• Tidak ada hasil yang ditemukan

Epigenetic mechanisms

Dalam dokumen Textbook in Psychiatric Epidemiology (Halaman 81-87)

As well as genes influencing the exposure and sus- ceptibility to environmental exposures, through GEr and GxE, the reverse association is also possible, and has been postulated in a number of psychi- atric disorders, including depression, schizophre- nia, substance dependence and developmental dis- orders. Epigenetic mechanisms occur when environ- mental factors impact on DNA sequencing (causing de novo mutations) or through changes in DNA methylation and chromatin structure (causing altered gene expression through epimutations) both glob- ally and at the promoters of candidate gene sites.

For example, epigenetic chromatin remodelling of the brain derived neurotrophic factor promoter site (BDNF) is associated with neuronal activity, seizures, chronic stress, cocaine addiction and Rett’s syn- drome: remodelling at the reelin promoter may play a role in mouse models of schizophrenia [101].

Although research on DNA methylation as an epige- netic mechanism underlying GxE is only in its early

stages the preliminary results are promising. Animal studies have shown early maternal behaviour predict the offspring’s stress sensitivity through altered DNA methylation in some key neuronal receptor genes that are involved in the stress response [102]. Environ- mentally induced epigenetic mechanisms may explain a range of epidemiological findings including the age of onset curves, monozygote discordance and the gender differences observed in psychiatric disorders.

Methodologies designed to investigate such epige- netic processes are being developed currently and are likely to further elucidate the gene–environment interplay in psychiatric disorders [103].

References

[1] Thomas, D.C. (2000) Genetic epidemiology with a capital ‘E’.Genet. Epidemiol.,19, 289–300.

[2] Thomas, D.C. (2004)Statistical Methods in Genetic Epidemiology, Oxford University Press, New York.

[3] Morton, N.E., Rao, D. and Lalouel, J.-M. (1983) Methods in Genetic Epidemiology, S.Karger, Berlin.

[4] Khoury, M.J., Beaty, T.H. and Cohen, B.H. (1993) Genetic Epidemiology, Oxford University press, Oxford.

[5] Susser, E. and Susser, M. (1989) Familiar aggregation studies. A note on their epidemiological properties.

Am. J. Epidemiol.,129, 23–30.

[6] Sham, P. (1996) Genetic epidemiology. Br. Med.

Bull.,52, 408–433.

[7] Morgan, H.D., Sutherland, H.E., Martin, D.I.K. and Whitelaw, E. (1999) Epigenetic inheritance at the agouti locus in the mouse.Nat. Genet.,23, 314–318.

[8] Crow, T.J. (2007) How and why genetic linkage has not solved the problem of psychosis: review and hypothesis.Am. J. Psychiatr.,164(1), 13–21.

[9] Crow, T. (2007) Genetic hypotheses for schizophre- nia.Br. J. Psychiatr.,191(2), 180.

[10] Faraone, S.V. and Tsuang, M.T. (1985) Quantitative models of the genetic transmission of schizophrenia.

Psychol. Bull.,98, 41–66.

[11] Faraone, S.V., Kremen, W.S. and Tsuang, M.T.

(1990) Genetic transmission of major affective dis- orders: qualitative models and linkage analyses.

Psychol. Bull.,108, 109–127.

[12] Trikalinos, T.A., Karvouni, A., Zintzaras, E.et al.

(2005) A heterogeneity-based genome search meta- analysis for autism-spectrum disorders.Mol. Psychi- atr.,11(1), 29–36.

[13] McQueen, M.B., Devlin, B., Faraone, S.V. et al.

(2005) Combined analysis from eleven linkage stud- ies of bipolar disorder provides strong evidence of

susceptibility loci on chromosomes 6q and 8q.Am.

J. Hum. Genet.,77(4), 582–595.

[14] Hauser, E.R., Boehnke, M., Guo, S.W. and Risch, N. (1996) Affected sib-pair interval mapping and exclusion of complex genetic traits-sampling consid- erations.Genet. Epidemiol.,13, 117–137.

[15] Allen, N.C., Bagade, S., McQueen, M.B. et al.

(2008) Systematic meta-analyses and field synop- sis of genetic association studies in schizophrenia:

the SzGene database.Nat. Genet.,40(7), 827–834.

