mme.modares.ac.ir
1
* 2
1 -
2 -
* 83111
- 84156
[email protected]04 :
1393
23 :
1394
19 :
1394
.
. )
(
.
. .
.
.
Laboratory Study of Penetration Depth and Distribution of Bubbles Formed by Translating Vertical Fluid Jet
Mohammad Reza Tavakoli
*Pouriya Bayat
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran.
P.O.B 84156-83111 Isfahan, Iran, [email protected]
A RTICLE I NFORMATION A BSTRACT
Original Research Paper Received 23 February 2015 Accepted 12 April 2015 Available Online 09 May 2015
Air entrainment in liquids via fluid jet, is complex phenomenon that has important applications in industry and the environment. The impact of vertical laminar water jet translating over the quiescent pool of water at constant velocity was studied empirically, and the penetration depth as well as distribution of the bubbles formed by this jet was measured for both fresh and sea water with two different optical methods. This experiment was conducted at different flow rates (corresponding to different vertical velocities). In each case, the jet was moved at different horizontal velocities relative to the pool surface. As the jet started its horizontal translation, air began entering the pool from the bottom of the point of impact. Bubbles penetration depth was measured through high-speed imaging technique, and pulse shadowgraphy was used for measuring the bubbles distribution. Increasing the vertical velocity of the jet while simultaneously decreasing the horizontal velocity of the same led to increased bubble penetration depths, and similar results were obtained for fresh water and sea water. This result was obtained in spite of the fact that the number and size of the bubbles formed in sea water were dramatically different from those formed in fresh water. Moreover, the significant role of buoyant forces in the distribution of the bubbles was obvious. The penetration depth and distribution of the bubbles were measured and reported for various jets with different diameters at different vertical and horizontal velocities.
Keywords:
Fluid jet
Bubble measurement Penetration depth High- Speed imaging Sea water
1 -
. )
( .
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
. .
- .
. ]
1 [ ] 2 [
.
] 3 [ ] 4 [ ]
5 [
. ]
6 [
] 7 [ .
.
(V
c)
.
1
.
.
] 8 [
(Vc)
.
.
.
1- Depression
] 9 [ 2/
0 4/
0
6 m/s
Vj=
. ]
10 [
] 11 [ ]
12 [
. ]
13 [ 6 m/s
6
/% 3/
0 v v / v
2
% 5/
0 v v /
8/ m/s
2
Vj
=
.
] 11 13 [ .
)
] 14 [
.
3) 1 (
Fr V
t/ gD
jVt
)
D
g
)
41 .(
15 ] [ .
16 ] [ .
( ) ( ) 1
)
] 14 ([
2- rms Velocity 3- Froud Number 4- Kelvin-Helmholtz
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
- 17 ]
. [
18 ] [
.
19 ] [
20 ]
. [
.
.
.
] 21 [
.
22 ] [
20 ] [
.
.
)
. .
] 14 [
) ( .
.
.
2 -
3/
m7 8/
m0
9/
m0 .
1 cm
) 2 .(
4
mm.
.
.
( ) ( )
3
m. 4
mm] 14 [ 2/
m0
.
cm /s
3200
. 60
% 3
.
.
4 mm
Dj=
77 mm
/3
Dj
=
85 mm
/3
Dj
=
95 mm
/3
Dj
=
2
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
33 m/s
/6
Vj
=
5 m/s
Vj=
47 m/s
/3
Vj
=
. .
.
% 20 /0
% 35 /0
1
4 500
35 .
3
2020
21632
31200 200 mm
8/
4
0
.
100 mm
150 mm
50 mm
. 067 /0 )
4 .(
3
1- Phantom 4 2- PIV
3- Kodak Megaplus ES 2020 4- Acousto-optic Modulator
2 - 1 -
200
) 5
( .
35 ) 6 .(
. 95 mm
70 mm
58 300 mm
220 mm
184
.
5
.
.
.
.
. 4
4
5- Pulse Shadowgraph
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
5
0/
m/s0
Vt=
77
mm/3
Dj=
47
m/s/3
Vj=
6
89
m/s/0
Vt=
95
mm/3
Dj=
33
m/s/6
Vj=
.
5/ mm
24 18 mm
15 . .
.
45
. .
. . ]
23 [ .
45
1470 .
. )
2255 (
I=. .
3.
) 2 (
2 2
0
(1 tanh( ( (
1 0) (
0)
2)))
F A A x x y y A
A
nx
0y
0n
. A
A0
A1
2
/2
A d
.
d.
. )
x0 (
x=180
I=
% 8
x
.
.
x( )
180 7
I=. 400
.
