• Tidak ada hasil yang ditemukan

HIGHER-ORDER ACTIVE CIRCUITS

Dalam dokumen ELECTRIC CIRCUITS (Halaman 187-200)

LC ¼ 0 A solution is of the form

8.11 HIGHER-ORDER ACTIVE CIRCUITS

Application of circuit laws to circuits which contain op amps and several storage elements produces, in general, several first-order differential equations which may be solved simultaneously or be reduced to a higher-order input-output equation. A convenient tool for developing the equations is the complex frequency s (and generalized impedance in the s-domain) as used throughout Sections 8.5 to 8.10.

Again, we assume ideal op amps (see Section 7.16). The method is illustrated in the following examples.

EXAMPLE 8.13 FindHðsÞ ¼V2=V1in the circuit of Fig. 8-41 and show that the circuit becomes a noninverting integrator if and only ifR1C1¼R2C2.

Apply voltage division, in the phasor domain, to the input and feedback paths to find the voltages at the terminals of the op amp.

At terminal A: VA¼ 1 1þR1C1sV1 At terminal B: VB¼ R2C2s

1þR2C2sV2 ButVA¼VB. Therefore,

V2

V1¼ 1þR2C2s ð1þR1C1sÞR2C2s Only ifR1C1¼R2C2¼RCdo we get an integrator with a gain of 1=RC

V2 V1¼ 1

RCs; v2¼ 1 RC

ðt 1

v1dt

EXAMPLE 8.14 The circuit of Fig. 8-42 is called an equal-component Sallen-Key circuit. Find HðsÞ ¼V2=V1 and convert it to a differential equation.

Write KCL at nodes A and B.

At node A: VAV1

R þVAVB

R þ ðVAV2ÞCs¼0 At node B: VBVA

R þVBCs¼0

Let 1þR2=R1¼k, thenV2¼kVB. EliminatingVAandVB between the above equations we get V2

V1¼ k

R2C2s2þ ð3kÞRCsþ1 R2C2d2v2

dt2 þ ð3kÞRC dv2

dt þv2¼kv1

EXAMPLE 8.15 In the circuit of Fig. 8-42 assumeR¼2k,C¼10nF, andR2¼R1. Findv2ifv1¼uðtÞ.

By substituting the element values inHðsÞfound in Example 8.14 we obtain V2

V1¼ 2

41010s2þ2105sþ1 d2v2

dt2 þ5104dv2

dt þ25108v2¼5109v1 The response of the preceding equation fort>0 tov1¼uðtÞis

v2¼2þetð2 cos!t2:31 sin!tÞ ¼2þ3:055etcosð!tþ130:98Þ where¼25 000 and!¼21 651 rad/s.

EXAMPLE 8.16 Find conditions in the circuit of Fig. 8-42 for sustained oscillations inv2ðtÞ(with zero input) and find the frequency of oscillations.

In Example 8.14 we obtained

V2

V1¼ k

R2C2s2þ ð3kÞRCsþ1

For sustained oscillations the roots of the characteristic equation in Example 8.14 should be imaginary numbers.

This happens whenk¼3 orR2¼2R1, in which case!¼1=RC.

Solved Problems

8.1 A seriesRLC circuit, withR¼3 k,L¼10 H, andC¼200mF, has a constant-voltage source, V¼50 V, applied at t¼0. (a) Obtain the current transient, if the capacitor has no initial charge. (b) Sketch the current and find the time at which it is a maximum.

¼ R

2L¼150 s1 !20¼ 1

LC¼500 s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2!20 q

¼148:3 s1 ðaÞ

The circuit is overdampedð > !0Þ.

s1¼ þ¼ 1:70 s1 s2¼ ¼ 298:3 s1

i¼A1e1:70tþA2e298:3t and

Since the circuit contains an inductance,ið0þÞ ¼ið0Þ ¼0; also,Qð0þÞ ¼Qð0Þ ¼0. Thus, att¼0þ, KVL gives

0þ0þLdi

dt 0þ¼V or di dt 0þ¼V

L¼5 A=s

Applying these initial conditions to the expression fori, 0¼A1ð1Þ þA2ð1Þ

5¼ 1:70A1ð1Þ 298:3A2ð1Þ from whichA1¼ A2¼16:9 mA.

i¼16:9ðe1:70te298:3tÞ ðmAÞ (b) For the time of maximum current,

di

dt¼0¼ 28:73e1:70tþ5041:3e298:3t Solving by logarithms,t¼17:4 ms. See Fig. 8-18.