[16] Risch, N. and Teng, J. (1996) The relative power of family -based and case–control designs for linkage disequilibrium studies of complex human diseases.

Genome Res.,8, 1273–1288.

[17] Hirschhorn, J.N. and Altshuler, D. (2002) Once and again – issues surrounding replication in genetic association studies.J. Clin. Endocrinol. Metab.,87, 4438–4441.

[18] Hardy, J. and Singleton, A. (2009) Genomewide association studies and human disease.N. Engl. J.

Med.,360, 1759–1768.

[19] Jaffee, S.R. and Price, T.S. (2007) Gene–environment correlations: a review of the evidence and implica- tions for prevention of mental illness.Mol. Psychi- atr.,12, 432–442.

[20] Hardy, J. and Singleton, A. (2009) Genomewide association studies and human disease.N. Engl. J.

Med.,360, 1759–1768.

[21] Jaffee, S.R. and Price, T. (2007) Gene–environment correlations: a review of the evidence and implica- tions for prevention of mental illness.Mol. Psychi- atr.,12, 432–442.

[22] Kenneth, K.S. (1996) Parenting: a genetic epidemio- logical perspective.Am. J. Psychiatr.,153, 11–20.

[23] Dawkins, R. (1982)The Extended Phenotype. The Gene As the Unit of Selection, Oxford University Press, Oxford.

[24] Kendler, K.S. and Greenspan, R.J. (2006) The nature of genetic influences on behavior: lessons from

‘Simpler’ organisms.Am. J. Psychiatry, 163(10), 1683–1694.

[25] Plomin, R., DeFries, J.C. and Loehlin, J.C. (1977) Genotype-environment interaction and correlation in the analysis of human behaviour.Psychol. Bull., 84, 309–322.

[26] Kenneth, K.S., Gardener, C.O. and Prescott, C.A.

(2003) Personality and the experience of environ- mental adversity.Psychol. Med.,33, 1193–1202.

[27] Spinath, F.M. and O’Connor, T. (2003) A behavioural genetic study of theoverlap between per- sonality and parenting.J. Pers.,71, 785–808.

[28] Kenneth, K.S. and Baker, J.H. (2007) Genetic influ- ences on measures of the environment: a systematic review.Psychol. Med.,37, 615–626.

[29] Rutter, M. (2006)Genes and Behaviour: Nature–

Nurture Interplay Explained, Blackwell, Oxford.

[30] Rutter, M. (2008) Biological implications of gene–

environment interaction.J. Abnorm. Child Psychol., 36, 969–975.

[31] Rutter, M. (2006) Implications of resilience concepts for scientific understanding.Ann. N. Y. Acad. Sci., 1094, 1–12.

[32] Uher, R. (2008) Gene–environment interaction:

overcoming methodological challenges, inGenetic Effects on Environmental Vulnerability to Disease (ed. M. Rutter), John Wiley & Sons, Ltd, Chichester, pp. 13–30.

[33] Moogavkar, S.H. (2004) Fifty years of the multi- stage model:remarks on a landmark paper.Int. J.

Epidemiol.,33, 1182–1183.

[34] Rothman, K.J., Greenland, S., Poole, C. and Lash, T.L. (2008) Causation and causal inference, in Modern Epidemiology(eds K.J. Rothman and T.L.

Lash), Lippincott Williams & Wilkins, Philadelphia, pp. 5–31.

[35] North, K.E. and Martin, L.J. (2008) The impor- tance of gene–environment interaction: implications for social scientists.Sociol. Methods Res., 37 (2), 164–200.

[36] Neale, B.M. and Sham, P.C. (2004) The future of association studies. Gene-based analysis and replica- tion.Am. J. Hum. Genet.,75, 353–362.

[37] Zhang, K., Qin, Z.S., Liu, J.S.et al. (2004) Haplo- type block partitioning and tag SNP selection using genotype data and their applications to association studies.Genome Res.,14(5), 908–916.

[38] Pompanon, F., Bonln, A., Bellemain, E. and Taber- let, P. (2006) Genotying errors: causes, consequences and solutions.Nat. Rev. Genet.,6, 487–459.

[39] Gottesman, I.I. and Gould, T.D. (2003) The endophenotype concept in psychiatry: etymology and strategic intentions.Am. J. Psychiatr.,160(4), 636–645.