% 3/
6 .
8 20 mm
. 9
7 )
.
1- Patterson Globe Reticle 2- Intensity
3- Ferrenel Pattern
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
)
)
8 (
) (
20 mm
)
2 - 2 -
4 )
) (
. 30
1
. .
.
9
1
)
Vt
(m/s)
Vj(m/s)
Dj(mm)
(ml/s)
7/
83
6/
1 38 /0
02 /0 47 /3
07 /0 77
/3
03 /0 8/
38
15 /1
6/
85
7/
1 38 /0
02 /0 00 /5
09 /0 85
/3
05 /0 2/
58
75 /1
6/
86
8/
1 38 /0
02 /0 33 /6
11 /0 95
/3
07 /0 6/
77
33 /2
6/
81
6/
1 51 /0
04 /0 47 /3
07 /0 77
/3
03 /0 8/
38
15 /1
1/
84
7/
1 51 /0
04 /0 00 /5
09 /0 85
/3
05 /0 2/
58
75 /1
4/
85
7/
1 51 /0
04 /0 33 /6
11 /0 95
/3
07 /0 6/
77
33 /2
7/
79
5/
1 63 /0
03 /0 47 /3
07 /0 77
/3
03 /0 8/
38
15 /1
8/
82
6/
1 63 /0
03 /0 00 /5
09 /0 85
/3
05 /0 2/
58
75 /1
3/
84
7/
1 63 /0
03 /0 33 /6
11 /0 95
/3
07 /0 6/
77
33 /2
6/
77
4/
1 76 /0
03 /0 47 /3
07 /0 77
/3
03 /0 8/
38
15 /1
4/
81
6/
1 76 /0
03 /0 00 /5
09 /0 85
/3
05 /0 2/
58
75 /1
1/
83
6/
1 76 /0
03 /0 33 /6
11 /0 95
/3
07 /0 6/
77
33 /2
6/
75
3/
1 89 /0
04 /0 47 /3
07 /0 77
/3
03 /0 8/
38
15 /1
9/
79
5/
1 89 /0
04 /0 00 /5
09 /0 85
/3
05 /0 2/
58
75 /1
0/
82
6/
1 89 /0
03 /0 33 /6
11 /0 95
/3
07 /0 8/
38
15 /1
28
/0
10
. 51 m/s
/0
Vt=
33 m/s
/6
Vj=
.
3 -
3 - 1 -
5 )
0
Vt
=
( .
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
10
47 m/s
/3
Vj
=
77 mm
/3
Dj
=
.
. ] 9 [ ]
10 [
. .
. 33 m/s
/6
% 35 /0 ]
11 13 [
6 m/s
/6
% 3/
0
. 1
0
Vt>
.
3 - 2 -
.
.
6 .
. 11
. .
12
( ) ) )
11 )
33 m/s
/6
Vj
=
(
( : 89 m/s
/0
Vt
=
( 63 m/s
/0
Vt
=
( 38 m/s
/0
Vt
=
12
13
. ] 14 [:
) 3 (
tan ( )
12
tjV V
1 76 87 14 ] . [
14 .
14
) 4 (
159.2 5.88tan ( )
1 tp j
d V V
15
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
. 16
.
.
13
14
15
16
3 - 3 -
) 17 ( .
18
51 m/s
/0
Vt
=
47
m/s/3
Vj
=
)
)
17
( (
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
.
. 19 47 m/s
/3
Vj
=
.
20 33 m/s
/6
Vj
=
18 19 .
18
51 m/s
/0
Vt
=
47 m/s
/3
Vj
=
19 47
m/s/3
Vj
=
21
. )
15
( .
22
65 mm
3/ m/s
6
Vj
=
51 m/s
/0
Vt
=
.
22 ) 21
(
.
) 2/ mm
0 ( 90
) 1/ mm
0 ( 50
20
3/
m/s6
Vj=
51
m/s/0
Vt=
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
21 3/ m/s
6
Vj
=
51 m/s
/0
Vt
=
22 3/ m/s
6
Vj
51 m/s
/0
Vt=
4 -
.
.
. .
. )
(
. ]
19 20 [
.
.
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
.
( )
.
5 -
A
0
A
1A
2d
p) (
mm
d
)(
mm
D
i) (
mm
D
j) (
mm
I
V
t)
ms
-1(
V
j)
ms
-1(
x )
(
mm
)
6 -
[1] H. Chanson, L. Jaw-Fang, Plunging jet characteristics of plunging breakers, Coastal Engineering, Vol. 31, pp. 125-141, 1997.
