• Tidak ada hasil yang ditemukan

6 Future Directions

Dalam dokumen Cerebral Ischemic Reperfusion Injuries (CIRI) (Halaman 150-160)

The ECM/BM has been understudied owing to its intrinsic complexity. With the advancements in molecular biology and genetic techniques, significant progress has been made in the field of ECM research. For example, the generation of various knockout and/or conditional knockout mice has allowed investigation of the bio- logical functions of many BM components. Many important questions, however, remain to be answered. These key questions include: what are the temporal and spatial expression profiles of ECM proteins in physiological and pathological con- ditions? How do ischemia and hemorrhage affect the expression of each individual ECM components? What are the molecular mechanisms underlying stroke-induced ECM alterations? What are the biological functions of proteolytic fragments of ECM proteins after stroke? Can exogenous ECM proteins prevent and/or ameliorate pathological changes in stroke? Elucidating these questions will substantially enrich our knowledge in ECM biology and stroke pathology, and may lead to innovative therapies for stroke.

Funding Information This work was supported by AHA Scientist Development Grant (16SDG29320001).

References

1. Bignami A, Hosley M, Dahl D. Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anat Embryol (Berl). 1993;188:419–33.

2. Cragg B.  Brain extracellular space fixed for electron microscopy. Neurosci Lett.

1979;15:301–6.

3. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

4. Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 2011;71:1018–39.

5. Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules:

potential targets in pharmacotherapy. Pharmacol Rev. 2009;61:198–223.

6. Bateman JF, Boot-Handford RP, Lamande SR. Genetic diseases of connective tissues: cel- lular and extracellular effects of ecm mutations. Nat Rev Genet. 2009;10:173–83.

7. Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci. 2017;74(6):1095–115.

8. Rauch U. Brain matrix: structure, turnover and necessity. Biochem Soc Trans. 2007;35:656–60.

9. Lau LW, Cua R, Keough MB, Haylock-Jacobs S, Yong VW. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci. 2013;14:722–9.

10. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and dis- ease. Nat Rev Mol Cell Biol. 2014;15:786–801.

11. Kwok JC, Dick G, Wang D, Fawcett JW. Extracellular matrix and perineuronal nets in cns repair. Dev Neurobiol. 2011;71:1073–89.

8 Extracellular Matrix in Stroke

136

12. Bonneh-Barkay D, Wiley CA. Brain extracellular matrix in neurodegeneration. Brain Pathol.

2009;19:573–85.

13. Yamaguchi Y.  Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci.

2000;57:276–89.

14. Dityatev A, Schachner M. Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci. 2003;4:456–68.

15. Vracko R. Significance of basal lamina for regeneration of injured lung. Virchows Arch A Pathol Pathol Anat. 1972;355:264–74.

16. Vracko R, Benditt EP. Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J Cell Biol. 1972;55:406–19.

17. Vracko R, Benditt EP. Capillary basal lamina thickening. Its relationship to endothelial cell death and replacement. J Cell Biol. 1970;47:281–5.

18. Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol. 1974;77:314–46.

19. Vracko R, Strandness DE Jr. Basal lamina of abdominal skeletal muscle capillaries in diabet- ics and nondiabetics. Circulation. 1967;35:690–700.

20. Ruben GC, Yurchenco PD. High resolution platinum-carbon replication of freeze-dried base- ment membrane. Microsc Res Tech. 1994;28:13–28.

21. Yurchenco PD, Amenta PS, Patton BL. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 2004;22:521–38.

22. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3:422–33.

23. Sorokin L.  The impact of the extracellular matrix on inflammation. Nat Rev Immunol.

2010;10:712–23.

24. Hallmann R, Zhang X, Di Russo J, Li L, Song J, Hannocks MJ, et  al. The regulation of immune cell trafficking by the extracellular matrix. Curr Opin Cell Biol. 2015;36:54–61.

25. Paulsson M.  Basement membrane proteins: Structure, assembly, and cellular interactions.

Crit Rev Biochem Mol Biol. 1992;27:93–127.

26. Yurchenco PD, Schittny JC.  Molecular architecture of basement membranes. FASEB J. 1990;4:1577–90.

27. Schittny JC, Yurchenco PD. Basement membranes: molecular organization and function in development and disease. Curr Opin Cell Biol. 1989;1:983–8.

