This Question Paper consists of 36 questions including 5 figures and 12 printed pages + Graph sheet.
§â ÂýàÙ-Âæ ×ð´
36ÂýàÙ ÌÍæ
5ç¿æ °ß´
12×éçÎýÌ ÂëcÆU + »ýæÈ¤ àæèÅU ãñ´Ð
Roll No.
¥Ùé·ý¤×æ´·¤
Code No.·¤æðÇU Ù´. 51/AS/3
MATHEMATICS
(»çæÌ)
(211)
Day and Date of Examination
ÂÚUèÿææ ·¤æ çÎÙ ß çÎÙæ´·¤
Signature of Invigilators 1.
çÙÚUèÿæ·¤æð´ ·ð¤ ãSÌæÿæÚU
2.
General Instructions :
1. Candidate must write his/her Roll Number on the first page of the Question Paper.
2. Please check the Question Paper to verify that the total pages and total number of questions contained in the Question Paper are the same as those printed on the top of the first page.
Also check to see that the questions are in sequential order.
3. For the objective type of questions, you have to choose any one of the four alternatives given in the question i.e. (A), (B), (C) or (D) and indicate your correct answer in the Answer-Book given to you.
4. All the questions including objective type questions are to be answered within the allotted time and no separate time limit is fixed for answering objective type questions.
5. Making any identification mark in the Answer-Book or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
6. Write your Question Paper code No.
51/AS/3-A
on the Answer-Book.7. (a) The Question Paper is in English/Hindi medium only. However, if you wish, you can answer in any one of the languages listed below :
English, Hindi, Urdu, Punjabi, Bengali, Tamil, Malayalam, Kannada, Telugu, Marathi, Oriya, Gujarati, Konkani, Manipuri, Assamese, Nepali, Kashmiri, Sanskrit and Sindhi.
You are required to indicate the language you have chosen to answer in the box provided in the Answer-Book.
(b) If you choose to write the answer in the language other than Hindi and English, the responsibility for any errors/mistakes in understanding the question will be yours only.
Set A
âæ×æØ ¥ÙéÎðàæ Ñ
1.
ÂÚUèÿææÍèü ÂýàÙÂæ ·ð¤ ¤ÂãÜð ÂëcÆU ÂÚU ¥ÂÙæ ¥Ùé·ý¤×æ´·¤ ¥ßàØU çܹð´Ð
2
. ·ë¤ÂØæ ÂýàÙÂæ ·¤æð Áæò¡¿ Üð´ ç·¤ ÂýàÙÂæ ·ð¤ ·é¤Ü ÂëcÆUæð´ ÌÍæ ÂýàÙæð´ ·¤è ©ÌÙè ãè â´UØæ ãñ çÁÌÙè ÂýÍ× ÂëcÆ ·ð ¤âÕâ𠪤ÂÚU ÀUÂè ãñÐ §â ÕæÌ ·¤è Áæò¡¿ Öè ·¤ÚU Üð´ ç·¤ ÂýàÙ ·ý ç×·¤ UM¤Â ×ð´ ãñ´Ð
3.
ßSÌéçÙcÆU ÂýàÙæð´ ×ð´ ¥æÂ·¤æð ¿æÚU çß·¤ËÂæð´
(A), (B), (C)ÌÍæ
(D)×ð´ âð ·¤æð§ü °·¤ ©æÚ ¿éÙÙæ ãñ ÌÍæ Îè »§ü
©æÚU-ÂéçSUÌ·¤æ ×ð´ ¥æÂ âãè ©æÚ çÜç¹°ÐU
4.
ßSÌéçÙcÆU ÂýàÙæð´ ·ð¤ âæÍ-âæÍ âÖè ÂýàÙæð´ ·ð¤ ©æÚ çÙÏæüçÚUÌ ¥ßçÏ ·ð ÖèÌÚU ãè ÎðÙð ãñ´Ð ßSÌéçÙcÆU ÂýàÙæð´ ·ð¤ çܰ¤¥Ü»
âð âר Ùãè´ çÎØæ Áæ°»æÐ
5.