[40] Brown, G.W. and Harris, T.O. (1978)Social Origins of Depression. A Study of Psychiatric Disorder in Women, Routledge, London.

[41] Myin-Germeys, I., Oorschot, M., Collip, D. et al.

(2006) Experience sampling research in psy- chopathology: opening the black box of daily life.

Psychol. Med., 2009;39: 1533–1547.

[42] Susser, M. and Susser, E. (1996) Choosing a future for epidemiology: I. Eras and paradigms. Am. J.

Public Health,86(5), 668–673.

[43] Susser, M. and Susser, E. (1996) Choosing a future for epidemiology: II. From black box to Chinese boxes and eco-epidemiology.Am. J. Public Health, 86(5), 674–677.

[44] Allardyce, J., Gaebel, W., Zielasek, J. and van Os, J.

(2007) Deconstructing psychosis conference february

2006: the validity of schizophrenia and alterna- tive approaches to the classification of psychosis.

Schizophr. Bull.,33(4), 863–867.

[45] Kraemer, H.C., Noda, A. and O’Hara, R. (2004) Categorical versus dimensional approaches to diag- nosis: methodological challenges.J. Psychiatr. Res., 38, 17–25.

[46] Risch, N., Herrell, R., Lehner, T. et al. (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depres- sion: a meta-analysis.J. Am. Med. Assoc.,301(23), 2462–2471.

[47] Munaf `o, M.R., Brown, S.M. and Hariri, A.R. (2008) Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis.Biol. Psychi- atr.,63(9), 852–857.

[48] Ottman, R. (1996) Theoretical epidemiology gene–environment interaction:definitions and study designs.Prev. Med.,25, 764–770.

[49] Greenland, S., Lash, T.L. and Rothman, K.J. (2008) Concepts of interaction, inModern Epidemiology, 2nd edn (eds K.J. Rothman, S. Greenland and T.L.

Lash), Lippincott Williams & Wilkins, Philadelphia, pp. 71–86.

[50] Rutter, M. (2008) Whither gene–environment inter- actions? inGenetic Effects on Environmental Vul- nerability to Disease(ed M. Rutter), John Wiley &

Sons, Ltd, Chichester, pp. 1–12.

[51] Darroch, J. (1997) Biological synergism and paral- lelism.Am. J. Epidemiol.,145, 661–668.

[52] Darroch, J.N. and Borkent, M. (1994) Synergism, attributable risk and interaction for two binary expo- sure factors.Biometrika,81, 259–270.

[53] Tienari, P., Wynne, L.C. and Moring, J. (1994) The Finnish adoption family study of schizophrenia.

Implications for family research. Br. J. Psychiatr., 23, 20–26.

[54] Moffitt, T.E., Caspi, A. and Rutter, M. (2006) Mea- sured gen-environment interaction in psychopathol- ogy.Perspect. Psychol. Sci.,1(1), 5–27.

[55] Siemiatycki, J. and Thomas, D.C. (1981) Biologi- cal models and statistical interactions; an example from multistage carcinogenesis. Int. J. Epidemiol., 10, 383–387.

[56] Knol, M.J., Egger, M., Scott, P. et al. (2009) When one depends on the other: reporting of interaction in case–control and cohort studies.

Epidemiology, 20 (2), 161–166. doi: 10.1097/

EDE.0b013e31818f6651

[57] Botto, L.D. and Khoury, M.J. (2001) Commentary:

facing the challenge of gene–environment interac- tion: the two-by-four table and beyond. Am. J.

Epidemiol.,153(10), 1016–1020.

[58] Knol, M.J., van der Tweel, I., Grobbee, D.E.et al.

(2007) Estimating interaction on an additive scale

between continuous determinants in a logistic regres- sion model.Int. J. Epidemiol.,36(5), 1111–1118.

[59] Andrieu, N. and Goldstein, A.M. (1998) Epidemi- ologic and genetic approaches in the study of gene–environment interaction: an overview of avail- able methods.Epidemiol. Rev.,20(2), 137–147.

[60] Hunter, D.J. (2005) Gene–environment interactions in human diseases.Nat. Rev. Genet.,6(4), 287–298.

