• Tidak ada hasil yang ditemukan

ʇ|ÀÆ» ®Ì¿Z°»

N/A
N/A
Protected

Academic year: 2024

Membagikan "ʇ|ÀÆ» ®Ì¿Z°»"

Copied!
11
0
0

Teks penuh

(1)

mme.modares.ac.ir

1

* 2

3

1 -

2 -

3 -

* 167651719

[email protected]

17 :

1393 1393 22 :

04 1393

.

/ .

. .

- .

- .

- .

. .

.

Effects of interphase damageon the elastoviscoplastic behavior of general unidirectional metal matrix composites

Mohammad Javad Mahmoodi

1

*, Mohammad Kazem Hassanzadeh Aghdam

2

Reza Ansari

3

1- Department of Mechanical Engineering, Shahid Beheshti University, A.C., Tehran, Iran 2- Department of Mechanical Engineering, Guilan University, Rasht, Iran

3- Department of Mechanical Engineering, Guilan University, Rasht, Iran

*P.O.B. 167651719 Tehran, [email protected]

A RTICLE I NFORMATION A BSTRACT

Original Research Paper Received 08 November 2014 Accepted 13 December 2014 Available Online 24 January 2015

In this paper, 3D time dependent micromechanical model is presented to study the elastoviscoplastic behavior of aligned fiber reinforced composites in the presence of interfacial damage subjected to multi-axial loading. The Representative Volume Element (RVE) of the composite consists of three phases including fiber, matrix and fiber/matrix interphase. The interphase is considered as adistinct phasewith definite thickness that covers the outer surface of fibers. The difference between manufacturing process temperature to room temperature introducing thermal residual stresses is included in the analysis. The fiber and interphase are assumed to be elastic, while the matrix exhibits elastic-viscoplastic behavior with isotropic hardening. The Bodner-Partom viscoplatic theory is used to model the time dependent inelastic behavior of the matrix. The Needleman model is employed to analyze interphase damage. For metal matrix composites, it is shown that while predictions based on undamaged interphase are far from the reality, the predicted stress–strain behavior including interphase damage and thermal residual stresses demonstrate very good agreement with experimental data.

Furthermore, the elastic properties of the composites with various aspect ratios are extracted by the micromechanical model. The elastic behavior predictions of the composite are also very close to experimental data and the other available models.

Keywords:

Micromechanics Interphase Damage Elastic-Viscoplastic Behavior Thermal Residual Stress Aspect Ratio

1 -

1

1- Metal matrix composites

. .

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(2)

.

1

] 1 .[

2

] 2 - 5 .[

.

3

/

/ ]

6 .[

/ .

] 6 .[

/ / ]

7 - 11 .[

. .

. -

. ] 12 [

. [ 13 ]

4

. -

] 14 .[

- .

.

. )

5

( .

. ] 15 - 20 [

. ]

20 [

1- Thermal residual stresses 2- Damage

3- Interfacial region between the fiber and the matrix 4- Overstress

5- Micromechanics

.

6

] 21

[ .

7

] 20 [ .

-

] 21

. [

] 22 [

/ -

] 6 .[

/ .

- .

8

/ .

.

.

/ - .

/ .

- .

.

2 -

2 - 1 -

1 .

]

9

19 [ 21

[

.

c×r×h

3

. 1

c×r×h Lh

z Lc

x Lr

.

y i

x j k

z ijk

x ai

y bj

z dk

6- Unit cell 7- Simplified unit cell

8- Representative volume element 9- Method of cell

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(3)

)

2

1

- ) (

ESUC

-

2 - .

. 2 -

x-y

c×r

3 .

A.R=ai/bj

ai=bj

19 .[

A.R>>1 A.R

A.R>1

1

2

x-y

ijk

3

1- Extended Simplified unit cell

2 - 2 -

19 - 22 [ .

. .

.