Fig. 8-18

8.2 A seriesRLCcircuit, withR¼50;L¼0:1 H;andC¼50mF, has a constant voltageV¼100 V applied att¼0. Obtain the current transient, assuming zero initial charge on the capacitor.

¼ R

2L¼250 s1 !20¼ 1

LC¼2:0105s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2!20 q

¼j370:8 rad=s

This is an oscillatory caseð < !0Þ, and the general current expression is i¼e250tðA1cos 370:8tþA2sin 370:8tÞ The initial conditions, obtained as in Problem 8.1, are

ið0þÞ ¼0 di dt 0þ

¼1000 A=s and these determine the values:A1¼0,A2¼2:70 A. Then

i¼e250tð2:70 sin 370:8tÞ ðAÞ

8.3 Rework Problem 8.2, if the capacitor has an initial chargeQ0¼2500mC.

Everything remains the same as in Problem 8.2 except the second initial condition, which is now 0þLdi

dt 0þ

þQ0

C ¼V or di dt 0þ

¼100 ð2500=50Þ

0:1 ¼500 A=s The initial values are half those in Problem 8.2, and so, by linearity,

i¼e250tð1:35 sin 370:8tÞ ðAÞ

8.4 A parallelRLC network, withR¼50:0, C¼200mF, andL¼55:6 mH, has an initial charge Q0¼5:0 mC on the capacitor. Obtain the expression for the voltage across the network.

¼ 1

2RC¼50 s1 !20¼ 1

LC¼8:99104s2 Since!20> 2, the voltage function is oscillatory and so!d¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!202 q

¼296 rad/s. The general voltage expression is

v¼e50tðA1cos 296tþA2sin 296tÞ

WithQ0¼5:0103C,V0¼25:0 V. Att¼0,v¼25:0 V. Then,A1¼25:0.

dv

dt¼ 50e50tðA1cos 296tþA2sin 296tÞ þ296e50tðA1sin 296tþA2cos 296tÞ Att¼0,dv=dt¼ V0=RC¼!dA2A1, from whichA2¼ 4:22. Thus,

v¼e50tð25:0 cos 296t4:22 sin 296tÞ ðVÞ

8.5 In Fig. 8-19, the switch is closed att¼0. Obtain the current i and capacitor voltage vC, for t>0.

As far as the natural response of the circuit is concerned, the two resistors are in parallel; hence, ¼ReqC¼ ð5Þð2mFÞ ¼10ms

By continuity,vCð0þÞ ¼vCð0Þ ¼0. Furthermore, ast! 1, the capacitor becomes an open circuit, leav- ing 20in series with the 50 V. That is,

ið1Þ ¼50

20¼2:5 A vCð1Þ ¼ ð2:5 AÞð10Þ ¼25 V

Knowing the end conditions onvC, we can write

vC¼ ½vCð0þÞ vCð1Þet=þvCð1Þ ¼25ð1et=10Þ ðVÞ whereintis measured inms.

The current in the capacitor is given by iC¼CdvC

dt ¼5et=10 ðAÞ and the current in the parallel 10-resistor is

i10¼ vC

10¼2:5ð1et=10Þ ðAÞ i¼iCþi10¼2:5ð1þet=10Þ ðAÞ Hence,

The problem might also have been solved by assigning mesh currents and solving simultaneous differ- ential equations.

8.6 For the time functions listed in the first column of Table 8-2, write the corresponding amplitude and phase angle (cosine-based) and the complex frequencys.

See columns 2 and 3 of the table.

8.7 For each amplitude and phase angle in the first column and complex frequencysin the second column in Table 8-3, write the corresponding time function.

See column 3 of the table.

