2-(4-Bromophenyl)-2-oxoethyl 4-chloro- benzoate
Hoong-Kun Fun,a*‡ Chin Sing Yeap,a§ B. Garudachari,b Arun M. Isloorband M. N. Satyanarayanc
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia,bOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, andcDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
Correspondence e-mail: [email protected] Received 26 May 2011; accepted 14 June 2011
Key indicators: single-crystal X-ray study;T= 297 K; mean(C–C) = 0.008 A˚;
Rfactor = 0.045;wRfactor = 0.142; data-to-parameter ratio = 16.4.
The asymmetric unit of the title compound, C15H10BrClO3, consists of three crystallographically independent molecules.
The dihedral angles between the benzene rings in the three molecules are 68.8 (2), 0.7 (3) and 66.1 (2). In the crystal, the three independent molecules are interconnected by C—
H O hydrogen bonds, leading to isolated trimers.
Related literature
For background to phenacyl benzoate derivatives, see: Huang et al.(1996); Gandhiet al.(1995); Sheehan & Umezaw (1973);
Ruzicka et al. (2002); Litera et al. (2006); Rather & Reid (1919). For related structures, see: Funet al.(2011a,b,c). For the preparation, see: Kelly & Howard (1932).
Experimental Crystal data C15H10BrClO3
Mr= 353.59 Monoclinic,P21 a= 17.1061 (11) A˚ b= 5.3062 (4) A˚ c= 24.0376 (16) A˚ = 101.502 (1)
V= 2138.0 (3) A˚3 Z= 6
MoKradiation = 3.07 mm 1 T= 297 K
0.410.190.15 mm
Data collection
Bruker APEXII DUO CCD area- detector diffractometer Absorption correction: multi-scan
(SADABS; Bruker, 2009) Tmin= 0.364,Tmax= 0.657
18463 measured reflections 8890 independent reflections 5931 reflections withI> 2(I) Rint= 0.021
Refinement
R[F2> 2(F2)] = 0.045 wR(F2) = 0.142 S= 1.04 8890 reflections 541 parameters 1 restraint
H-atom parameters constrained max= 0.67 e A˚ 3
min= 0.54 e A˚ 3
Absolute structure: Flack (1983), 3590 Friedel pairs
Flack parameter: 0.065 (10)
Table 1
Hydrogen-bond geometry (A˚ ,).
D—H A D—H H A D A D—H A
C5A—H5AA O3B 0.93 2.59 3.227 (7) 126
C5B—H5BA O1A 0.93 2.48 3.217 (7) 136
C15B—H15B O1C 0.93 2.59 3.254 (7) 129
Data collection:APEX2(Bruker, 2009); cell refinement:SAINT (Bruker, 2009); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTLandPLATON(Spek, 2009).
HKF and CSY thank Universiti Sains Malaysia for the Research University Grant 1001/PFIZIK/811160. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the
’Young scientist’ award. GB thanks the Department of Information Technology, New Delhi, India, for financial support.
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2606).
References
Bruker (2009).APEX2,SAINTandSADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983).Acta Cryst.A39, 876–881.
Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N.
(2011a).Acta Cryst.E67, o1528.
Fun, H.-K., Asik, S. I. J., Kumar, R., Isloor, A. M. & Shivananda, K. N. (2011b).
Acta Cryst.E67, o1600.
Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N.
(2011c).Acta Cryst.E67, o1529.
Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995).Tetrahedron,51, 13301–
13308.
Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996).Tetrahedron,52, 10131–
10136.
Kelly, L. T. & Howard, H. W. (1932).J. Am. Chem. Soc.54, 4383–4385.
Litera, J. K., Loya, A. D. & Klan, P. (2006).J. Org. Chem.71, 713–723.
Rather, J. B. & Reid, E. (1919).J. Am. Chem. Soc.41, 75–83.
Ruzicka, R., Zabadal, M. & Klan, P. (2002).Synth. Commun.32, 2581–2590.
Sheehan, J. C. & Umezaw, K. (1973).J. Org. Chem.58, 3771–3773.
Sheldrick, G. M. (2008).Acta Cryst.A64, 112–122.
Spek, A. L. (2009).Acta Cryst.D65, 148–155.
Acta Crystallographica Section E
Structure Reports Online
ISSN 1600-5368
‡ Thomson Reuters ResearcherID: A-3561-2009.
Acta Cryst. (2011). E67, o1723 [ doi:10.1107/S1600536811022963 ] 2-(4-Bromophenyl)-2-oxoethyl 4-chlorobenzoate
H.-K. Fun, C. S. Yeap, B. Garudachari, A. M. Isloor and M. N. Satyanarayan
Comment
Phenacyl benzoates derivatives are very important in identification of organic acids (Rather & Reid, 1919). These com- pounds undergo photolysis in neutral and mild conditions (Sheehan & Umezaw, 1973; Ruzicka et al., 2002; Litera et al., 2006) and find applications in the field of synthetic chemistry for the synthesis of oxazoles, imidazoles (Huang et al., 1996), benzoxazepine (Gandhi et al., 1995). We hereby report the crystal structure of 2-(4-bromophenyl)-2-oxoethyl 4-chloroben- zoate of potential commercial importance.