¤ ©æÚU-ÂéçSUÌ·¤æ ×ð´ Âã¿æÙ-ç¿q ÕÙæÙð ¥Íßæ çÙçÎücÅU SÍæÙæð´ ·ð¤¤ ¥çÌçÚUÌ ·¤ãè´ Öè ¥Ùé·ý¤×æ´·¤ çܹÙð ÂÚU ÂÚUèÿææÍèü
·¤æð ¥ØæðØ ÆUãÚUæØæ ÁæØð»æÐ
6.
¥ÂÙè ©æÚU-ÂéçSUÌ·¤æ ÂÚU ÂýàÙÂæ ·¤è ·¤æðÇU â´Øæ 51/AS/3-A çܹð´Ð
7.
(·¤) ÂýàÙÂæ ·ð¤ßÜ çã´Îè
/¥´»ýðÁè ×ð´ ãñÐ çȤÚU Öè, ØçÎ ¥æÂ ¿æãð´ Ìæð Ùè¿ð Îè »§ü ç·¤âè °·¤ Öæáæ ×ð´ ©æÚ Îð â·¤Ìð ãñ´ Ñ
¥´»ýðÁè, çã´Îè, ©Îêü, ´ÁæÕè, Õ¡»Üæ, Ìç×Ü, ×ÜØæÜ×, ·¤ÙǸ, ÌðÜé»é, ×ÚUæÆUè, ©çÇ¸Øæ, »éÁÚUæÌè, ·¤æð´·¤æè,
×çæÂéÚUè, ¥âçרæ, ÙðÂæÜè, ·¤à×èÚUè, â´S·ë¤Ì¤¥æñÚU çâ´ÏèÐ
·ë¤ÂØæ ©æÚU-ÂéçSÌ·¤æ ×ð´ çΰ »° Õæòâ ×ð´ çܹð´ ç·¤ ¥æÂ ç·¤â Öæáæ ×ð´ ©æÚU çܹ ÚUãð ãñ´Ð ¤
(¹) ØçÎ ¥æÂ çã´Îè °ß´ ¥´»ýðÁè ·ð¤ ¥çÌçÚUÌ ç·¤âè ¥Ø Öæáæ ×ð´ ©æÚU çܹÌð ãñ´ Ìæð ÂýàÙ ·¤æð â×ÛæÙð ×ð´ ãæðÙð ßæÜè
æéçÅUØæð´
/»ÜçÌØæð´ ·¤è çÁ×ðUÎæÚè ·ð ßÜ ¥æÂ·¤è ãæð»èÐ
MATHEMATICS
(»çæÌ)
(211)
Time : 2½ Hours ] [ Maximum Marks : 85
âר Ñ
2½æÅðU ] [ ÂêææZ·¤ Ñ
85Note : (1) Question Numbers (1-10) are Multiple Choice Questions. Each question carries one mark. For each question, four alternative choices A, B, C and D are provided, of which only one is correct. You have to select the correct alternative and indicate it in the answer-book provided to you by writing (A), (B), (C) or (D) as the case may be. Q. No. 11 to 15 also carry one mark each.
(2) Question Numbers (16-25) carry 2 marks each.
(3) Question Numbers (26-33) carry 4 marks each.
(4) Question Numbers (34-36) carry 6 marks each.
(5) All questions are compulsory.