Fig. 8-19

Table 8-2

Time Function A 8 s

iðtÞ ¼86:6 A 86:6 08 A 0

iðtÞ ¼15:0e2103t ðAÞ 15:0 08 A 2103Np/s vðtÞ ¼25:0 cosð250t458Þ ðVÞ 25:0 458 V j250 rad/s vðtÞ ¼0:50 sinð250tþ308Þ ðVÞ 0:50 608 V j250 rad/s iðtÞ ¼5:0e100tsinð50tþ908Þ ðAÞ 5:0 08 A 100j50 s1 iðtÞ ¼3 cos 50tþ4 sin 50t ðAÞ 5 53:138 A j50 rad/s

Table 8-3

A 8 s Time Function

10 08 þj120 10 cos 120 t

2 458 j120 2 cosð120 tþ458Þ 5 908 2 j50 5e2tcosð50t908Þ 15 08 5000 j1000 15e5000tcos 1000t

100 308 0 86.6

8.8 An amplitude and phase angle of 10 ffiffiffi p2

458V has an associated complex frequency s¼ 50þj100 s1. Find the voltage att¼10 ms.

vðtÞ ¼10 ffiffiffi 2 p

e50tcosð100tþ458Þ ðVÞ Att¼102s, 100t¼1 rad¼57:38, and so

v¼10 ffiffiffi 2 p

e0:5cos 102:38¼ 1:83 V

8.9 A passive network contains resistors, a 70-mH inductor, and a 25-mF capacitor. Obtain the respective s-domain impedances for a driving voltage (a) v¼100 sinð300tþ458Þ ðVÞ, (b) v¼100e100tcos 300tðVÞ.

(a) Resistance is independent of frequency. Ats¼j300 rad/s, the impedance of the inductor is sL¼ ðj300Þð70103Þ ¼j21

and that of the capacitor is

1

sC¼ j133:3 (b) Ats¼ 100þj300 s1,

sL¼ ð100þj300Þð70103Þ ¼ 7þj21 1

sC¼ 1

ð100þj300Þð25106Þ¼ 40j120

8.10 For the circuit shown in Fig. 8-20, obtainvat t¼0:1 s for source current ðaÞ i¼10 cos 2t(A), (b) i¼10etcos 2t(A).

ZinðsÞ ¼2þ2ðsþ2Þ

sþ4 ¼ ð4Þsþ3 sþ4 (a) Ats¼j2 rad/s,Zinðj2Þ ¼3:22 7:138. Then,

V¼IZin¼ ð10 08Þð3:22 7:138Þ ¼32:2 7:138 V or v¼32:2 cosð2tþ7:138Þ ðVÞ andvð0:1Þ ¼32:2 cosð18:598Þ ¼30:5 V.

(b) Ats¼ 1þj2 s1,Zinð1þj2Þ ¼3:14 11:318. Then

V¼IZin¼31:4 11:318 V or v¼31:4etcosð2tþ11:318Þ ðVÞ andvð0:1Þ ¼31:4e0:1cos 22:778¼26:2 V.

8.11 Obtain the impedance ZinðsÞ for the circuit shown in Fig. 8-21 at (a) s¼0, (b) s¼j4 rad/s, (c) jsj ¼ 1.

Fig. 8-20 Fig. 8-21

ZinðsÞ ¼2þ

2ðsþ1Þ 4 s 2ðsþ1Þ þ4

s

¼ ð2Þs2þ3sþ4 s2þsþ2

(a) Zinð0Þ ¼4, the impedance offered to a constant (dc) source in the steady state.

Zinðj4Þ ¼2ðj4Þ2þ3ðj4Þ þ4

ðj4Þ2þj4þ2 ¼2:33 29:058 ðbÞ

This is the impedance offered to a source sin 4tor cos 4t.

(c) Zinð1Þ ¼2. At very high frequencies the capacitance acts like a short circuit across theRLbranch.

8.12 Express the impedance ZðsÞ of the parallel combination of L¼4 H and C¼1 F. At what frequenciessis this impedance zero or infinite?

