• Tidak ada hasil yang ditemukan

Theories Based

N/A
N/A
Protected

Academic year: 2024

Membagikan "Theories Based"

Copied!
28
0
0

Teks penuh

(1)
(2)

Cohomological

Field

Theories Based

from jointon work

with B. Kim

Gauged & with

Linear g. can-Fontanne -

G- uéré -Kim

Sigma - shoemaker

Models

(3)

I : GLSMS

II : COHFTS

III : History

II ! Construction

(4)

I : GLSMS ( Roughly )

A GLSM is a G- IT quotient

of affine space with a global

function .

c- ¢

where

11/10-6 is a smooth

DM stack

Zcaw) V%G is proper

Data : ( V , G, O , W )

V Ctvector space

G- Glad

: G- character

wE§ymVYG isfunctiona G-inv

(5)

G-ITQvo-t.int

V70 ) : =

f-* Symv /

{REV / flyf- (v) -1-00-491

VK.ci. = @ "%. ]

( quotient stack)

Een [1/10]

(6)

Examples of affine Gltq what

Projective space .

Grassmann / ans

semi projective toric varieties

Quiver varieties

By varying c- ( V. GO,w)

GLSMS specialize to

Complete intersections in

all of the above

Quantum singularities (Efate)

w :[%-) ¢

(7)

To specialize to complete

intersections in G-

Choose

W a G- representation

s Gym IN w)G

Gives

w Not

<s , -> : totw" v16 G-

Form the GLSM

(v⊕W!G , 0 , < si>)

2- (s ) G

(8)

GLSMS ( Precise]

Data :( 11,721, wir)

1) ¢ - vector space

P≤ Gen) linear red. gp.

Xt M surjective character

V a Q1 - character of

Define fr extends

G- :=kerX G- by "R-cha.ge")

D- : = VIG

Require

Vˢˢ(v1 -_ 11%-2.us/o-1fYgo:ki-toff ")

2- (dw) is proper

(9)

Goat : Produce an

enumerative theory

for G- Ms

specializes to

Gromov - Witten theory

for complete intersections

in G-

specializes to FJRW

theory for quantum singularities

(Ende) [VIG] -4¢

Varying 0 interpolates

between the above

(10)

@ an +2

= Spec Q [Xo , . . . , n , p ]

weights : 1 , . _ ^ , 1 , - d

a) 0--1 : ×

b) f- : a. is

-2 t - '

f-(x) homogeneous polynomial of degree of

w = Pf (X)

a) ex = tot Opntd ¢

Gives G-W theory of 2-(f) 1pm b) an-%¢✗=[Aⁿ%d] ¢

Gives FJRW theory

(11)

TT-coht-TSDefn-AC-homologica-fieldtheory-i.si.

H a graded a-vector space

4-,-7 a supercommutate pairing

7- EH lunit)

Rg,:D: H←→H*(MgT)

satisfying natural axioms

permutation covariance

tree

loop

forgetting tails

metric

(12)

EI 1GW theory of Z)

Let 2- be a smooth variety Mg,!aZ ) = Moduli of maps

e. z

741=1-1*12-7 (stale space)

LY ,V2> _' = SV , u V2

2- n[m jir

ev¥H¥Mg,r,dlZY→H*Mg%for*

1-1*1%7

/IS PD

1*-1-1*174 - - if

? µ*Ñsid

(13)

EI CFJRW theory]

H : =get Jae (Wtvg ) dwg

14 * ? HHMJ.ir )

Observe :

* =

g-Q-o-J-aclwtpgldwg-g-Q.o.HN?Hldw1ygY )

= 1-1*1=11%-7*1duty

(14)

In general , given * -90

there is a twisted Hodge complex:

@*%r:i-% . . -7k¥ ]

if W = 0

[ 0*-3 R' . . . -5s:)

1-1-1*1541,01=+0+1*4*1

If W 13 an isolated singularity in 11th

Idw is regular

& (R•* , Idw) = * (dw)"-5Jackdaw

H*( Rj , rdw) = Jacko)dw

(15)

In general , given A, Gaw)

define

H-tt.HR,=%o- Mdw)

14%-11-1*19Kiimeth ?-µqw* )