çÙÎðüàæ Ñ
(1)ÂýàÙ â´Øæ
(1-10)Ì·¤ Õãéçß·¤ËÂè ÂýàÙ
(Multiple Choice Questions)ãñ´Ð ÂýØð·¤ ÂýàÙ °·¤
¥´·¤ ·¤æ ãñÐ ÂýØð·¤ ÂýàÙ ×ð´ ¿æÚU çß·¤ËÂ
A, B, CÌÍæ
DçÎØð »Øð ãñ´, çÁÙ×ð´ âð ·ð¤ßÜ °·¤ âãè ãñÐ
¥æÂ·¤æð âãè çß·¤Ë ¿éÙÙæ ãñ ÌÍæ ÂýØð·¤ ÂýàÙ ·ð¤ ©æÚU ¥ÂÙè ©æÚU ÂéçSÌ·¤æ ×ð´
(A), (B), (C)¥Íßæ
(D)Áñâè Öè çSÍçÌ ãæð, çܹ·¤ÚU ÎàææüÙæ ãñÐ ÂýàÙ â´Øæ
11âð
15Öè °·¤ ¥´·¤ ·¤æ ãñÐ
(2)
ÂýàÙ â´Øæ
(16-25)Ì·¤ ÂýØð·¤ ÂýàÙ ·ð¤
2¥´·¤ ãñ´Ð
(3)
ÂýàÙ â´Øæ
(26-33)Ì·¤ ÂýØð·¤ ÂýàÙ ·ð¤
4¥´·¤ ãñ´Ð
(4)
ÂýàÙ â´Øæ
(34-36)Ì·¤ ÂýØð·¤ ÂýàÙ ·ð¤
6¥´·¤ ãñ´Ð
(5)
âÖè ÂýàÙ ¥çÙßæØü ãñ´Ð
1. 60% of the students in a school are girls. If the number of boys in the school is 320, the total number of students in the school is :
ç·¤âè çßlæÜØ ×ð´
60%çßlæÍèü ÜÇ¸ç·¤Øæ¡ ãñ´Ð ØçÎ çßlæÜØ ×ð´ ÜǸ·¤æð´ ·¤è â´Øæ
320ãæð, Ìæð çßlæÜØ ×ð´
·é¤Ü çßlæçÍüØæð´ ·¤è â´Øæ ãæð»è Ñ
(A) 400 (B) 450 (C) 600 (D) 800
2. An article is sold for ` 2,000 cash or for ` 600 as cash down payment followed by
` 1680 after one year. The rate of interest charged under instalment plan is :
ç·¤âè ßSÌé ·¤æð
` 2,000·ð¤ Ù·¤Î Öé»ÌæÙ ÂÚU ¥Íßæ
` 600·ð¤ ÌéÚ´UÌ Öé»ÌæÙ ÌÍæ ©â·ð¤ °·¤ ßáü Âà¿æÌ÷
` 1680
·ð¤ Öé»ÌæÙ ÂÚU Õð¿æ ÁæÌæ ãñÐ ç·¤SÌ ØæðÁÙæ ·ð¤ ¥Ì»üÌ Ü»æ° ÁæÙð ßæÜð ØæÁ ·¤è ÎÚU ãñ Ñ
(A) 16% (B) 20% (C) 28% (D) 40%
3. In the figure, given here, ÐACD1ÐCBF1ÐBAE is equal to :
Øãæ¡ Îè »Øè ¥æ·ë¤çÌ ×ð´
ÐACD1ÐCBF1ÐBAEÕÚUæÕÚU ãñ Ñ
(A) 1808 (B) 3608 (C) 4508 (D) 5408
4. The length of the arc of a sector of a circle of radius r and central angle u is equal to :
çæØæ
rÌÍæ ·ð¤ÎýèØ ·¤æðæ
ußæÜð ç·¤âè ßëæ ·ð¤ °·¤ çæØ ¹´ÇU ·ð¤ ¿æÂ ·¤è ÜÕæ§ü ãæðÌè ãñ Ñ
(A) 2r 1 720
1 pu
8 (B) 2r 1
360
1 pu 8
(C) r
360 p u
8 (D) r
180 p u
8 5. sin2 6081cos2 458 is equal to :
sin2 6081cos2 458
ÕÚUæÕÚU ãñ Ñ
(A) 3 2
2
1 (B) 5
4 (C) 3
4 (D) 1
4
1
1 1
1
1
6. 9.09 in the form p
q is equal to :
9.09, p
q
·ð¤ L¤Â ×ð´ ÕÚUæÕÚU ãñ Ñ
(A) 1
1 (B) 101
11 (C) 100
11 (D) 10
1
7. If a 5 2 65 1 , then a 1