The asymmetric unit of title compound consists of three crystallographically independent molecules, A, B and C (Fig. 1).
The dihedral angles between the two terminal phenyl rings for each molecules being 68.8 (2), 0.7 (3) and 66.1 (2)°, respect- ively, show that molecule A and C are in similar conformation. The geometic parameters are comparable to those previously reported structures (Fun et al., 2011a,b,c). The three independent molecules are interconnected by C5A—H5AA···O3B, C5B—H5BA···O1A and C15B—H15B···O1C hydrogen bonds (Fig. 1, Table 1). In the crystal structure, the molecules are arranged into columns (Fig. 2) parallel to the b axis.
Experimental
A mixture of 4-chlorobenzoic acid (1.0 g, 0.0063 mol) sodium carbonate (0.744 g, 0.0070 mol) and 2-bromo-1-phenyleth- anon (1.94 g, 0.0070 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of 2-(4-bromophenyl)-2-oxoethyl 4-chlorobenzoate separated. The compound was collected by fil- tration and re-crystallized from ethanol. Yield: 2.18 g, 96.88%, M. p.: 400–401 K (Kelly & Howard, 1983).
Refinement
All hydrogen atoms were positioned geomatrically [C–H = 0.93 or 0.97 Å] and refined using a riding model, with U
iso(H) = 1.2 U
eq(C). The presence of pseudosymmetry in the structure suggests the higher symmetry space group P2
1/c, but attempts to refine the structure in this space group resulted in much higher R and wR values and chemically incorrect structure. A total of 3590 Friedel pairs were used to determine the absolute structure.
Figures
Fig. 1. The molecular structure of the title compound, with 30% probability ellipsoids for
non-H atoms. Hydrogen bonds (dashed lines) are shown.
Fig. 2. Crystal structure of title compound, showing molecules arranged into columns parallel to the b axis. Hydrogen bonds (dashed lines) are shown.
2-(4-Bromophenyl)-2-oxoethyl 4-chlorobenzoate
Crystal data
C15H10BrClO3 F(000) = 1056
Mr = 353.59 Dx = 1.648 Mg m−3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å Hall symbol: P 2yb Cell parameters from 4899 reflections a = 17.1061 (11) Å θ = 2.3–26.1°
b = 5.3062 (4) Å µ = 3.07 mm−1 c = 24.0376 (16) Å T = 297 K
β = 101.502 (1)° Block, colourless
V = 2138.0 (3) Å3 0.41 × 0.19 × 0.15 mm Z = 6
Data collection
Bruker APEXII DUO CCD area-detector
diffractometer 8890 independent reflections
Radiation source: fine-focus sealed tube 5931 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 27.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009) h = −22→21
Tmin = 0.364, Tmax = 0.657 k = −6→6 18463 measured reflections l = −31→31
Refinement
Refinement on F2 Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring
sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.4681P]
