.i i
the
University of Hyderabad, Entrance Examination, 20L0
(Mathematics/Applied Mathematics/OR)
U -,b-ti
Time:
2 hoursMax.
Marlss: 75Part A:
25Part B:
50fnstructions
1.
Calculators a,renot
allowed.2. Part A
carries2b marks.
Each cor- rect answercarries
1mark
and eachwrong answer
carries- O93mark.
So do
not gamble. If you want to
change any answer, cross
out the
oldone and circle the new one.
Overwritten answffs will
be ignored.3. Part B
carries 50 marks. Instructions for answeringPart B
are givenat
the beginningof Part
B.4.
Use a separatebooklet for Part
B.Answer Part A by circling
correct
letter in the array
below:F
I
a b c d2 a b c d
3 a b c d
4 a b c d
5 a
b
c d6 a b c d
7 a b c d
8 a b e
d
9 a b c d
10 a b c d
11 a b c d
12 a b c d
13 a b c d
14 a b c d
15 a b c d
16 a b c d
77 a b c d
18 a b c d
19 a b c d
20 a b e d
2L a b c d
22 a b c d
23 a b c d
24 a b c d
25 a b c d
U- Stt
PART
A
Each question carries 1
mark.,
0.33 markwill
be deducted for each wrong answer.There
will
be no penaltyif the
question isleft
unansweied.The set of real numbers is denoted
by
iR,the
set of complex numbersby c,
the set of
rational
numbersby Q
and the set of integersby
Z.1. Let V be a real vector
spaceand ^9: {ur,1)2t...,u;r} be a
linea,riy independent subset ofV.
Then(a) dimV:k.
(b) dim V <k.
(c) dimV>k.
(d) nothing
can be said aboutdim I/.
2. The
value oflim,-6 (! - -f=) * \u
e"- I/
(a) 0. (b) ;. (") 1. (d)
g.3.
Considerthe function /(r)
on lR defined byr(*):{ ;,, {rS:i
Then
(u) /
i's continuousat
eachpoint
of IR.(b) /
is continuousat
eachpoint
of exceptat r : t1.
(c) /
is differentiableat
eachpoint
of IR.(d) /
isnot
continuousat
anypoint
of IR..4. Let f (r,il
be defined on lR2by f (x,il : lrl +
lg/1. Then(a)
thepartial
derivatives of/ at (0,0)
exist.(b) /
is difierentiableat
(0,0).(c) /
is continuousat
(0,0).(d)
none ofthe
above hold.u -Stt
5. Let .f ' R -+
IR be continuoustaking
valuesin Q, the
setof rational
numbers. Then(") f
isstrictly
monotone.(b) /
is unbounded.(c) / is
differentiable.(d) the
imageof /
isinfinite
6.
Forthe set {* + *, *,n e N}, the
element}
is(a) both
an elementin
the set and alimit point
ofthe
set.(b) neither
a"n elementin
the set nor alimit point.
(c)
an elementin
the set,but not
alimit
point.(d)
uiimit point
of the set,but not
an elementin the
set.7. If
Itanzl:
1, then(a)
Re":\+T.
(b)
Ret:f,*nn.
(c)
Re":[*ntr.
(cl)
Re,:f,+T.
8. The
numberof
zeroes of. ze+
z5-
823*
2z*
1in the
annular regionL<lrll2are
(u) 3. (b) 6. (.) e. (d)
14.9. The
residue off (z):
cotz
a;t any ofits
poles is(a) o. (b) 1. (")'fi. (d) 2'/5.
U - I't+
10. Let (x,d)
be ametric
space and .4c x.
ThenA
istotally
boundedif
and
oniy if
(a)
every sequencein
-4 has a Cauchy subsequence.(b)
every sequencein A
has a convergent subsequence.(c)
every sequencein,4
has a bounded subsequence.(d)
every bounded sequencein,4
has a convergent subsequence.11. Suppose
l/ is
anormal
subgroupof G.
For an elementr in a
group,let O(r)
denotethe
order ofr.
Then(a) O(a)
dividesO(oN).
(b) O(aN)
divides O(o).(c) o(a) # o(aN).