28. Erickson AC, Couchman JR.  Still more complexity in mammalian basement membranes.

J Histochem Cytochem. 2000;48:1291–306.

29. Myers JC, Dion AS, Abraham V, Amenta PS. Type xv collagen exhibits a widespread distri- bution in human tissues but a distinct localization in basement membrane zones. Cell Tissue Res. 1996;286:493–505.

30. Myers JC, Li D, Bageris A, Abraham V, Dion AS, Amenta PS. Biochemical and immunohis- tochemical characterization of human type xix defines a novel class of basement membrane zone collagens. Am J Pathol. 1997;151:1729–40.

31. Saarela J, Rehn M, Oikarinen A, Autio-Harmainen H, Pihlajaniemi T. The short and long forms of type xviii collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am J Pathol. 1998;153:611–26.

32. Tomono Y, Naito I, Ando K, Yonezawa T, Sado Y, Hirakawa S, et al. Epitope-defined mono- clonal antibodies against multiplexin collagens demonstrate that type xv and xviii collagens are expressed in specialized basement membranes. Cell Struct Funct. 2002;27:9–20.

33. Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol. 2011;3:pii: a004911.

34. Martin GR, Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol. 1987;3:57–85.

35. Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM.  Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in t cell recruitment across the blood- brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol. 2001;153:933–46.

Y. Yao

137

36. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev. 2005;85:979–1000.

37. Owens T, Bechmann I, Engelhardt B. Perivascular spaces and the two steps to neuroinflam- mation. J Neuropathol Exp Neurol. 2008;67:1113–21.

38. van Horssen J, Bo L, Vos CM, Virtanen I, de Vries HE.  Basement membrane proteins in multiple sclerosis-associated inflammatory cuffs: potential role in influx and transport of leu- kocytes. J Neuropathol Exp Neurol. 2005;64:722–9.

39. Hudson BG, Reeders ST, Tryggvason K. Type iv collagen: structure, gene organization, and role in human diseases. Molecular basis of goodpasture and alport syndromes and diffuse leiomyomatosis. J Biol Chem. 1993;268:26033–6.

40. Kalluri R.  Discovery of type iv collagen non-collagenous domains as novel integrin ligands and endogenous inhibitors of angiogenesis. Cold Spring Harb Symp Quant Biol.

2002;67:255–66.

41. Filie JD, Burbelo PD, Kozak CA. Genetic mapping of the alpha 1 and alpha 2 (iv) collagen genes to mouse chromosome 8. Mamm Genome. 1995;6:487.

42. Sugimoto M, Oohashi T, Ninomiya Y. The genes col4a5 and col4a6, coding for basement membrane collagen chains alpha 5(iv) and alpha 6(iv), are located head-to-head in close proximity on human chromosome xq22 and col4a6 is transcribed from two alternative pro- moters. Proc Natl Acad Sci U S A. 1994;91:11679–83.

43. Soininen R, Huotari M, Hostikka SL, Prockop DJ, Tryggvason K. The structural genes for alpha 1 and alpha 2 chains of human type iv collagen are divergently encoded on opposite DNA strands and have an overlapping promoter region. J Biol Chem. 1988;263:17217–20.

44. Momota R, Sugimoto M, Oohashi T, Kigasawa K, Yoshioka H, Ninomiya Y.  Two genes, col4a3 and col4a4 coding for the human alpha3(iv) and alpha4(iv) collagen chains are arranged head-to-head on chromosome 2q36. FEBS Lett. 1998;424:11–6.

45. Ortega N, Werb Z. New functional roles for non-collagenous domains of basement mem- brane collagens. J Cell Sci. 2002;115:4201–14.

46. Khoshnoodi J, Pedchenko V, Hudson BG.  Mammalian collagen iv. Microsc Res Tech.

2008;71:357–70.

47. Vanacore RM, Shanmugasundararaj S, Friedman DB, Bondar O, Hudson BG, Sundaramoorthy M.  The alpha1.Alpha2 network of collagen iv. Reinforced stabilization of the noncollag- enous domain-1 by noncovalent forces and the absence of met-lys cross-links. J Biol Chem.

2004;279:44723–30.

48. Tilling T, Korte D, Hoheisel D, Galla HJ. Basement membrane proteins influence brain capil- lary endothelial barrier function in vitro. J Neurochem. 1998;71:1151–7.

49. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen iv is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131:1619–28.

