight graders, the student’s writing ability is still low, the students have difficulties to improve their writing

Understanding God’s design for human personhood will help parents understand how trauma severely influences the cognitive, affective, and volitional dimensions of children’s hearts, and