Formula

(16)

Observation

If c- HIM

.si#,dw)Bc-H1*lRj-,dv)=arBc-1H*CA*,d(w+vD-dS

%= -?^dcw+vandWAB -1 ) ABAD )

(17)

Idea : Let

Marie __MgridᵗᵗlV,FQw) be the

moduli space of LG quasi maps

to he 2-law)G

Embedd Mg,r,d→Ug,r;d¥¥¥?

en er '

1%6-7 ¢¥> Most

Construct a virtual cycle in

twisted Hodge cohomology of Vg,r,d

[ M],, c- It/Mgird*(RugBe .me ,rdlÑ◦w))

Supported on Mg,rid

( which is proper by FJR 2018)

(18)

G- LSM Invariants

1[mjrir9144

Hf*Ngµd,AdlÑ◦w☒Y) -711-1*14.ro/Mgird

↑ñ* ↓f%*

11-1*6.

ygy.gr ±%EMw☒%?-4%1-41%1;)

(19)

# History d- enumerative

invariantsofGLS.MS

Fan-Jarvis-Ruan 12013) G- finite

Polishchub-Vainttib (20/6) Purely algebraic

version

usingfactorizationsmatrix

Kiem -Li 12018) using cosection localization

Fan-Jarvis -Ruan 12018) "Narrowsectors"

for general

GLSMS

G-can-Fontanne-F- Gvéré - convex hybrid

Kim -Shoemaker 120181 models

F- - Kim 12020) General

case

(20)

Thin ( CF -1=-0--1-1--5,2018)

Enumerative invariants for

convex hybrid models specialize

to FJRW theory

and to GW ' theory

as defined using the co section

localized virtual cycle .

Thm (Kim-04,2018) The cosection

localized virtual cycle agrees with

the Behrend- Fantechi virtual cycle.

Thm ( F- Kim, 2020) Thegeneral

GLSM invariants form a CohFT.

(21)

Construction

Embedd Myrie in a tm°°ᵗh

Space

Mg,r,d -7 Ug,r,d

\

, .

. _

- -

"

I

, .FI

I%-% -

Find a "virtual " matrix factorization

1kg,r,d on ( Ug ,r,d,Ѱw☒r)

supported

[m ]; a := tdlbg.r.ae/chlKgisd)FeEetined

(22)

Construction of 1kg ,r,d

LG quasimap data :

C genus g curve

q-tgy-n.ir) marked points

É principal f- bindle

K : px

, Cly WEE

u :c PIV

(23)

vector

87% bundle:

L universal

curve

'

{ ( C , q , F , K) }

d

RiT*&×n%) = [ A B)

(24)

RIT* (8%10)=[1--413]

her D= til 88%-7 extra

wantconstructtoa toÉp*B*a

c.se#w '

using

Ugarit c-

"

'tot A

2- (B)

" 24%8, Huh ↓p

= M " LUGG)

{ ( C , q, 8,15 ) }

01

zlt) =Mig,;D

odd 2

A ≈[Ñf*B←→Ap*B)2

2 =) B -11 Supp= MgCK)-2-1%7

,rid

(25)

Problems : In general

only exists locally on Ugigd

a-EIHYUg.ve/KlBH

Want: To find a matrix factorization which is

locally the Ko szul factorization

(26)

%¥T%Factorizations come

from sheaves of CDGAS

:

* DM stalk

(A, d) sheaf of CDGAS over

we MCX , 0×3

a C- M( A-,) s.t.dk)=w

Then even -2, odd

A A

2 =D -1 a

graded leibnitz rule 22__ w

- '

. this is a matrix factorization

(27)

- Idea :

To realize

e-HI ' ( tot A)¥1B))

we need to replace 75lb)

by a d- acyclic complex

but retain the CDGA structure

Thom-Sullivan

(B) É%%• # B) Th%%B

e- acyclic P5h%¥

coslhplicial

sheaf of ¥817S

CDGAS

(28)

Then

c- Tti ÉKIBL ,

and alla) = w

1kg,r,d:=&h•G%TBÑ¥Hh%*Ñ

locally looks like

" p*Ñ→←iᵈᵈp* ]

Referensi

Dokumen terkait