50. Kuo DS, Labelle-Dumais C, Mao M, Jeanne M, Kauffman WB, Allen J, et al. Allelic hetero- geneity contributes to variability in ocular dysgenesis, myopathy and brain malformations caused by col4a1 and col4a2 mutations. Hum Mol Genet. 2014;23:1709–22.

51. Favor J, Gloeckner CJ, Janik D, Klempt M, Neuhauser-Klaus A, Pretsch W, et al. Type iv procollagen missense mutations associated with defects of the eye, vascular stability, the brain, kidney function and embryonic or postnatal viability in the mouse, mus musculus:

an extension of the col4a1 allelic series and the identification of the first two col4a2 mutant alleles. Genetics. 2007;175:725–36.

52. Jeanne M, Jorgensen J, Gould DB. Molecular and genetic analyses of collagen type iv mutant mouse models of spontaneous intracerebral hemorrhage identify mechanisms for stroke pre- vention. Circulation. 2015;131:1555–65.

53. Miner JH, Yurchenco PD. Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol. 2004;20:255–84.

54. Domogatskaya A, Rodin S, Tryggvason K. Functional diversity of laminins. Annu Rev Cell Dev Biol. 2012;28:523–53.

8 Extracellular Matrix in Stroke

138

55. Colognato H, Yurchenco PD. Form and function: the laminin family of heterotrimers. Dev Dyn. 2000;218:213–34.

56. Aumailley M. The laminin family. Cell Adhes Migr. 2013;7:48–55.

57. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, et al. A simplified laminin nomenclature. Matrix Biol. 2005;24:326–32.

58. Durbeej M. Laminins. Cell Tissue Res. 2010;339:259–68.

59. McKee KK, Harrison D, Capizzi S, Yurchenco PD. Role of laminin terminal globular domains in basement membrane assembly. J Biol Chem. 2007;282:21437–47.

60. Burgeson RE, Chiquet M, Deutzmann R, Ekblom P, Engel J, Kleinman H, et  al. A new nomenclature for the laminins. Matrix Biol. 1994;14:209–11.

61. Sorokin LM, Pausch F, Frieser M, Kroger S, Ohage E, Deutzmann R. Developmental regula- tion of the laminin alpha5 chain suggests a role in epithelial and endothelial cell maturation.

Dev Biol. 1997;189:285–300.

62. Jucker M, Tian M, Norton DD, Sherman C, Kusiak JW. Laminin alpha 2 is a component of brain capillary basement membrane: reduced expression in dystrophic dy mice. Neuroscience.

1996;71:1153–61.

63. Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity main- tenance. Sci Rep. 2016;6:36450.

64. Yao Y, Chen ZL, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentia- tion and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413.

65. Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, et al. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol. 2002;22:1194–202.

66. Patton BL, Miner JH, Chiu AY, Sanes JR. Distribution and function of laminins in the neuro- muscular system of developing, adult, and mutant mice. J Cell Biol. 1997;139:1507–21.

67. Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation.

Development. 2004;131:2247–56.

68. Alpy F, Jivkov I, Sorokin L, Klein A, Arnold C, Huss Y, et al. Generation of a conditionally null allele of the laminin alpha1 gene. Genesis. 2005;43:59–70.

69. Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, et al. Absence of base- ment membranes after targeting the lamc1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol. 1999;144:151–60.

70. Murray P, Edgar D. Regulation of programmed cell death by basement membranes in embry- onic development. J Cell Biol. 2000;150:1215–21.

71. Kang SH, Kramer JM. Nidogen is nonessential and not required for normal type iv collagen localization in caenorhabditis elegans. Mol Biol Cell. 2000;11:3911–23.

72. Murshed M, Smyth N, Miosge N, Karolat J, Krieg T, Paulsson M, et al. The absence of nidogen 1 does not affect murine basement membrane formation. Mol Cell Biol. 2000;20:7007–12.

73. Dong L, Chen Y, Lewis M, Hsieh JC, Reing J, Chaillet JR, et al. Neurologic defects and selec- tive disruption of basement membranes in mice lacking entactin-1/nidogen-1. Lab Investig.

2002;82:1617–30.

74. May CA. Distribution of nidogen in the murine eye and ocular phenotype of the nidogen-1 knockout mouse. ISRN Ophthalmol. 2012;2012:378641.