2 a is equal to :
ØçÎ
a 5 2 65 1ãæð, Ìæð
a 2 a1ÕÚUæÕÚU ãæð»æ Ñ
(A) 4 6 (B) 24 6 (C) 10 (D) 210
8. A triangle ABC is necessarily congruent to another triangle PQR if :
·¤æð§ü çæÖéÁ
ABC°·¤ ¥Ø çæÖéÁ
PQR·ð¤ ¥ßàØ×ðß âßæZ»â× ãæð»è ØçÎ Ñ
(A) ÐA5ÐP, ÐB5ÐQ, ÐC5ÐR (B) ÐA5ÐP, ÐB5ÐQ, AB5QR
(C) AB5PQ, BC5QR, ÐC5ÐQ (D) ÐB5ÐQ, ÐC5ÐR, BC5QR
9. In the plane of a triangle, the point equidistant from the vertices of the triangle is its : (A) centroid (B) incentre (C) circumcentre (D) orthocentre
ç·¤âè çæÖéÁ ·ð¤ â×ÌÜ ×ð´ çæÖéÁ ·ð¤ àæèáü çÕÎ饿ð´ âð â×æÙ ÎêÚUè ÂÚU çSÍÌ çÕÎé ©â çæÖéÁ ·¤æ ãæðÌæ ãñ Ñ
(A)
·ð¤Îý·¤
(B)¥ÌÑ·ð¤Îý
(C)ÂçÚU·ð¤Îý
(D)ËæÕ ·ð¤Îý
1 1
1
1
10. Which of the following is not true ?
(A) A trapezium is also a parallelogram.
(B) A rhombus is also a parallelogram.
(C) A rectangle is also a parallelogram.
(D) A square is also a parallelogram.
çæÙçÜç¹Ì ×ð´ âð ·¤æñÙ âæ ·¤ÍÙ âØ Ùãè´ ãñ?
(A)
°·¤ â×Ü´Õ °·¤ â׿ÌÚU ¿ÌéÖéüÁ Öè ãæðÌæ ãñÐ
(B)
°·¤ â׿ÌéÖéüÁ °·¤ â׿ÌÚU ¿ÌéÖéüÁ Öè ãæðÌæ ãñÐ
(C)
°·¤ ¥æØÌ °·¤ â׿ÌÚU ¿ÌéÖüéÁ Öè ãæðÌæ ãñÐ
(D)
°·¤ ß»ü °·¤ â׿ÌÚU ¿ÌéÖéüÁ Öè ãæðÌæ ãñÐ
11. In the figure, given here, O is the centre of the circle and OP^AB. If AB58 cm and OP53 cm, find the diameter of the circle.
Øãæ¡ Îè »Øè ¥æ·ë¤çÌ ×ð´
Oßëæ ·¤æ ·ð¤Îý ãñ ÌÍæ
OP^ABãñÐ ØçÎ
AB58âð.×è. ÌÍæ
OP53âð.×è. ãæð, Ìæð ßëæ ·¤æ ÃØæâ ææÌ ·¤èçÁ°Ð
12. Find the volume of a right circular cone whose area of the base is 36p cm2 and slant height is 10 cm.
©â ÜÕ ßëæèØ àæ´·é¤ ·¤æ ¥æØÌÙ ææÌ ·¤èçÁ° çÁâ·ð¤ ¥æÏæÚU ·¤æ ÿæðæÈ¤Ü
36pâð.×è
2. ãñ ÌÍæ çÁâ·¤è çÌUØü·÷¤
ª¡¤¿æ§ü
10âð.×è. ãñÐ
13. In a DABC, ÐB5908, AB55 cm and BC57 cm. Find the value of tan A2cot C.
ç·¤âè çæÖéÁ
ABC×ð´,
ÐB5908, AB55âð.×è. ÌÍæ
BC57âð.×è. ãñÐ
tan A2cot C·¤æ ×æÙ ææÌ
·¤èçÁ°Ð
1 1
1
1
14. A bag contains 15 red balls and some white balls. If the probability of drawing a white ball from the bag is 1
6, find the number of white balls in the bag.