[61] Devlin, B. (2001) Genomic control, a new approach to genetic-based association studies.Theor. Popul.

Biol.,60, 155–165.

[62] Tung, L., Gordon, D. and Finch, S.J. (2007) The impact of genotype misclassification errors on the power to detect a gene–environment interaction using cox proportional hazards modeling. Hum.

Hered.,63, 101–110.

[63] Li, R. and Chambless, L. (2007) Test for additive interaction in proportional hazards models. Ann.

Epidemiol.,17(3), 227–236.

[64] Garcia-Closas, M., Thompson, W.D. and Robins, J.M. (1998) Differential misclassification and the assessment of gene–environment interactions in case–control studies. Am. J. Epidemiol., 147 (5), 426–433.

[65] Morimoto, L.M., White, E. and Newcomb, P.A. (2003) Selection bias in the assessment of gene–environment interaction in case–control stud- ies.Am. J. Epidemiol.,158(3), 259–263.

[66] Hosmer, D.W. and Lemeshow, S. (1992) Confidence interval estimation of interaction.Epidemiology,3 (5), 452–456.

[67] Skrondal, A. (2003) Interaction as departure from additivity in case–control studies: a cautionary note.

Am. J. Epidemiol.,158(3), 251–258.

[68] Teng, J. and Risch, N. (1999) The relative power of family-based and case–control designs for link- age disequilibrium studies of complex diseases. II, individual genotyping.Genome Res.,9, 234–241.

[69] Gladen, B.C. (1996) Matched-pair case–control studies when risk factors are correlated within the pairs.Int. J. Epidemiol.,25(2), 420–425.

[70] Khoury, M.J. and Flanders, W.D. (1996) Nontra- ditional epidemiologic approaches in the analysis of gene–environment interaction: case–control stud- ies with no controls.Am. J. Epidemiol., 144 (3), 207–213.

[71] Albert, P.S., Ratnasinghe, D., Tangrea, J. and Wacholder, S. (2001) Limitations of the case-only design for identifying gene–environment interac- tions.Am. J. Epidemiol.,154(8), 687–693.

[72] Kerber, R.A., Amos, C.I., Yeap, B.Y., Finkelstein, D.M. and Thomas, D.C. (2008) Design considera- tions in sib-pair study of linkage for susceptibility loci in cancer.BMC Med. Genet., 9, 64.

[73] Poznik, G.D., Adamska, K., Xu, X.et al. (2006) A novel framework for sib pair linkage analysis.Am.

J. Hum. Genet.,78, 222–230.

[74] Gauderman, W.J., Morrison, J.L., Siegmund, K. and Thomas, D.C. (1999) A joint test of linkage and gene x environment interaction, with affected sib pairs.Genet. Epidemiol.,17(Suppl. 1), s563–s568.

[75] Haines, J.L. and Pericak-Vance, M.A. (2006)Genetic Analysis of Complex Disease, 2nd edn, John Wiley

& Sons, Inc., New York .

[76] Crow, T.J. (2008) The emperors of the schizophrenia polygene have no clothes.Psychol. Med.,38(12), 1681–1685.

[77] PGCC Committee (2009) Genomewide association studies: history, rationale, and prospects for psy- chiatric disorders.Am. J. Psychiatr.,166(5), 540–

556.

[78] Lander, E.S. (1996) The new genomics: global views of biology.Science,274(5287), 536–539.

[79] Chakravarti, A. (1999) Population genetics--making sense out of sequence.Nat. Genet.,21(Suppl. 1), 56–60.

[80] PGCC Committee Available from https://pgc.unc .edu/index.php.

[81] Khoury, M.J. and Wacholder, S. (2009) Invited commentary: from genome-wide association stud- ies to gene–environment-wide interaction studies- -challenges and opportunities. Am. J. Epidemiol., 169(2), 227–230.

[82] Murcray, C.E., Lewinger, J.P. and Gauderman, W.J.

(2009) Gene–environment interaction in genome- wide association studies.Am. J. Epidemiol.,169(2), 219–226.

[83] Bhramar, M. and Nilanjan, C. (2008) Exploit- ing gene–environment independence for analysis of case–control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency.Biometrics,64(3), 685–694.

[84] Rothman, K.J., Greenland, S. and Lash, T.L. (2008) Modern Epidemiology, 3rd edn, Lippincott Williams

& Wilkins, Philadelphia.