where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
8890 reflections Δρmax = 0.67 e Å−3
541 parameters Δρmin = −0.54 e Å−3
1 restraint Absolute structure: Flack (1983), 3590 Friedel pairs Primary atom site location: structure-invariant direct
methods Flack parameter: 0.065 (10)
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat- rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention- al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
2)
x y z Uiso*/Ueq
Br1A 0.67824 (3) 1.30681 (17) 0.56131 (3) 0.0834 (2)
Cl1A −0.15600 (8) 0.7707 (5) 0.61298 (7) 0.0905 (6)
O1A 0.3290 (2) 0.9241 (10) 0.63191 (17) 0.0841 (16)
O2A 0.1988 (2) 1.1811 (8) 0.58442 (16) 0.0632 (10)
O3A 0.1936 (2) 0.8415 (10) 0.52826 (15) 0.0736 (12)
C1A 0.4376 (3) 1.3623 (11) 0.56106 (19) 0.0501 (12)
H1AA 0.3959 1.4676 0.5447 0.060*
C2A 0.5157 (3) 1.4119 (11) 0.55351 (19) 0.0526 (13)
H2AA 0.5265 1.5531 0.5334 0.063*
C3A 0.5759 (3) 1.2477 (12) 0.57638 (18) 0.0502 (13)
C4A 0.5622 (3) 1.0413 (15) 0.60918 (18) 0.0556 (12)
H4AA 0.6038 0.9348 0.6252 0.067*
C5A 0.4865 (3) 0.9992 (11) 0.61718 (18) 0.0503 (12)
H5AA 0.4771 0.8628 0.6392 0.060*
C6A 0.4229 (3) 1.1541 (10) 0.59333 (17) 0.0462 (12)
C7A 0.3413 (3) 1.0949 (12) 0.60142 (19) 0.0533 (15)
C8A 0.2734 (3) 1.2495 (13) 0.5706 (2) 0.0622 (15)
H8AA 0.2839 1.4259 0.5798 0.075*
H8AB 0.2698 1.2297 0.5300 0.075*
C9A 0.1655 (3) 0.9666 (12) 0.5602 (2) 0.0533 (15)
C10A 0.0870 (3) 0.9183 (11) 0.57661 (18) 0.0471 (12)
C11A 0.0551 (3) 1.0787 (13) 0.61134 (18) 0.0536 (13)
H11A 0.0844 1.2180 0.6271 0.064*
C12A −0.0192 (3) 1.0367 (17) 0.6231 (2) 0.0652 (14)
H12A −0.0405 1.1465 0.6464 0.078*
C13A −0.0615 (3) 0.8289 (14) 0.5998 (2) 0.0604 (15)
C14A −0.0303 (3) 0.6605 (12) 0.56479 (19) 0.0569 (14)
H14A −0.0592 0.5200 0.5493 0.068*
C15A 0.0445 (3) 0.7093 (13) 0.55400 (19) 0.0548 (14)
H15A 0.0665 0.5996 0.5312 0.066*
Br1B 0.06535 (3) 0.5564 (2) 0.73157 (2) 0.0802 (2)
Cl1B 0.92955 (6) −0.0329 (3) 0.77621 (5) 0.0628 (4)
O1B 0.4359 (2) 0.0185 (11) 0.78999 (16) 0.0786 (11)
O2B 0.54903 (19) 0.2829 (8) 0.75497 (14) 0.0627 (10)
O3B 0.5851 (2) 0.5857 (10) 0.70158 (16) 0.0768 (12)
C1B 0.2738 (3) 0.1656 (11) 0.7806 (2) 0.0593 (14)
H1BA 0.2901 0.0219 0.8020 0.071*
C2B 0.1972 (3) 0.2425 (14) 0.7741 (2) 0.0666 (17)
H2BA 0.1620 0.1554 0.7920 0.080*
C3B 0.1714 (3) 0.4476 (12) 0.74136 (18) 0.0525 (14)
C4B 0.2241 (3) 0.5826 (13) 0.71591 (19) 0.0553 (14)
H4BA 0.2066 0.7235 0.6939 0.066*
C5B 0.3026 (3) 0.5066 (13) 0.72344 (19) 0.0552 (14)
H5BA 0.3382 0.5967 0.7065 0.066*
C6B 0.3285 (3) 0.2963 (12) 0.75623 (17) 0.0495 (12)
C7B 0.4133 (3) 0.2139 (12) 0.76452 (19) 0.0579 (14)
C8B 0.4699 (3) 0.3840 (13) 0.74273 (18) 0.0605 (16)
H8BA 0.4527 0.4044 0.7020 0.073*
H8BB 0.4697 0.5487 0.7602 0.073*
C9B 0.6007 (3) 0.4055 (12) 0.7307 (2) 0.0558 (14)