ç·¤âè ÍñÜð ×ð´
15ÜæÜ ÌÍæ ·é¤ÀU âÈð¤Î »ð´Î ãñÐ ØçÎ ÍñÜð ×ð´ âð °·¤ âÈð¤Î »ð´Î çÙ·¤æÜð ÁæÙð ·¤è ÂýýæçØ·¤Ìæ
16ãæð, Ìæð ÍñÜð ×ð´ âÈð¤Î »ð´Îæð´ ·¤è â´Øæ ææÌ ·¤èçÁ°Ð
15. The mean of 8 observations was found to be 30. Later it was detected that one observation 64 was mistakenly read as 24. Find the correct mean.
8
Âýðÿæææð´ ·¤æ ׿Ø
30çÙ·¤æÜæ »ØæÐ ÕæÎ ×ð´ ÂÌæ ¿Üæ ç·¤ °·¤ Âýðÿææ
64·¤æð »ÜÌè âð
24Âɸ çÜØæ »Øæ ÍæÐ âãè ×æØ ææÌ ·¤èçÁ°Ð
16. Evaluate the polynomial 2x323x228x112 for x522 and state whether this value of x is a zero of the given polynomial or not.
x522
·ð¤ çܰ ÕãéÂÎ
2x323x228x112·¤æ ×æÙ ææÌ ·¤èçÁ° ÌÍæ ÕÌæ§° ç·¤
x·¤æ Øã ×æÙ çÎØð »°
ÕãéÂÎ ·¤æ °·¤ àæêØ·¤ ãñ ¥Íßæ Ùãè´Ð
17. Find the distance between the points (26, 21) and (26, 11).
çÕÎ饿ð´
(26, 21)ÌÍæ
(26, 11)·ð¤ Õè¿ ·¤è ÎêÚUè ææÌ ·¤èçÁ°Ð
18. Find the coordinates of the point which divides the line-segment joining the points (21, 4) and (0, 23) in the ratio 1 : 4 internally.
©â çÕÎé ·ð¤ çÙÎðüàææ´·¤ ææÌ ·¤èçÁ° Áæð çÕÎ饿ð´
(21, 4)ÌÍæ
(0, 23)·¤æð ç×ÜæÙð ßæÜð ÚðU¹æ-¹´ÇU ·¤æð
1 : 4·ð¤ ¥æÌçÚU·¤ ¥ÙéÂæÌ ×ð´ çßÖÌ ·¤ÚUÌæ ãñÐ
19. An integer is chosen between 0 and 20. Find the probability that the chosen integer is a prime number.
0
ÌÍæ
20·ð¤ Õè¿ °·¤ ÂêææZ·¤ ·¤æ ¿ØÙ ç·¤Øæ ÁæÌæ ãñÐ ¿éÙð »° ÂêææZ·¤ ·¤æ °·¤ ¥ÖæØ â´Øæ ãæðÙð ·¤è ÂýæçØ·¤Ìæ ææÌ ·¤èçÁ°Ð
1
1
2
2
2
2
20. The perimeter of a rectangular plot of land is 32 m. If the length is increased by 2 m and the breadth decreased by 1 m, the area of the plot remains the same. Find the length and breadth of the plot.