75. Schymeinsky J, Nedbal S, Miosge N, Poschl E, Rao C, Beier DR, et al. Gene structure and functional analysis of the mouse nidogen-2 gene: Nidogen-2 is not essential for basement membrane formation in mice. Mol Cell Biol. 2002;22:6820–30.

76. Miosge N, Sasaki T, Timpl R. Evidence of nidogen-2 compensation for nidogen-1 deficiency in transgenic mice. Matrix Biol. 2002;21:611–21.

77. Bader BL, Smyth N, Nedbal S, Miosge N, Baranowsky A, Mokkapati S, et al. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol Cell Biol. 2005;25:6846–56.

78. Bose K, Nischt R, Page A, Bader BL, Paulsson M, Smyth N. Loss of nidogen-1 and -2 results in syndactyly and changes in limb development. J Biol Chem. 2006;281:39620–9.

Y. Yao

139

79. Mokkapati S, Baranowsky A, Mirancea N, Smyth N, Breitkreutz D, Nischt R.  Basement membranes in skin are differently affected by lack of nidogen 1 and 2. J Invest Dermatol.

2008;128:2259–67.

80. Knox SM, Whitelock JM. Perlecan: how does one molecule do so many things? Cell Mol Life Sci. 2006;63:2435–45.

81. Farach-Carson MC, Carson DD.  Perlecan—a multifunctional extracellular proteoglycan scaffold. Glycobiology. 2007;17:897–905.

82. Whitelock JM, Melrose J, Iozzo RV. Diverse cell signaling events modulated by perlecan.

Biochemistry. 2008;47:11174–83.

83. Roberts J, Kahle MP, Bix GJ. Perlecan and the blood-brain barrier: beneficial proteolysis?

Front Pharmacol. 2012;3:155.

84. Costell M, Sasaki T, Mann K, Yamada Y, Timpl R. Structural characterization of recombinant domain ii of the basement membrane proteoglycan perlecan. FEBS Lett. 1996;396:127–31.

85. Crossin KL, Krushel LA. Cellular signaling by neural cell adhesion molecules of the immu- noglobulin superfamily. Dev Dyn. 2000;218:260–79.

86. Dolan M, Horchar T, Rigatti B, Hassell JR. Identification of sites in domain i of perlecan that regulate heparan sulfate synthesis. J Biol Chem. 1997;272:4316–22.

87. Fjeldstad K, Kolset SO. Decreasing the metastatic potential in cancers—targeting the hepa- ran sulfate proteoglycans. Curr Drug Targets. 2005;6:665–82.

88. Hopf M, Gohring W, Mann K, Timpl R. Mapping of binding sites for nidogens, fibulin-2, fibronectin and heparin to different ig modules of perlecan. J Mol Biol. 2001;311:529–41.

89. Jiang X, Couchman JR.  Perlecan and tumor angiogenesis. J  Histochem Cytochem.

2003;51:1393–410.

90. Merz DC, Alves G, Kawano T, Zheng H, Culotti JG. Unc-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling.

Dev Biol. 2003;256:173–86.

91. Yang Y. Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. Birth Defects Res C Embryo Today. 2003;69:305–17.

92. Gonzalez EM, Reed CC, Bix G, Fu J, Zhang Y, Gopalakrishnan B, et al. Bmp-1/tolloid-like metalloproteases process endorepellin, the angiostatic c-terminal fragment of perlecan. J Biol Chem. 2005;280:7080–7.

93. Saini MG, Bix GJ. Oxygen-glucose deprivation (ogd) and interleukin-1 (il-1) differentially modulate cathepsin b/l mediated generation of neuroprotective perlecan lg3 by neurons.

Brain Res. 2012;1438:65–74.

94. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA. The degradation of human endothe- lial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem. 1996;271:10079–86.

95. Bix G, Fu J, Gonzalez EM, Macro L, Barker A, Campbell S, et al. Endorepellin causes endo- thelial cell disassembly of actin cytoskeleton and focal adhesions through alpha2beta1 integ- rin. J Cell Biol. 2004;166:97–109.

96. Irving-Rodgers HF, Catanzariti KD, Aspden WJ, D'Occhio MJ, Rodgers RJ.  Remodeling of extracellular matrix at ovulation of the bovine ovarian follicle. Mol Reprod Dev.

2006;73:1292–302.

97. Thadikkaran L, Crettaz D, Siegenthaler MA, Gallot D, Sapin V, Iozzo RV, et al. The role of proteomics in the assessment of premature rupture of fetal membranes. Clin Chim Acta.