C10B 0.6816 (3) 0.2864 (12) 0.74456 (18) 0.0488 (11)
C11B 0.7416 (3) 0.3983 (13) 0.7210 (2) 0.0677 (16)
H11B 0.7300 0.5398 0.6980 0.081*
C12B 0.8182 (3) 0.2997 (15) 0.7317 (2) 0.0657 (15)
H12B 0.8586 0.3755 0.7168 0.079*
C13B 0.8332 (3) 0.0859 (12) 0.76505 (18) 0.0497 (12)
C14B 0.7754 (3) −0.0248 (12) 0.78855 (18) 0.0545 (15)
H14B 0.7873 −0.1653 0.8118 0.065*
C15B 0.6984 (3) 0.0746 (13) 0.77740 (18) 0.0525 (13)
H15B 0.6584 −0.0031 0.7923 0.063*
Br1C 0.32100 (3) −0.72787 (16) 0.94037 (3) 0.0849 (3)
Cl1C 1.15846 (7) −0.2313 (4) 0.89129 (6) 0.0805 (5)
O1C 0.6700 (2) −0.3571 (9) 0.86746 (17) 0.0800 (14)
O2C 0.7989 (2) −0.6225 (9) 0.91351 (17) 0.0693 (12)
O3C 0.8057 (2) −0.2890 (10) 0.97126 (16) 0.0758 (12)
C1C 0.5592 (3) −0.7933 (11) 0.93756 (19) 0.0515 (13)
H1CA 0.5997 −0.9063 0.9520 0.062*
C2C 0.4832 (3) −0.8341 (12) 0.9467 (2) 0.0552 (14)
H2CA 0.4729 −0.9727 0.9678 0.066*
C3C 0.4234 (3) −0.6727 (13) 0.92500 (19) 0.0533 (13)
C4C 0.4372 (3) −0.4662 (16) 0.89371 (19) 0.0611 (14)
H4CA 0.3958 −0.3569 0.8788 0.073*
C5C 0.5134 (3) −0.4232 (13) 0.88469 (18) 0.0549 (13)
H5CA 0.5231 −0.2843 0.8635 0.066*
C6C 0.5757 (3) −0.5854 (10) 0.90700 (18) 0.0450 (12)
C7C 0.6575 (3) −0.5282 (11) 0.8977 (2) 0.0519 (14)
C8C 0.7228 (3) −0.6899 (14) 0.9273 (2) 0.0642 (15)
H8CA 0.7264 −0.6749 0.9679 0.077*
H8CB 0.7108 −0.8643 0.9168 0.077*
C9C 0.8341 (3) −0.4191 (13) 0.93900 (19) 0.0511 (13)
C10C 0.9124 (3) −0.3701 (10) 0.92392 (18) 0.0482 (13)
C11C 0.9457 (3) −0.5376 (11) 0.89043 (19) 0.0517 (13)
H11C 0.9170 −0.6783 0.8748 0.062*
C12C 1.0218 (3) −0.4933 (14) 0.8805 (2) 0.0573 (14)
H12C 1.0445 −0.6050 0.8585 0.069*
C13C 1.0634 (3) −0.2850 (12) 0.9034 (2) 0.0514 (13)
C14C 1.0313 (3) −0.1212 (12) 0.9361 (2) 0.0566 (13)
H14C 1.0605 0.0188 0.9516 0.068*
C15C 0.9556 (3) −0.1613 (13) 0.9465 (2) 0.0542 (13)
H15C 0.9339 −0.0477 0.9687 0.065*
Atomic displacement parameters (Å
2)
U11 U22 U33 U12 U13 U23
Br1A 0.0459 (3) 0.1128 (7) 0.0917 (4) −0.0160 (4) 0.0140 (3) 0.0005 (4) Cl1A 0.0560 (7) 0.1171 (17) 0.1044 (11) −0.0214 (11) 0.0302 (8) 0.0042 (12)
O1A 0.065 (2) 0.102 (4) 0.087 (3) −0.003 (2) 0.019 (2) 0.047 (3)
O2A 0.0488 (19) 0.057 (3) 0.090 (2) −0.005 (2) 0.0276 (18) −0.009 (2)
O3A 0.065 (2) 0.082 (3) 0.082 (2) 0.003 (3) 0.0341 (19) −0.015 (3)
C1A 0.050 (2) 0.043 (3) 0.057 (3) 0.000 (3) 0.008 (2) 0.003 (3)
C2A 0.058 (3) 0.045 (3) 0.057 (3) −0.004 (3) 0.017 (2) 0.009 (2)
C3A 0.043 (2) 0.056 (4) 0.048 (2) −0.009 (3) 0.003 (2) −0.003 (3)
C4A 0.050 (2) 0.053 (3) 0.060 (3) 0.004 (4) 0.000 (2) 0.004 (3)
C5A 0.053 (3) 0.041 (3) 0.054 (2) 0.003 (3) 0.004 (2) 0.013 (3)
C6A 0.050 (3) 0.044 (3) 0.042 (2) −0.004 (2) 0.004 (2) 0.004 (2)
C7A 0.052 (3) 0.058 (4) 0.049 (2) −0.008 (3) 0.010 (2) 0.001 (3)