ç·¤âè ¥æØÌæ·¤æÚU Öê¹´ÇU ·¤æ ÂçÚU׿Â
32×è ãñÐ ØçÎ ÜÕæ§ü ×ð´
2×è ·¤è ßëçh ÌÍæ ¿æñǸæ§ü ×ð´
1×è ·¤è ·¤×è
·¤è Áæ°, Ìæð Öè Öê¹´ÇU ·¤æ ÿæðæÈ¤Ü ÂãÜð ·ð¤ â×æÙ ãè ÚUãÌæ ãñÐ Öê¹´ÇU ·¤è ÜÕæ§ü ÌÍæ ¿æñǸæ§ü ææÌ ·¤èçÁ°Ð
21. At what rate of interest per annum will simple interest be half of the principal in 5 years ?
ØæÁ ·¤è ç·¤â ßæçáü·¤ ÎÚU âð
5ßáü ×ð´ âæÏæÚUæ ØæÁ ×êÜÏÙ ·ð¤ ¥æÏð ·ð¤ ÕÚUæÕÚU ãæð»æ?
22. Show that a cyclic parallelogram is a rectangle.
çι槰 ç·¤ °·¤ ¿·ý¤èØ â׿ÌÚU ¿ÌéÖüéÁ °·¤ ¥æØÌ ãæðÌæ ãñÐ
23. In the figure, given here, O is the centre of the circle and PQ and PR are the tangent - segments of the circle. Find ÐRPO.
Øãæ¡ Îè »Øè ¥æ·ë¤çÌ ×ð´
Oßëæ ·¤æ ·ð¤Îý ãñ ÌÍæ
PQÌÍæ
PRßëæ ·ð¤ SÂàæü-ÚðU¹æ¹´ÇU ãñ´Ð
ÐRPO·¤è ×æÂ ææÌ
·¤èçÁ°Ð
24. The volume of a solid hemisphere is 2
7183 cm3. Find its total surface area. [use 22 p 5 7 ]
ç·¤âè ÆUæðâ ¥hü-»æðÜð ·¤æ ¥æØÌÙ
71823âð.×è.
3ãñÐ §â·¤æ âÂêææü ÂëcÆèØ ÿæðæÈ¤Ü ææÌ ·¤èçÁ°Ð
[ 22
p 5 7
ÜèçÁ°Ð
]2
2
2
2
2
25. Standing on the top of a tower, 100 m high, Swati observes two cars parked on the opposite sides of the tower. If their angles of depression are 458 and 308, find the distance between the cars.
°·¤
100×è ª¡¤¿è ×èÙæÚU ·ð¤ çàæ¹ÚU ÂÚU ¹Ç¸è ãæð·¤ÚU SßæçÌ ×èÙæÚU ·¤è çßÂÚUèÌ çÎàææ¥æð´ ×ð´ ¹Ç¸è ·¤è »Øè Îæð ·¤æÚUæð´
·¤æ ¥ßÜæð·¤Ù ·¤ÚUÌè ãñÐ ØçÎ ©Ù·ð¤ ¥ßÙØÙ ·¤æðæ
458ÌÍæ
308ãñ´, Ìæð ·¤æÚUæð´ ·ð¤ Õè¿ ·¤è ÎêÚUè ææÌ ·¤èçÁ°Ð
26. At what rate percent per annum will a sum of ` 15,625 become ` 17,576 in 3 years on compound interest when the interest is compounded annually ?
ØçÎ ØæÁ ßæçáü·¤ L¤Â ×ð´ â´ØæðçÁÌ ãæð, Ìæð
` 15,625·¤è ÏÙÚUæçàæ ç·¤â ßæçáü·¤ ÎÚU ÂýçÌàæÌ âð ¿·ý¤ßëçh ØæÁ ÂÚU
3ßáZ ×ð´
` 17,576ãæð»è?
27. In the figure, given here, AD is the bisector of ÐBAC. If AB59 cm, AC512 cm and BC57 cm, find the measures of BD and DC.