(d) o(a) : o(aN).
L2.
If G
is a group suchthat it
has a unique element oof
ordern.
Then(a) n:2.
(b) "isaprime.
(c) n is
an odd prime.(d) O(c) :
rz.13.
Considerthe ring Z. Then (a)
a,llits
ideals are prime.(b) all its
non-zero ideals are maximal.(c) ZII
is anintegral
domainfor
any idealI
of Z.(d) *V
generator of a maximal idealb Z
is prime.14. Fn denotes
the finite
fieldwith n
elements. Then(a) & c
F8.(b)
FnC Ftz'
(") A c
Fro'(d) rn C
Fer'U-s q
15.
Let A
be ann x n matrix
which isboth Hermitian
andunitary.
Then(a)
A2: I.
(b)
.4 is real.(c) The
eigenvalues ofA
a,re 0, 1,-1.
(d) The minimal
and characteristic polynomials are same.16. For 0
<
d(
zr,the matrix
(a)
has real eigenvalues.(b)
is symmetric.(c)
is skew-symmetric.(d)
is orthogonal.17. Let {u,r} C
Rs be alinearly
independent set andlet,4:
{u.,e
R3 :llrll :
1 and{nu,,u,to}
is linearly independent for somen e N}
Then(u) Aisasingleton.
(b) A
isfinite but not
a singleton.(.) A
is countably finite.(d) A
is uncountable.18.
A:.4
isa5x5 complexmatrixof finite
order,that
is,Ak: I
forsome/c
e N,
must be diagonalizable.B
:A
diagonalizable 5x
5matrix
must be offinite
order.Then
(.) A
andB
areboth
true.(b) A
istrue but B
is false.(.) B
istrue but A
is false.(d) Both A
andB
are false./ cos? -sind \
\sind cosd )
u -s9
19.
Let v -- c[0,1]
bethe
vector spaceof
continuous functionson
[0,1].Let ll/ll1 ,: f lf (t)ldt u"d ll/ll* :: sup{l/(r)l
: 0< r < 1}.
Then(u)
(V,ll
ll1) and (%ll ll*)
are Banach spaces.(b) (y,ll ll*)
is completebur (Iz,ll
ll1) is not.(.)
(%ll llt) ir
completebut (V,ll ll"")
is not.(d) Neither
ofthe
spaces (%ll llr), (y, ll ll_)
are complete.The space lo
is
aHilbert
spaceif
and onlyif
(a)p>1.
(b)p
is even.(.) p: -. (d) p:z'
21. Which
ofthe
following statements is correct?(a) on
every vector spacev
over IR orc,
there is a normwith
respectto which 7
is a Banach space.(b) If (x' ll.ll)
is a normed space andy
is a subspace ofx,
then every boundedlinear functional
"fo
on y
hasa
unique bounded linear extensionf to X
suchthat ll/ll : ll/oll.
(c) Dual of
a separable Banach space is separable.(d) A finite
dimensional vector space isa
Banach spacewith
respectto
any norm onit.
22.
Thecritical point
(0, 0)for
the system- 2r, :39is
20.
da
dt dr
dt (a)
a stable node(b) u"
unstable node.(c)
a stable spiral.(d)
an unstable spiral.23.
The set oflinearly
inclependent solutionsd {1 -
dna(u)
{1,r,e',e-'}.
(b)
{L,r, e-'
,re-"}.
(.)
{1,fi,e',ne'}.
(d)
{1,fr,e*,re-'}.
drA
dn2
:0is
u-sq
24. The
set ofall
eigenvalues ofthe sturm-Liouville
problem A"+ \A: 0,
3r'(0):0, A'(X) :
Ois given by
(u) ) +
0,^- 2n,n : 1,2,,3,....
(b) ) + 0,^ :
4n2,n: 1,2,3,..
(c) ) : 2n,n:0,!,2,3,....
(d)
^
: 4n2,n : 0,1,2,3,....
25. A
completeintegral
of.zpq:p2q(n +q)
+ pq2(y*p)
is(a) z: ar*bg -2ab.
(b) rz :
a:x-
by*
2ab.(c) nz:W-ar*2ab.