C8A 0.050 (3) 0.054 (4) 0.087 (3) 0.004 (3) 0.024 (3) 0.012 (3)
C9A 0.048 (3) 0.055 (4) 0.057 (3) 0.008 (3) 0.011 (2) 0.003 (3)
C10A 0.044 (2) 0.049 (3) 0.048 (2) −0.003 (2) 0.007 (2) 0.002 (2)
C11A 0.053 (3) 0.048 (3) 0.062 (3) −0.007 (3) 0.018 (2) −0.009 (3)
C12A 0.062 (3) 0.069 (4) 0.071 (3) 0.000 (4) 0.029 (2) −0.011 (4)
C13A 0.046 (3) 0.071 (4) 0.065 (3) 0.001 (3) 0.011 (2) 0.015 (3)
C14A 0.052 (3) 0.057 (4) 0.058 (3) −0.014 (3) 0.001 (2) 0.000 (3)
C15A 0.060 (3) 0.055 (4) 0.050 (3) 0.010 (3) 0.012 (2) −0.002 (3)
Br1B 0.0535 (3) 0.1015 (6) 0.0861 (4) 0.0141 (4) 0.0153 (3) −0.0053 (4) Cl1B 0.0359 (5) 0.0806 (12) 0.0704 (7) 0.0202 (6) 0.0067 (5) −0.0083 (7)
O1B 0.072 (2) 0.070 (3) 0.091 (2) 0.030 (3) 0.0089 (19) 0.019 (3)
O2B 0.0516 (18) 0.073 (3) 0.0619 (19) 0.024 (2) 0.0083 (15) 0.008 (2)
O3B 0.073 (2) 0.072 (3) 0.085 (2) 0.028 (3) 0.0124 (19) 0.023 (3)
C1B 0.073 (3) 0.045 (3) 0.062 (3) 0.013 (3) 0.018 (3) 0.016 (3)
C2B 0.076 (4) 0.064 (4) 0.064 (3) −0.008 (3) 0.026 (3) 0.016 (3)
C3B 0.044 (2) 0.068 (4) 0.046 (2) 0.003 (2) 0.0098 (19) −0.006 (3)
C4B 0.053 (3) 0.049 (4) 0.062 (3) 0.012 (3) 0.009 (2) 0.015 (3)
C5B 0.044 (2) 0.058 (4) 0.062 (3) 0.007 (3) 0.008 (2) 0.015 (3)
C6B 0.055 (3) 0.050 (3) 0.040 (2) 0.012 (3) 0.0021 (19) −0.002 (2)
C7B 0.068 (3) 0.051 (4) 0.048 (3) 0.029 (3) −0.005 (2) −0.001 (2)
C8B 0.057 (3) 0.079 (4) 0.045 (2) 0.030 (3) 0.007 (2) 0.006 (2)
C9B 0.062 (3) 0.061 (4) 0.046 (2) 0.014 (3) 0.015 (2) 0.000 (3)
C10B 0.055 (2) 0.047 (3) 0.044 (2) 0.011 (3) 0.009 (2) 0.007 (2)
C11B 0.077 (3) 0.065 (4) 0.065 (3) 0.014 (3) 0.021 (3) 0.016 (3)
C12B 0.057 (3) 0.074 (4) 0.073 (3) 0.005 (3) 0.030 (2) 0.006 (3)
C13B 0.050 (2) 0.046 (3) 0.053 (2) 0.012 (3) 0.010 (2) 0.001 (3)
C14B 0.050 (3) 0.059 (4) 0.054 (2) 0.012 (3) 0.008 (2) 0.014 (3)
C15B 0.053 (3) 0.054 (4) 0.053 (2) 0.003 (3) 0.017 (2) 0.005 (3)
Br1C 0.0474 (3) 0.1115 (7) 0.0968 (4) −0.0085 (4) 0.0169 (3) −0.0075 (4) Cl1C 0.0425 (6) 0.1100 (15) 0.0921 (9) −0.0088 (9) 0.0205 (6) 0.0061 (10)
O1C 0.066 (2) 0.087 (4) 0.090 (3) −0.011 (2) 0.022 (2) 0.036 (3)
O2C 0.055 (2) 0.064 (3) 0.096 (3) −0.001 (2) 0.034 (2) −0.004 (3)
O3C 0.065 (2) 0.086 (3) 0.082 (2) −0.006 (2) 0.0283 (19) −0.024 (3)
C1C 0.054 (3) 0.044 (3) 0.059 (3) 0.006 (3) 0.017 (2) 0.010 (3)
C2C 0.052 (3) 0.053 (4) 0.060 (3) −0.007 (3) 0.012 (2) 0.007 (3)
C3C 0.047 (2) 0.057 (4) 0.057 (3) −0.005 (3) 0.012 (2) −0.010 (3)
C4C 0.052 (3) 0.064 (4) 0.062 (3) 0.009 (4) −0.002 (2) −0.001 (4)
C5C 0.064 (3) 0.048 (4) 0.051 (2) −0.008 (3) 0.006 (2) −0.002 (3)
C6C 0.052 (3) 0.038 (3) 0.046 (2) −0.002 (2) 0.013 (2) −0.005 (2)
C7C 0.057 (3) 0.046 (4) 0.056 (3) −0.008 (3) 0.018 (2) 0.004 (3)
C8C 0.052 (3) 0.056 (4) 0.089 (4) −0.012 (3) 0.024 (3) −0.003 (3)