Øãæ¡ Îè »Øè ¥æ·ë¤çÌ ×ð´,
AD·¤æðæ
ÐBAC·¤æ â×çmÖæÁ·¤ ãñÐ ØçÎ
AB59âð.×è.,
AC512âð.×è. ÌÍæ
BC57
âð.×è. ãæð´, Ìæð
BDÌÍæ
DC·¤è ×æÂ ææÌ ·¤èçÁ°Ð
28. Find the mean of the following data by step-deviation method :
Classes : 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 Frequencies : 2 3 5 7 5 3
ÂÎ çß¿ÜÙ çßçÏ âð çÙÙçÜç¹Ì ¥æ¡·¤Ç¸æð´ ·¤æ ×æØ ææÌ ·¤èçÁ° Ñ
ᯁ
: 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70ÕæÚ´UÕæÚUÌæ°¡
: 2 3 5 7 5 329. Find the values of m for which the equation 3x216x1m50 has two distinct real roots.
m
·ð¤ ©Ù ×æÙæð´ ·¤æð ææÌ ·¤èçÁ° çÁÙ·ð¤ çܰ â×è·¤ÚUæ
3x216x1m50·ð¤ Îæð çÖÙ ßæSÌçß·¤ ×êÜ ÂýæÌ ãæð´Ð
2
4
4
4
4
30. Find the circumradius of equilateral triangle of side 6 cm. 4 6
âð.×è. ÖéÁæ ßæÜðð â×Õæãé çæÖéÁ ·¤è ÂçÚUçæØæ ææÌ ·¤èçÁ°Ð
31. Simplify : 4
(5x13y)313(5x13y)2(5x23y)13(5x13y)(5x23y)21(5x23y)3
âÚUÜ ·¤èçÁ° Ñ
(5x13y)313(5x13y)2(5x23y)13(5x13y)(5x23y)21(5x23y)3
32. Construct a right triangle ABC, right - angled at B in which BC53 cm and AC56 cm.
°·¤ °ðâð â×·¤æðæ çæÖéÁ
ABC·¤è ÚU¿Ùæ ·¤èçÁ° çÁâ·¤æ ·¤æðæ
Bâ×·¤æðæ, ÖéÁæ
BC53âð.×è. ÌÍæ
AC56
âð.×è. ãæðÐ
OR
(¥Íßæ)
For visually impaired learners only
(·ð¤ßÜ ÎëçcÅU çß·¤Üæ´» çßlæçÍüØæð´ ·ð¤ çܰ)
Write the steps of construction of a tangent to a circle at a given point on it using the centre of the circle.
ßëæ ·ð¤ ·ð¤Îý ·¤æ ©ÂØæð» ·¤ÚU·ð¤, ßëæ ÂÚU çSÍÌ °·¤ çÕÎé ÂÚU ßëæ ·¤è SÂàæü ÚðU¹æ ·¤è ÚU¿Ùæ ·ð¤ ¿ÚUæ çÜç¹°Ð
33. A survey of 200 students of a school was done to find which activity they prefer to do in their free time and the information, thus collected is recorded in the following table :
Preferred Activity Number of Students
Playing 60
Reading story books 45
Watching TV 40
Listening to music 25
Painting 30
Draw a bar graph for this data.
ç·¤âè çßlæÜØ ·ð¤
200çßlæçÍüØæð´ ÂÚU °·¤ âßðüÿææ Øã ÁæÙÙð ·ð¤ çܰ ç·¤Øæ »Øæ ç·¤ ßð ¥ÂÙð ¹æÜè âר ×ð´
Øæ ·¤ÚUÙæ Ââ´Î ·¤ÚUÌð ãñ´, ÌÍæ ÂýæÌ âê¿Ùæ ·¤æð Ùè¿ð Îè »Øè âæÚUæè ·ð¤ M¤Â ×ð´ çÚU·¤æÇüU ç·¤Øæ »Øæ Ñ
¼¾ §Ç³ Ìâ ½Ë Á˧ ÌÄlË̲á½ËÕ Í Ç½Ë
ÕÁ¾Ë
60ÈË¾Í Í §ÎS±Õ §®¾Ë
45ªÍ.ÄÍ. ³Õ¾Ë
40Ç Í± Çξ¾Ë
25§Õ̪UU
30§Ù ¥æ¡·¤Ç¸æð´ ·ð¤ çܰ °·¤ δÇUæÜð¹ ·¤è ÚU¿Ùæ ·¤èçÁ°Ð (¥Íßæ)
4
4
For visually impaired learners only
(·ð¤ßÜ ÎëçcÅU çß·¤Üæ´» çßlæçÍüØæð´ ·ð¤ çܰ)
The following table gives the distribution of employees of different income groups residing in a locality.