ZðsÞ ¼ ð4sÞð1=sÞ 4sþ ð1=sÞ¼ s

s2þ0:25

By inspection,Zð0Þ ¼0 andZð1Þ ¼0, which agrees with our earlier understanding of parallelLCcircuits at frequencies of zero (dc) and infinity. ForjZðsÞj ¼ 1,

s2þ0:25¼0 or s¼ j0:5 rad=s

A sinusoidal driving source, of frequency 0.5 rad/s, results in parallel resonance and an infinite impedance.

8.13 The circuit shown in Fig. 8-22 has a voltage source connected at terminalsab. The response to the excitation is the input current. Obtain the appropriate network functionHðsÞ.

HðsÞ ¼ response excitation¼ IðsÞ

VðsÞ 1 ZðsÞ ZðsÞ ¼2þð2þ1=sÞð1Þ

2þ1=sþ1¼8sþ3

3sþ1 from which HðsÞ ¼ 1

ZðsÞ¼3sþ1 8sþ3

8.14 ObtainHðsÞfor the network shown in Fig. 8-23, where the excitation is the driving currentIðsÞ and the response is the voltage at the input terminals.

Applying KCL at junctiona,

IðsÞ þ2IðsÞ ¼s

5V0ðsÞ or V0ðsÞ ¼15 s IðsÞ

Fig. 8-22 Fig. 8-23

At the input terminals, KVL gives

VðsÞ ¼2sIðsÞ þV0ðsÞ ¼ 2sþ15 s

IðsÞ

HðsÞ ¼VðsÞ

IðsÞ ¼2s2þ15 Then s

8.15 For the two-port network shown in Fig. 8-24 find the values ofR1, R2, and C, given that the voltage transfer function is

HvðsÞ VoðsÞ

ViðsÞ¼ 0:2 s2þ3sþ2

The impedance looking intoxx0is

Z0¼ ð1=sCÞðR1þR2Þ

ð1=sCÞ þR1þR2¼ R1þR2 1þ ðR1þR2ÞCs Then, by repeated voltage division,

Vo Vi¼ Vo

Vxx0

Vxx0 Vi

¼ R2 R1þR2

Z0 Z0þs1

¼ R2=ðR1þR2ÞC s2þ 1

ðR1þR2ÞCsþ1 C

Equating the coefficients in this expression to those in the given expression forHvðsÞ, we find:

C¼1

2F R1¼3

5 R2¼ 1

15

8.16 Construct the pole-zero plot for the transfer admittance function HðsÞ ¼ IoðsÞ

ViðsÞ¼s2þ2sþ17 s2þ3sþ2 In factored form,

HðsÞ ¼ðsþ1þj4Þðsþ1j4Þ ðsþ1Þðsþ2Þ Poles exist at1 and2; zeros at1 j4. See Fig. 8-25.

Fig. 8-24

8.17 Obtain the natural frequencies of the network shown in Fig. 8-26 by driving it with a conveniently located current source.

The response to a current source connected atxx0 is a voltage across these same terminals; hence the network functionHðsÞ ¼VðsÞ=IðsÞ ¼ZðsÞ. Then,

1 ZðsÞ¼1

1þ 1 2=sþ 1

2þ4s¼ 1 2

s2þ2:5sþ1:5 sþ0:5 ZðsÞ ¼ ð2Þ sþ0:5

s2þ2:5sþ1:5¼ ð2Þ sþ0:5 ðsþ1Þðsþ1:5Þ Thus,

The natural frequencies are the poles of the network function,s¼ 1:0 Np=s¼2 ands¼ 1:5 Np/s.

8.18 Repeat Problem 8.17, now driving the network with a conveniently located voltage source.

The conductor at yy0 in Fig. 8-26 can be opened and a voltage source inserted. Then, HðsÞ ¼IðsÞ=VðsÞ ¼1=ZðsÞ:

The impedance of the netework at terminalsyy0 is ZðsÞ ¼2þ4sþ 1ð2=sÞ

1þ2=s¼ ð4Þs2þ2:5sþ1:5 sþ2 HðsÞ ¼ 1

ZðsÞ¼ 1 4

sþ2 s2þ2:5sþ1:5 Then;

Fig. 8-25

Fig. 8-26

The denominator is the same as that in Problem 8.17, with the same roots and corresponding natural frequencies.