C9C 0.051 (3) 0.050 (4) 0.052 (2) 0.002 (3) 0.011 (2) 0.001 (3)
C10C 0.049 (3) 0.048 (4) 0.047 (2) 0.012 (2) 0.007 (2) 0.005 (2)
C11C 0.052 (3) 0.048 (4) 0.057 (2) 0.004 (3) 0.016 (2) 0.004 (2)
C12C 0.055 (3) 0.059 (4) 0.063 (3) 0.006 (3) 0.022 (2) 0.005 (3)
C13C 0.041 (2) 0.058 (4) 0.056 (3) 0.002 (3) 0.012 (2) 0.009 (3)
C14C 0.057 (3) 0.049 (3) 0.061 (3) −0.004 (3) 0.004 (2) 0.001 (3)
C15C 0.057 (3) 0.049 (4) 0.057 (3) 0.000 (3) 0.012 (2) −0.001 (3)
Geometric parameters (Å, °)
Br1A—C3A 1.884 (4) C6B—C7B 1.488 (7)
Cl1A—C13A 1.735 (5) C7B—C8B 1.493 (9)
O1A—C7A 1.210 (7) C8B—H8BA 0.9700
O2A—C9A 1.351 (7) C8B—H8BB 0.9700
O2A—C8A 1.428 (6) C9B—C10B 1.497 (7)
O3A—C9A 1.187 (6) C10B—C15B 1.370 (8)
C1A—C6A 1.401 (7) C10B—C11B 1.401 (7)
C1A—C2A 1.409 (6) C11B—C12B 1.386 (8)
C1A—H1AA 0.9300 C11B—H11B 0.9300
C2A—C3A 1.376 (7) C12B—C13B 1.384 (9)
C2A—H2AA 0.9300 C12B—H12B 0.9300
C3A—C4A 1.396 (9) C13B—C14B 1.365 (6)
C4A—C5A 1.366 (6) C14B—C15B 1.395 (6)
C4A—H4AA 0.9300 C14B—H14B 0.9300
C5A—C6A 1.392 (7) C15B—H15B 0.9300
C5A—H5AA 0.9300 Br1C—C3C 1.884 (4)
C6A—C7A 1.481 (6) Cl1C—C13C 1.732 (5)
C7A—C8A 1.493 (7) O1C—C7C 1.208 (6)
C8A—H8AA 0.9700 O2C—C9C 1.325 (8)
C8A—H8AB 0.9700 O2C—C8C 1.451 (5)
C9A—C10A 1.495 (6) O3C—C9C 1.210 (6)
C10A—C15A 1.377 (8) C1C—C2C 1.378 (6)
C10A—C11A 1.379 (7) C1C—C6C 1.386 (7)
C11A—C12A 1.375 (6) C1C—H1CA 0.9300
C11A—H11A 0.9300 C2C—C3C 1.356 (8)
C12A—C13A 1.375 (10) C2C—H2CA 0.9300
C12A—H12A 0.9300 C3C—C4C 1.376 (10)
C13A—C14A 1.405 (8) C4C—C5C 1.382 (6)
C14A—C15A 1.379 (7) C4C—H4CA 0.9300
C14A—H14A 0.9300 C5C—C6C 1.392 (7)
C15A—H15A 0.9300 C5C—H5CA 0.9300
Br1B—C3B 1.873 (5) C6C—C7C 1.491 (6)
Cl1B—C13B 1.735 (5) C7C—C8C 1.474 (8)
O1B—C7B 1.227 (8) C8C—H8CA 0.9700
O2B—C9B 1.324 (7) C8C—H8CB 0.9700
O2B—C8B 1.431 (5) C9C—C10C 1.477 (6)
O3B—C9B 1.183 (7) C10C—C15C 1.382 (8)
C1B—C2B 1.351 (7) C10C—C11C 1.395 (7)
C1B—C6B 1.387 (7) C11C—C12C 1.390 (6)
C1B—H1BA 0.9300 C11C—H11C 0.9300
C2B—C3B 1.364 (9) C12C—C13C 1.368 (9)
C2B—H2BA 0.9300 C12C—H12C 0.9300
C3B—C4B 1.385 (7) C13C—C14C 1.358 (7)
C4B—C5B 1.379 (6) C14C—C15C 1.383 (7)
C4B—H4BA 0.9300 C14C—H14C 0.9300
C5B—C6B 1.387 (8) C15C—H15C 0.9300
C5B—H5BA 0.9300
C9A—O2A—C8A 115.7 (5) O2B—C8B—H8BB 109.5
C6A—C1A—C2A 119.9 (5) C7B—C8B—H8BB 109.5
C6A—C1A—H1AA 120.1 H8BA—C8B—H8BB 108.1
C2A—C1A—H1AA 120.1 O3B—C9B—O2B 124.5 (5)
C3A—C2A—C1A 118.9 (5) O3B—C9B—C10B 124.2 (5)
C3A—C2A—H2AA 120.6 O2B—C9B—C10B 111.2 (5)
C1A—C2A—H2AA 120.6 C15B—C10B—C11B 119.6 (5)
C2A—C3A—C4A 121.8 (4) C15B—C10B—C9B 123.6 (5)
C2A—C3A—Br1A 117.9 (4) C11B—C10B—C9B 116.8 (5)
C4A—C3A—Br1A 120.4 (4) C12B—C11B—C10B 120.5 (6)
C5A—C4A—C3A 118.6 (5) C12B—C11B—H11B 119.8
C5A—C4A—H4AA 120.7 C10B—C11B—H11B 119.8
C3A—C4A—H4AA 120.7 C13B—C12B—C11B 118.4 (5)
C4A—C5A—C6A 122.0 (5) C13B—C12B—H12B 120.8