Monthly income (in C) Number of employees
20,000 - 25,000 35
25,000 - 30,000 75
30,000 - 35,000 150
35,000 - 40,000 155
40,000 - 45,000 70
45,000 - 50,000 15
Form a cumulative frequency table for the data and answer the following questions : (a) How many employees earn less than or equal to ` 30,000 per month ?
(b) How many employees earn more than ` 30,000 per months ?
Ùè¿ð Îè »Øè âæÚUæè °·¤ ÕSÌè ×ð´ ÚUãÙð ßæÜð çßçÖÙ ¥æØ-â×êãæð´ ·ð¤ ·¤×ü¿æçÚUØæð´ ·¤æ Õ´ÅUÙ ÂýÎçàæüÌ ·¤ÚUÌè ãñÐ
׿çâ·¤ ¥æØ (
`×ð´) ·¤×ü¿æçÚUØæð´ ·¤è â´Øæ
20,000 - 25,000 35
25,000 - 30,000 75
30,000 - 35,000 150
35,000 - 40,000 155
40,000 - 45,000 70
45,000 - 50,000 15
§Ù ¥æ¡·¤Ç¸æð´ ·ð¤ çܰ °·¤ â´¿Øè ÕæÚ´UÕæÚUÌæ âæÚUæè ÕÙæ§° ÌÍæ çÙÙçÜç¹Ì ÂýàÙæð´ ·ð¤ ©æÚU ÎèçÁ° Ñ
(a)
ç·¤ÌÙð ·¤×ü¿æçÚUØæð´ ·¤è ׿çâ·¤ ¥æØ
` 30,000âð ·¤× ¥Íßæ ÕÚUæÕÚU ãñ?
(b)
ç·¤ÌÙð ·¤×ü¿æçÚUØæð´ ·¤è ׿çâ·¤ ¥æØ
` 30,000âð ¥çÏ·¤ ãñ?
34. If pth, qth and rth terms of an A.P. are x, y, z respectively. Prove that x(q2r)1y(r2p)1z(p2q)50.
ØçÎ ç·¤âè â.æð.·ð¤
pßð´,
qßð´ÌÍæ
rßð´ÂÎ ·ý¤×àæÑ
x, y, zãæð´ Ìæð çâh ·¤èçÁ° ç·¤ Ñ
x(q2r)1y(r2p)1z(p2q)50.
6
35. In the figure, given here, OAQB is a quadrant of a circle with centre O and radius 7 cm and APB is a semi circle. Find the area of the shaded region.
Øãæ¡ Îè »Øè ¥æ·ë¤çÌ ×ð´
OAQB, O·ð¤Îý ÌÍæ
7âð.×è. çæØæ ßæÜð ßëæ ·¤æ ¿ÌéÍæZàæ çæØ ¹´ÇU ãñ ÌÍæ
APB°·¤ ¥hüßëæ ãñÐ ÀUæØæ´ç·¤Ì Öæ» ·¤æ ÿæðæÈ¤Ü ææÌ ·¤èçÁ°Ð
36. If sec u1tan u5p, show that : 6
2 2
p 1 sin p 1
u 5 2 1
ØçÎ
sec u1tan u5pãæð, Ìæð çι槰 ç·¤ Ñ
2 2
p 1 sin p 1
u 5 2 1
- o O o -
6