(d) rz: et tbg *2ab.
tJ -'S:4
PART
BAnswer any
ten
questions. Each question ca,rries 5 marks.1. List all
possible Jordan Canonicalforms
of.a
Tx z
realmatrix
whoseminimal polynomial is (r - L)'(* - 2)(* * 3)
and characteristic poly- nomialis (r - I)'(* - 2)2(r +
3)3.2- A is
anrn x n matrix
andB is
an n,x
nzmatrix, h I rn, then
provethat AB is
never invertible.3. Let f t c
--+c be a
non-constantentire function with the point
atinfinity
as apole.
Showthat / is
a polynomial.4.
Showthat I2([0,1]) g ,Lt([0,1])
andthe
inclusionmap /
---+/
fromL2[0,1] to ,Ll[0,1] is
a bounded linear operator.5. Let /: c -' c
be a complex analytic function suchthat f (f ("))
forall z e C with lzl : 1.
Showthat /
is either constantor
identity.6. Let p(x) :
anfr"+ an-rfi'-L + '.. +
a1r*
a6 bea polynomial
whose co-efficients satisfyDT:oh: 0.
Thenp(r)
has a realroot
between 0and
l.
7.
Give an example of a decreasing sequenceU")
of measurable functions defined on a measurable setE
of R, suchthat f^ n f
pointwise a.e. on-E
but [rf * Iim,,*- Irf^
8.
Showthat all
3-Sylow subgroupsin
,Sa are conjugate.9. Let a
be algebraic overa field K
suchthat the
degree[X(") : K]
isodd.
Showthat K(a): K(a').
10.
Let,O
bethe
ellipse#*#:1, H
bethe
hyperbolarU:land P
bethe
parabolay - 12.
Showthat
no two of these are homeomorphic.11.
Verify
whetherQt :
QrQz,Qz:
qtI
qz,p, :9J-& + I,
p2: W- TPr -
(oz+
qr;,Qt-Qz Qz-Qt
is a
canonicaltransformation for
a system havingtwo
degreesof
free- dom.U-9tf
12. Determine
the
Green'sfunction for
the bounda,ry varue problemny"+u':-f(*), 1(c<oo
y(1) :0,
j5g lu(")l < *
13.
Find the critical point
of the systemln
duE : * I
Y- 2rY, fr : -r, lY *3g2,
and discuss
its nature
and stability.14. Reduce
the following
pa.rtial differential equationto a
canonical form and soive,if
possible.fr2't1*,
|2rurn * u* :
uo,15.
Determinethe two
solutionsof the
equationpe :
L passing throughthe straight line C
irs :
2s,yo:
2s, zs-
5s.16.
Let f
denote theoptimal
solutionto
the following linear programming probiemP1
:min {r s.t. Ar
n
where ,4 €
lR?nxn, b € IR- and c,r €
IR.'x.Now, a new
constraintaT
n )
B, whereo € IR'
and B€
IR, is addedto
the feasible region and weget the
following linea,r programming problemP2
:min {r s.t. Ar
aTr
fr
Discuss about
the optimality
off
forthe
two cases(a) f
is feasibleto
the
newLP (P2) and (b) i
isnot
feasibleto the
newLP
(P2).u- s9
17. Consider
the
following linear programming problemmin rt *
frzs.t. sh * trz
I1 fr2
unrestricted.Find
conditionson s
andI to
makethe linear
prograrnming problem have(a) multiple optimal
sohrtions and(b)
an unbounded solution.18.
Five
employeesare
availablefor four jobs in a firm. The time
(inminutes)
takenby
each employeeto
complete eachjob is
givenin
thetable
below.The objective of the firm is to assign employees to jobs so as to minimize the
total
time takento
perform the fourjobs.
Dashes indicate a person cannot do aparticular
job.(a)
Formulatethe
above problem asa linear
prograrnming problem and statethe
Dual of the problem.(b) What
isthe optimal
assignmentto
the problem?PersonJ
Job--+ 1 2 3 4 12 3 4 5
24 20 28 18 23
18
22 24
32 29 30 27
18 24 30 16 29