[2] J. P. Kockx, F. T. M. Nieuwstadt, R. V. A. Oliemans, R. Delfos, Gas entrainment by liquid film falling around stationary Taylor bubble in vertical tube, International Journal of Multiphase Flow, Vol. 31, No. 1, pp. 1-24, 2005.
[3] A. K. Bin, Gas entrainment by plunging liquid jets, Chemical Engineering Science, Vol. 48, No. 21, pp. 3585-3630, 1993.
[4] I. R. Wood, Air Entrainment in Free-surface Flow: IAHR Hydraulic Structures Design Manuals 4 Rotterdam: Balkema, 1991.
[5] K. T. Kiger, J. H. Duncan, Air Entrainment Mechanisms in Plunging Jets and Breaking Waves, Annual Review of Fluid Mechcanics, Vol. 44, pp.
563-596, 2011.
[6] H. Chanson, S. Aoki, A. Hoque, Similitude of Air Entrainment at Vertical Circular Plunging Jet Procceding of ASME FEDSM’02, Fluid Engineering Division Summer Meeting, Montreal, Quebec, Canada, July 14-18, Paper 2002-31024, pp. 1-6, 2002.
[7] H. Chanson, S. Aoki, A. Hoque, Physical modelling and similitude of air bubble entrainment at vertical circular plunging jets, Chemical Engineering Science Vol. 59, No. 4, pp. 747-758, 2004.
[8] T. J. Lin, H. G. Donnelly, Gas bubble entrainment by plunging laminar liquid jets, AIChEJ, Vol. 12, No. 3, pp. 563-571, 1966.
[9 A. T. Sheridan, Surface entrainment of air by water jet, Nature, Vol. 209, pp. 799-800, 1966.
[10 A. K. Bin, Minimum air entrainment velocity for vertical plunging liquid jets, Chem. Eng. Sci Vol. 43, No. 2, pp. 379-389, 1988.
[11] D. A. Ervine, E. McKeogh, E. M. Elsawy, Effect of turbulence intensity on the rate of air entrainment by plunging water jets, Proc. Inst. Civ. Eng., Struct. Build, Vol. 69, No. 2, pp. 425-445, 1980.
[12] M. EL Hummuumi, J. L. Achard, L. Davous, Measurement of air entrainment by vertical plunging liquid jets Experiments in Fluids, Vol.
32, pp. 624-638, 2002.
[13] E. J. McKeogh, E. M. Elsawy, Air entrainment rate and diffusion pattern of plunging liquid jets, Chem. Eng. Sci., Vol. 36, No. 7, pp. 1161-1172, 1981.
[14] D. Chirichella, R. Gomez-Ledesma, K. T. Kiger, J. H. Duncan, Incipient air entrainment in translating axisymmetric plunging laminar jet, Physics of Fluids, Vol. 14, No. 2, pp. 781-790, 2002.
[15] B. Kersten, C. Ohl, A. Prosperetti, Transient impact of liquid column on miscible liquid surface, Physics of Fluids, Vol. 15, No. 3, pp. 821-824, 2003.
[16] W. Soh, B. Khoo, W. Yuen, The entrainment of air by water jet impinging on free surface, Exp. Fluids, Vol. 39, pp. 496-504, 2005.
[17] R. Gomez-Ledesma, K. T. Kiger, J. H. Duncan, The impact of translating plunging jet on pool of the same liquid, J. Fluid Mech, Vol. 680, pp. 5-30, 2011.
[18] H. N. Oguz, A. Prosperetti, A. Kolaini, Air entrapment by falling water mass, J. Fluid Mech, Vol. 294, pp. 181-207, 1995.
[19] C. E. Blenkinsopp, J.R. Chaplin, Validity of small scale physical models involving breaking waves, In Proccesding 22ndInternational Worlshope on Water Waves and Floating Bodies Plitvice, Croatia, 2007.
[20] A. K. Roy, B. Maiti, P.K. Das, Visualisation of air entrainment by plunging jet, Procedia Engineering, Vol. 56, No. 1, pp. 468-473, 2013.
[21] A. Vaidelien V. Vaidelys, Air bubbles and water droplets entrainment and removal in turbulent water flows, Mechanika, Vol. 18, No. 1, pp. 56- 62, 2012.
[22] X. L. Qu, L. Kaezzer, D. Danciu, M. Labois, D. Lakehal, Characterization of plunging liquid jets: combined experimental and numerical investigation, International Journal of Multiphase Flow, Vol. 37, No. 7, pp.
722-731, 2011.
[23]B. Jahne, P. Geibler, Depth from focus with one image, Proceedings of the Conference on Computer Vision and Pattern Recongnition Seattle, 1994.
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]