C4A—C5A—H5AA 119.0 C11B—C12B—H12B 120.8
C6A—C5A—H5AA 119.0 C14B—C13B—C12B 121.8 (5)
C5A—C6A—C1A 118.8 (4) C14B—C13B—Cl1B 121.6 (4)
C5A—C6A—C7A 120.0 (5) C12B—C13B—Cl1B 116.6 (4)
C1A—C6A—C7A 121.2 (5) C13B—C14B—C15B 119.5 (5)
O1A—C7A—C6A 121.4 (5) C13B—C14B—H14B 120.3
O1A—C7A—C8A 120.0 (4) C15B—C14B—H14B 120.3
C6A—C7A—C8A 118.6 (5) C10B—C15B—C14B 120.2 (5)
O2A—C8A—C7A 112.8 (5) C10B—C15B—H15B 119.9
O2A—C8A—H8AA 109.0 C14B—C15B—H15B 119.9
C7A—C8A—H8AA 109.0 C9C—O2C—C8C 116.2 (4)
O2A—C8A—H8AB 109.0 C2C—C1C—C6C 120.6 (5)
C7A—C8A—H8AB 109.0 C2C—C1C—H1CA 119.7
H8AA—C8A—H8AB 107.8 C6C—C1C—H1CA 119.7
O3A—C9A—O2A 124.0 (5) C3C—C2C—C1C 120.2 (5)
O3A—C9A—C10A 125.1 (5) C3C—C2C—H2CA 119.9
O2A—C9A—C10A 110.8 (5) C1C—C2C—H2CA 119.9
C15A—C10A—C11A 119.6 (4) C2C—C3C—C4C 121.0 (4)
C15A—C10A—C9A 117.7 (5) C2C—C3C—Br1C 119.1 (4)
C11A—C10A—C9A 122.6 (5) C4C—C3C—Br1C 119.9 (4)
C12A—C11A—C10A 121.2 (6) C3C—C4C—C5C 119.1 (6)
C12A—C11A—H11A 119.4 C3C—C4C—H4CA 120.4
C10A—C11A—H11A 119.4 C5C—C4C—H4CA 120.4
C11A—C12A—C13A 118.7 (6) C4C—C5C—C6C 120.8 (6)
C11A—C12A—H12A 120.7 C4C—C5C—H5CA 119.6
C13A—C12A—H12A 120.7 C6C—C5C—H5CA 119.6
C12A—C13A—C14A 121.4 (4) C1C—C6C—C5C 118.4 (4)
C12A—C13A—Cl1A 120.1 (5) C1C—C6C—C7C 122.6 (5)
C14A—C13A—Cl1A 118.4 (5) C5C—C6C—C7C 119.0 (5)
C15A—C14A—C13A 118.1 (5) O1C—C7C—C8C 121.3 (5)
C15A—C14A—H14A 120.9 O1C—C7C—C6C 121.8 (5)
C13A—C14A—H14A 120.9 C8C—C7C—C6C 116.9 (4)
C10A—C15A—C14A 120.9 (5) O2C—C8C—C7C 112.0 (5)
C10A—C15A—H15A 119.6 O2C—C8C—H8CA 109.2
C14A—C15A—H15A 119.6 C7C—C8C—H8CA 109.2
C9B—O2B—C8B 114.3 (5) O2C—C8C—H8CB 109.2
C2B—C1B—C6B 121.4 (5) C7C—C8C—H8CB 109.2
C2B—C1B—H1BA 119.3 H8CA—C8C—H8CB 107.9
C6B—C1B—H1BA 119.3 O3C—C9C—O2C 123.9 (5)
C1B—C2B—C3B 120.2 (5) O3C—C9C—C10C 123.8 (6)
C1B—C2B—H2BA 119.9 O2C—C9C—C10C 112.3 (5)
C3B—C2B—H2BA 119.9 C15C—C10C—C11C 119.3 (4)
C2B—C3B—C4B 120.2 (5) C15C—C10C—C9C 119.0 (5)
C2B—C3B—Br1B 120.8 (4) C11C—C10C—C9C 121.6 (5)
C4B—C3B—Br1B 119.0 (4) C12C—C11C—C10C 119.7 (5)
C5B—C4B—C3B 119.5 (6) C12C—C11C—H11C 120.2
C5B—C4B—H4BA 120.2 C10C—C11C—H11C 120.2
C3B—C4B—H4BA 120.2 C13C—C12C—C11C 119.8 (5)
C4B—C5B—C6B 120.2 (5) C13C—C12C—H12C 120.1
C4B—C5B—H5BA 119.9 C11C—C12C—H12C 120.1
C6B—C5B—H5BA 119.9 C14C—C13C—C12C 120.8 (5)
C1B—C6B—C5B 118.4 (4) C14C—C13C—Cl1C 119.5 (5)
C1B—C6B—C7B 121.2 (5) C12C—C13C—Cl1C 119.7 (4)
C5B—C6B—C7B 120.4 (5) C13C—C14C—C15C 120.4 (5)
O1B—C7B—C6B 121.1 (6) C13C—C14C—H14C 119.8
O1B—C7B—C8B 121.6 (5) C15C—C14C—H14C 119.8
C6B—C7B—C8B 117.2 (5) C10C—C15C—C14C 120.0 (5)
O2B—C8B—C7B 110.8 (5) C10C—C15C—H15C 120.0
O2B—C8B—H8BA 109.5 C14C—C15C—H15C 120.0
C7B—C8B—H8BA 109.5
C6A—C1A—C2A—C3A 2.5 (7) C8B—O2B—C9B—O3B 0.8 (8)
C1A—C2A—C3A—C4A −3.3 (8) C8B—O2B—C9B—C10B −179.0 (4)