[85] Kendler, K.S. and Prescott, C.A. (2006)Genes, Envi- ronment and Psychopathology: Understanding the Causes of Psychiatric and Substance use Disorders, Guilford Press, New York.

[86] Liu, X., Fallin, M.D. and Kao, W.H. (2004) Genetic dissection methods: designs used for tests of gene–environment interaction.Curr. Opin. Genet.

Dev.,14, 241–245.

[87] Lindstrom, S., Yen, Y.-C., Spiegelman, D. and Kraft, P. (2009) The impact of gene–environment depen- dence and misclassification in getetic association

studies incorporating gene–environment interaction.

Hum. Hered.,68, 171–181.

[88] Etheredge, A.J., Christensen, K., del Junco, D.et al.

(2005) Evaluation of two methods for assessing gene–environment interaction using data from the Danish case–control study of facial clefts. Birth Defects Res. (Part A),73, 541–546.

[89] Canli, T. and Lesch, K.-P. (2007) Long story short:

the serotonin transporter in emotion regulation and social cognition.Nat. Neurosci.,10(9), 1103–1109.

[90] Costa, L.G. and Eaton, D.L. (2006) Gene–

Environment Interactions, 1st edn, John Wiley &

Sons, Inc., New York .

[91] Hinds, D.A., Stokowski, R.P., Patil, N.et al. (2004) Matching strategies for genetic association studies in structured populations.Am. J. Hum. Genet.,74(2), 317–325.

[92] Wacholder, S., Rothman, N. and Caporaso, N.

(2002) Counterpoint: bias from population strat- ification is not a major threat to the validity of conclusions from epidemiological studies of com- mon polymorphisms and cancer.Cancer Epidemiol.

Biomar. Prev.,11(6), 513–520.

[93] Devlin, B., Bacanu, S.A. and Roeder, K. (2004) Genomic control to the extreme.Nat. Genet.,36, 1129–1130.

[94] Luan, J.A., Wong, M.Y., Day, N.E. and Wareham, N.J. (2001) Sample size determination for studies of gene–environment interaction.Int. J. Epidemiol.,30 (5), 1035–1040.

[95] Wong, M.Y., Day, N.E., Luan, J.A.et al. (2003) The detection of gene–environment interaction for continuous traits: should we deal with measurement error by bigger studies or better measurement?Int.

J. Epidemiol.,32(1), 51–57.

[96] Boks, M.P.M., Schipper, M., Schubart, C.D.et al.

(2007) Investigating gene–environment interaction in complex diseases: increasing power by selective sampling for environmental exposure. Int. J. Epi- demiol.,36(6), 1363–1369.

[97] Foppa, I. and Spiegelman, D. (1997) Power and sample size calculations for case–control studies of gene–environment interactions with a polyto- mous exposure variable. Am. J. Epidemiol., 146 (7), 596–604.

[98] Hwang, S.-J., Beaty, T.H., Liang, K.-Y. et al.

(1994) Minimum sample size estimation to detect gene–environment interaction in case–control designs.Am. J. Epidemiol.,140(11), 1029–1037.

[99] Lubin, J.H. and Gail, M.H. (1990) ON power and sample size for studying features of the relative odds of disease.Am. J. Epidemiol.,131(3), 552–566.

[100] Eaves, L.J. (2006) Genotype x environment interac- tion in psychopathology: fact or artifact?Twin Res.

Hum. Genet.,9, 1–8.

[101] Tsankova, N., Renthal, W., Kumar, A. and Nestler, E.J. (2007) Epigenetic regulation in psychiatric dis- orders.Nat. Rev. Neurosci.,8(5), 355–367.

[102] Weaver, I.C.G., Champagne, F.A., D’Alessio, A.C.

et al. (2004) Epigenetic programming by maternal behavior.Nat. Neurosci.,7, 847–854.

[103] Oh, G. and Petronis, A. (2008) Environmental stud- ies of schizophrenia through the prism of epigenetics.

Schizophr. Bull.,34(6), 1122–1129.

5 Reliability

Patrick E. Shrout

Department of Psychology, New York University, NY, USA

Dalam dokumen Textbook in Psychiatric Epidemiology (Halaman 81-87)