8.19 A 5000-rad/s sinusoidal source, V¼100 08V in phasor form, is applied to the circuit of Fig. 8-27. Obtain the magnitude-scaling factorKmand the element values which will limit the current to 89 mA (maximum value).

At!¼5000 rad/s,

Zin¼j!L1þ

ðj!L2Þ Rþ 1 j!C

j!L2þRþ 1 j!C

¼j0:250þðj0:500Þð0:40j0:80Þ

0:40j0:30 ¼1:124 69:158

ForjVj ¼100 V,jIj ¼100=1:124¼89:0 A. Thus, to limit the current to 89103A, the impedance must be increased by the factorKm¼103.

The scaled element values are as follows: R¼103ð0:4Þ ¼400, L1¼103ð50mHÞ ¼50 mH, L2¼103ð100mHÞ ¼100 mH, andC¼ ð250mFÞ=103¼0:250mF.

8.20 Refer to Fig. 8-28. Obtain HðsÞ ¼Vo=Vi for s¼j4106rad/s. Scale the network with Km¼103 and compareHðsÞfor the two networks.

At!¼4106rad/s,XL¼ ð4106Þð0:5103Þ ¼2000. Then, HðsÞ ¼Vo

Vi¼ j2000

2000þj2000¼ 1 ffiffiffi2 p 458

After magnitude scaling, the inductive reactance is 103ð2000Þ ¼2 and the resistance is 103ð2 kÞ ¼2. Thus

HðsÞ ¼ j2 2þj2¼ 1

ffiffiffi2 p 458 Fig. 8-27

Fig. 8-28

The voltage transfer function remains unchanged by magnitude scaling. In general, any dimensionless transfer function is unaffected by magnitude scaling; a transfer function having unitsis multiplied byKm; and a function having units S is multiplied by 1=Km.

8.21 A three-element series circuit containsR¼5, L¼4 H, andC¼3:91 mF. Obtain the series resonant frequency, in rad/s, and then frequency-scale the circuit with Kf ¼1000. Plot jZð!Þj for both circuits.

Before scaling,

!0¼ 1 ffiffiffiffiffiffiffi LC

p ¼8 rad=s and Zð!0Þ ¼R¼5 After scaling,

R¼5 L¼ 4 H

1000¼4 mH C¼3:91 mF

1000 ¼3:91mF

!0¼1000ð8 rad=sÞ ¼8000 rad=s Zð!0Þ ¼R¼5

Thus, frequency scaling by a factor of 1000 results in the 5-impedance value being attained at 8000 rad/s instead of 8 rad/s. Any other value of the impedance is likewise attained, after scaling, at a frequency 1000 times that at which it was attained before scaling. Consequently, the two graphs ofjZð!Þjdiffer only in the horizontal scale—see Fig. 8-29. (The same would be true of the two graphs ofZð!Þ.)

Supplementary Problems

8.22 In theRLCcircuit of Fig. 8-30, the capacitor is initially charged toV0¼200 V. Find the current transient after the switch is closed att¼0. Ans: 2e1000tsin 1000t ðAÞ

8.23 A seriesRLCcircuit, withR¼200,L¼0:1 H, andC¼100mF, has a voltage source of 200 V applied at t¼0. Find the current transient, assuming zero initial charge on the capacitor.

Ans: 1:055ðe52te1948tÞ ðAÞ

8.24 What value of capacitance, in place of the 100mF in Problem 8.23, results in the critically damped case?

Ans: 10mF

Fig. 8-29

8.25 Find the natural resonant frequency,jj, of a seriesRLCcircuit withR¼200,L¼0:1 H,C¼5mF.

Ans: 1000 rad/s

8.26 A voltage of 10 V is applied att¼0 to a seriesRLCcircuit withR¼5,L¼0:1 H,C¼500mF. Find the transient voltage across the resistance. Ans: 3:60e25tsin 139t ðVÞ