C1A—C2A—C3A—Br1A 175.9 (4) O3B—C9B—C10B—C15B −178.7 (6)
C2A—C3A—C4A—C5A 1.8 (8) O2B—C9B—C10B—C15B 1.2 (7)
Br1A—C3A—C4A—C5A −177.3 (4) O3B—C9B—C10B—C11B −0.2 (8)
C3A—C4A—C5A—C6A 0.5 (8) O2B—C9B—C10B—C11B 179.6 (5)
C4A—C5A—C6A—C1A −1.3 (8) C15B—C10B—C11B—C12B −1.5 (9)
C4A—C5A—C6A—C7A 177.7 (5) C9B—C10B—C11B—C12B −180.0 (5)
C2A—C1A—C6A—C5A −0.2 (7) C10B—C11B—C12B—C13B 1.4 (9)
C2A—C1A—C6A—C7A −179.2 (5) C11B—C12B—C13B—C14B −1.7 (9)
C5A—C6A—C7A—O1A 5.4 (8) C11B—C12B—C13B—Cl1B 179.0 (5)
C1A—C6A—C7A—O1A −175.7 (5) C12B—C13B—C14B—C15B 2.0 (8)
C5A—C6A—C7A—C8A −174.0 (5) Cl1B—C13B—C14B—C15B −178.7 (4)
C1A—C6A—C7A—C8A 4.9 (7) C11B—C10B—C15B—C14B 1.8 (8)
C9A—O2A—C8A—C7A −76.3 (6) C9B—C10B—C15B—C14B −179.8 (5)
O1A—C7A—C8A—O2A 3.6 (8) C13B—C14B—C15B—C10B −2.0 (8)
C6A—C7A—C8A—O2A −177.0 (5) C6C—C1C—C2C—C3C 1.0 (8)
C8A—O2A—C9A—O3A −1.7 (7) C1C—C2C—C3C—C4C −0.1 (8)
C8A—O2A—C9A—C10A −178.6 (4) C1C—C2C—C3C—Br1C −178.0 (4)
O3A—C9A—C10A—C15A 1.5 (8) C2C—C3C—C4C—C5C −0.3 (8)
O2A—C9A—C10A—C15A 178.3 (5) Br1C—C3C—C4C—C5C 177.5 (4)
O3A—C9A—C10A—C11A −176.0 (5) C3C—C4C—C5C—C6C −0.2 (8)
O2A—C9A—C10A—C11A 0.8 (7) C2C—C1C—C6C—C5C −1.6 (7)
C15A—C10A—C11A—C12A −1.2 (8) C2C—C1C—C6C—C7C 177.8 (5)
C9A—C10A—C11A—C12A 176.3 (5) C4C—C5C—C6C—C1C 1.2 (7)
C10A—C11A—C12A—C13A 0.5 (9) C4C—C5C—C6C—C7C −178.3 (5)
C11A—C12A—C13A—C14A 0.2 (9) C1C—C6C—C7C—O1C 174.4 (5)
C11A—C12A—C13A—Cl1A −179.3 (5) C5C—C6C—C7C—O1C −6.2 (7)
C12A—C13A—C14A—C15A −0.2 (8) C1C—C6C—C7C—C8C −5.8 (7)
Cl1A—C13A—C14A—C15A 179.3 (4) C5C—C6C—C7C—C8C 173.6 (5)
C11A—C10A—C15A—C14A 1.2 (8) C9C—O2C—C8C—C7C 77.1 (6)
C9A—C10A—C15A—C14A −176.4 (5) O1C—C7C—C8C—O2C −2.3 (8)
C13A—C14A—C15A—C10A −0.5 (8) C6C—C7C—C8C—O2C 178.0 (4)
C6B—C1B—C2B—C3B 2.3 (9) C8C—O2C—C9C—O3C −1.4 (8)
C1B—C2B—C3B—C4B −1.9 (9) C8C—O2C—C9C—C10C 178.1 (4)
C1B—C2B—C3B—Br1B 179.8 (5) O3C—C9C—C10C—C15C −1.6 (8)
C2B—C3B—C4B—C5B 0.7 (8) O2C—C9C—C10C—C15C 178.9 (5)
Br1B—C3B—C4B—C5B 179.1 (4) O3C—C9C—C10C—C11C 174.3 (5)
C3B—C4B—C5B—C6B 0.1 (8) O2C—C9C—C10C—C11C −5.2 (7)
C2B—C1B—C6B—C5B −1.5 (8) C15C—C10C—C11C—C12C 0.4 (7)
C2B—C1B—C6B—C7B 178.7 (5) C9C—C10C—C11C—C12C −175.5 (5)
C4B—C5B—C6B—C1B 0.3 (8) C10C—C11C—C12C—C13C −0.5 (8)
C4B—C5B—C6B—C7B −179.9 (5) C11C—C12C—C13C—C14C 0.5 (8)
C1B—C6B—C7B—O1B 4.9 (8) C11C—C12C—C13C—Cl1C 179.6 (4)
C5B—C6B—C7B—O1B −174.8 (5) C12C—C13C—C14C—C15C −0.6 (8)
C1B—C6B—C7B—C8B −172.6 (5) Cl1C—C13C—C14C—C15C −179.7 (4)
C5B—C6B—C7B—C8B 7.7 (7) C11C—C10C—C15C—C14C −0.4 (7)
C9B—O2B—C8B—C7B 171.7 (4) C9C—C10C—C15C—C14C 175.6 (5)
O1B—C7B—C8B—O2B 1.1 (7) C13C—C14C—C15C—C10C 0.5 (8)
C6B—C7B—C8B—O2B 178.6 (4)
Hydrogen-bond geometry (Å, °)
D—H···A D—H H···A D···A D—H···A
C5A—H5AA···O3B 0.93 2.59 3.227 (7) 126
C5B—H5BA···O1A 0.93 2.48 3.217 (7) 136
C15B—H15B···O1C 0.93 2.59 3.254 (7) 129
Fig. 1
Fig. 2