2005;360:27–36.

98. Lee B, Clarke D, Al Ahmad A, Kahle M, Parham C, Auckland L, et al. Perlecan domain v is neuroprotective and proangiogenic following ischemic stroke in rodents. J  Clin Invest.

2011;121:3005–23.

99. Saini MG, Pinteaux E, Lee B, Bix GJ.  Oxygen-glucose deprivation and interleukin- 1alpha trigger the release of perlecan lg3 by cells of neurovascular unit. J  Neurochem.

2011;119:760–71.

100. Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y. Perlecan is essential for cartilage and cephalic development. Nat Genet. 1999;23:354–8.

8 Extracellular Matrix in Stroke

140

101. Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, et al. Perlecan main- tains the integrity of cartilage and some basement membranes. J Cell Biol. 1999;147:1109–22.

102. Rossi M, Morita H, Sormunen R, Airenne S, Kreivi M, Wang L, et  al. Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 2003;22:236–45.

103. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction.

Nat Rev Mol Cell Biol. 2014;15:771–85.

104. Takagi J, Yang Y, Liu JH, Wang JH, Springer TA. Complex between nidogen and laminin fragments reveals a paradigmatic beta-propeller interface. Nature. 2003;424:969–74.

105. Willem M, Miosge N, Halfter W, Smyth N, Jannetti I, Burghart E, et al. Specific ablation of the nidogen-binding site in the laminin gamma1 chain interferes with kidney and lung devel- opment. Development. 2002;129:2711–22.

106. Aumailley M, Pesch M, Tunggal L, Gaill F, Fassler R. Altered synthesis of laminin 1 and absence of basement membrane component deposition in (beta)1 integrin-deficient embryoid bodies. J Cell Sci. 2000;113(Pt 2):259–68.

107. Tsiper MV, Yurchenco PD. Laminin assembles into separate basement membrane and fibril- lar matrices in schwann cells. J Cell Sci. 2002;115:1005–15.

108. Charonis AS, Tsilibary EC, Yurchenco PD, Furthmayr H. Binding of laminin to type iv col- lagen: a morphological study. J Cell Biol. 1985;100:1848–53.

109. Sasaki T, Forsberg E, Bloch W, Addicks K, Fassler R, Timpl R. Deficiency of beta 1 integrins in teratoma interferes with basement membrane assembly and laminin-1 expression. Exp Cell Res. 1998;238:70–81.

110. Di Russo J, Hannocks MJ, Luik AL, Song J, Zhang X, Yousif L, et al. Vascular laminins in physiology and pathology. In: Matrix Biol, vol. 57-58; 2017. p. 140–8.

111. Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 2012;33:579–89.

112. Zlokovic BV.  The blood-brain barrier in health and chronic neurodegenerative disorders.

Neuron. 2008;57:178–201.

113. Furie MB, Naprstek BL, Silverstein SC. Migration of neutrophils across monolayers of cul- tured microvascular endothelial cells. An in vitro model of leucocyte extravasation. J Cell Sci. 1987;88(Pt 2):161–75.

114. Hurley JV. An electron microscopic study of leucocytic emigration and vascular permeability in rat skin. Aust J Exp Biol Med Sci. 1963;41:171–86.

115. Marchesi VT, Florey HW. Electron micrographic observations on the emigration of leuco- cytes. Q J Exp Physiol Cogn Med Sci. 1960;45:343–8.

116. Ohashi KL, Tung DK, Wilson J, Zweifach BW, Schmid-Schonbein GW. Transvascular and interstitial migration of neutrophils in rat mesentery. Microcirculation. 1996;3:199–210.

117. Hoshi O, Ushiki T. Neutrophil extravasation in rat mesenteric venules induced by the che- motactic peptide n-formyl-methionyl-luecylphenylalanine (fmlp), with special attention to a barrier function of the vascular basal lamina for neutrophil migration. Arch Histol Cytol.

2004;67:107–14.

118. Yadav R, Larbi KY, Young RE, Nourshargh S. Migration of leukocytes through the vessel wall and beyond. Thromb Haemost. 2003;90:598–606.

119. Bixel MG, Petri B, Khandoga AG, Khandoga A, Wolburg-Buchholz K, Wolburg H, et al. A cd99-related antigen on endothelial cells mediates neutrophil but not lymphocyte extravasa- tion in vivo. Blood. 2007;109:5327–36.

120. Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW, et al. Effector t cell interactions with meningeal vascular structures in nascent autoimmune cns lesions.

Nature. 2009;462:94–8.

121. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the american heart association.

Circulation. 2016;133:e38–60.

122. Hamann GF, Burggraf D, Martens HK, Liebetrau M, Jager G, Wunderlich N, et  al. Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke. 2004;35:764–9.

Y. Yao

141

123. Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, et  al. Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis.

Blood. 2000;96:569–76.

124. Nahirney PC, Reeson P, Brown CE.  Ultrastructural analysis of blood-brain barrier break- down in the peri-infarct zone in young adult and aged mice. J  Cereb Blood Flow Metab.

2016;36:413–25.

125. Kwon I, Kim EH, del Zoppo GJ, Heo JH. Ultrastructural and temporal changes of the micro- vascular basement membrane and astrocyte interface following focal cerebral ischemia.

J Neurosci Res. 2009;87:668–76.

126. Wang CX, Shuaib A. Critical role of microvasculature basal lamina in ischemic brain injury.

Prog Neurobiol. 2007;83:140–8.

127. Scholler K, Trinkl A, Klopotowski M, Thal SC, Plesnila N, Trabold R, et al. Characterization of microvascular basal lamina damage and blood-brain barrier dysfunction following sub- arachnoid hemorrhage in rats. Brain Res. 2007;1142:237–46.

128. Wang J, Tsirka SE. Tuftsin fragment 1–3 is beneficial when delivered after the induction of intracerebral hemorrhage. Stroke. 2005;36:613–8.

129. Wang J, Rogove AD, Tsirka AE, Tsirka SE. Protective role of tuftsin fragment 1–3 in an animal model of intracerebral hemorrhage. Ann Neurol. 2003;54:655–64.

130. Wang J, Tsirka SE. Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care. 2005;3:77–85.

131. Jeanne M, Labelle-Dumais C, Jorgensen J, Kauffman WB, Mancini GM, Favor J, et  al.

Col4a2 mutations impair col4a1 and col4a2 secretion and cause hemorrhagic stroke. Am J Hum Genet. 2012;90:91–101.

132. Hynes RO. Stretching the boundaries of extracellular matrix research. Nat Rev Mol Cell Biol.

2014;15:761–3.

133. Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the ldl receptor-related protein. J Clin Invest. 2003;112:1533–40.

134. Ahn MY, Zhang ZG, Tsang W, Chopp M.  Endogenous plasminogen activator expression after embolic focal cerebral ischemia in mice. Brain Res. 1999;837:169–76.

135. Hosomi N, Lucero J, Heo JH, Koziol JA, Copeland BR, del Zoppo GJ. Rapid differential endogenous plasminogen activator expression after acute middle cerebral artery occlusion.

Stroke. 2001;32:1341–8.

136. Wang CX, Yang T, Shuaib A. Clot fragments formed from original thrombus obstruct down- stream arteries in the ischemic injured brain. Microcirculation. 2006;13:229–36.

137. Liotta LA, Goldfarb RH, Brundage R, Siegal GP, Terranova V, Garbisa S. Effect of plasmino- gen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous compo- nents of basement membrane. Cancer Res. 1981;41:4629–36.

138. Hamann GF, Liebetrau M, Martens H, Burggraf D, Kloss CU, Bultemeier G, et  al.

Microvascular basal lamina injury after experimental focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab. 2002;22:526–33.

139. Lijnen HR, Van Hoef B, Lupu F, Moons L, Carmeliet P, Collen D. Function of the plasmino- gen/plasmin and matrix metalloproteinase systems after vascular injury in mice with targeted inactivation of fibrinolytic system genes. Arterioscler Thromb Vasc Biol. 1998;18:1035–45.

140. Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for mmps and timps in cerebral ischemia. Glia. 2005;50:329–39.

141. Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, Chan PH. Early appear- ance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res. 1999;842:92–100.

142. Gasche Y, Fujimura M, Morita-Fujimura Y, Copin JC, Kawase M, Massengale J, et al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction. J Cereb Blood Flow Metab. 1999;19:1020–8.

143. Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ. Matrix metallopro- teinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab. 1999;19:624–33.

8 Extracellular Matrix in Stroke

Dalam dokumen Cerebral Ischemic Reperfusion Injuries (CIRI) (Halaman 150-160)