8.27 In the two-mesh circuit shown in Fig. 8-31, the switch is closed att¼0. Findi1andi2, fort>0.

Ans: i1¼0:101e100tþ9:899e9950t ðAÞ;i2¼ 5:05e100tþ5:00þ0:05e9950t ðAÞ

8.28 A voltage has thes-domain representation 100 308V. Express the time function for (a) s¼ 2 Np/s, (b) s¼ 1þj5 s1. Ans: ðaÞ 86:6e2t ðVÞ; ðbÞ 100etcosð5tþ308Þ ðVÞ

8.29 Give the complex frequencies associated with the currentiðtÞ ¼5:0þ10e3tcosð50tþ908Þ ðAÞ.

Ans: 0;3j50 s1

8.30 A phasor current 25 408A has complex frequency s¼ 2þj3 s1. What is the magnitude of iðtÞ at t¼0:2 s? Ans: 4:51 A

8.31 Calculate the impedance ZðsÞ for the circuit shown in Fig. 8-32, at (a) s¼0; ðbÞ s¼j1 rad/s, (c) s¼j2 rad/s, (d) jsj ¼ 1. Ans: ðaÞ 1; ðbÞ 1:58 18:438; ðcÞ 1:84 12:538; ðdÞ 2

8.32 The voltage source in thes-domain circuit shown in Fig. 8-33 has the time-domain expression viðtÞ ¼10etcos 2t ðVÞ

ObtainioðtÞ. Ans: 7:07etcosð2tþ98:138Þ ðAÞ

8.33 In the time domain, a series circuit ofR,L, andChas an applied voltageviand element voltagesvR,vL, and vC. Obtain the voltage transfer functions (a) VRðsÞ=ViðsÞ, (b) VCðsÞ=ViðsÞ:

Fig. 8-30 Fig. 8-31

Fig. 8-32 Fig. 8-33

Ans: ðaÞ Rs=L s2þR

Lsþ 1 LC

; ðbÞ 1=LC s2þR

Lsþ 1 LC

8.34 Obtain the network functionHðsÞfor the circuit shown in Fig. 8-34. The response is the voltageViðsÞ.

Ans: ðsþ7j2:65Þðsþ7þj2:65Þ ðsþ2Þðsþ4Þ

8.35 Construct thes-plane plot for the transfer function of Problem 8.34. EvaluateHðj3Þfrom the plot.

Ans: See Fig. 8-35.

ð7:02Þð9:0Þ 2:86þ38:918

ð3:61Þð5:0Þ 56:318þ36:878¼3:50 51:418

8.36 ObtainHðsÞ ¼ViðsÞ=IiðsÞfor the circuit shown in Fig. 8-36 and construct the pole-zero plot.

Ans: HðsÞ ¼sðs2þ1:5Þ

s2þ1 : See Fig. 8-37.

8.37 Write the transfer functionHðsÞwhose pole-zero plot is given in Fig. 8-38.

Ans: HðsÞ ¼k s2þ50sþ400 s2þ40sþ2000

Fig. 8-34

Fig. 8-35

8.38 The pole-zero plot in Fig. 8-39 shows a pole ats¼0 and zeros ats¼ 50j50. Use the geometrical method to evaluate the transfer function at the test pointj100.

Ans: Hðj100Þ ¼223:6 26:578

8.39 A two-branch parallel circuit has a resistance of 20in one branch and the series combination ofR¼10 andL¼0:1 H in the other. First, apply an excitation,IiðsÞ, and obtain the natural frequency from the denominator of the network function. Try different locations for applying the current source. Second, insert a voltage source,ViðsÞ, and obtain the natural frequency. Ans: 300 Np/s in all cases

8.40 In the network shown in Fig. 8-40, the switch is closed att¼0. Att¼0þ,i¼0 and di

dt¼25 A=s

Obtain the natural frequencies and the complete current,i¼inþif. Ans: 8:5 Np/s,23:5 Np/s;i¼ 2:25e8:5t0:25e23:5tþ2:5 ðAÞ

Fig. 8-36 Fig. 8-37

Fig. 8-38 Fig. 8-39

Dalam dokumen ELECTRIC CIRCUITS (Halaman 187-200)

Dokumen terkait