) 1 (

) 1 (

=

=

=

) 2 (

) 2 (

= ( > 1)

= ( > 1)

= ( > 1)

) 3 ( :

) 3 (

= = ( × 1)

= = ( × 1)

= = ( × 1)

- -

) 4 ( :

) 4 (

= , + , + , , = 1,2,3

)

,

5 (

:

) 5 (

, = S

) 5 ( .

S

)

,

6 ( :

) 6 (

, =

) 6 ( .

- ]

23 .[

) 7 ( :

) 7 (

, =

) 7 ( .

) 8 (

] 23 :[

) 8 (

= exp + 1

2 3

= /2

) .

8 (

. )

9 (

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(4)

23 :[

) 9 (

= + ( )exp

) ) .(

= 2

8 ) ( 9 (

. -

.

m

.

n

. )

5 ) ( 6 ) ( 7 (

) 8

) (

4 ( -

) 10 (

) 10 (

= 1

+ + +

= 1

+ +

= 1

+ + +

) 11 (

) 11 (

= =

= =

= =

) 10

) (

3 (

) 11 ( ) 12 (

1 , 1 ,

+ 3

1 ,

+ 1

3 ,

+ ( , + , )

+ ( , + , )

+ 3 ( , + ,)

+ 3 ( , + ,) = 0 ×

1

1 , 1 ,

+ 3

1 ,

+ 1

3 ,

+ ( , + , )

+ ( , + , )

+ 3 ( , + ,)

+ 3 ( , + ,) = 0 ×

1

) 12 (

1 , 1 ,

+ 3

1 ,

+ 1

3 ,

+ ( , + , )

+ ( , + , )

+ 3 ( ,

+ ,) + 3 ( ,

+ ,) = 0 × 1

+ +

) 13 (

) 13 (

[ ] × { } × + [ ] × { } × = { } ×

= + +

-

2 - 3 -

) 1992 ( ]

24 .[

. -

-

) 14 ( :

) 14 (

= exp(1 / )

) 14 ( .

=

4 -

- . .

) 14 ( )

15 (

) 15 (

( )( / ) = exp(1 / )

( )= ( )(0)

) 16 (

) 16 (

( )= exp(1)

) 15 ) ( 16 (

) 17 (

) 17 (

( )( / ) = ( )exp( / )

3 -

)

SiC/Ti

( .

650 14

.[

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(5)

[ 14 4

. -

6 .[

-

- . 1

] 6 25

26 [ 2

26 .[

18 /0 ] 6 [ .

23 .

27 .[

.

250 -

28 .[

3

2 29

.[

30 [

( ) /( ) .

23 -

2/

0 4/

0

( ) /( )

30 -

2/

0 38 /0

1 23

6 25 26 [

E (GPa) v

(10-6/K)

112

393

448 34 /0

25 /0

2/

0 31 /6

564 /3

64 /4 2

23

26 29 [

n m Z1(GPa) Z0(GPa)

D0(s-1)

8/

4

10 35 /0

70 1600

190 1550

100 10

4

10

4

3 23

29 [

E (GPa)

v (10-6/K)

5/

72

400 33 /0

2/

0 23

1/

8

4 -

ESUC

- .

33 20

.

)

s-1 4

( 10

-

× 1

)

s-1 4

( 10

-

× 667 /1 31 .[

2

× 40

× 40 3

2 40

=

40

=

.

=

] 29 [ 46

20 100 .

. ] 19 30 [ .

2

× 40

× 40 3

5 -

5 - 1 -

6/

18

7/

17 19

[ . 4

) (

/

1/

2 7/

9

40 .

4

.

4

/

] 19 [ ]

19 [

] 19 [

34 /4 8/

2 035 /3 1/

3

0 20 40 60 80 100 120 140 160

0 0.002 0.004 0.006 0.008 0.01

) (

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(6)

– 5

– 5

20

. 5

- 5 -

5

- . 350

) 8/

6

= (

/

. 5

-

1 4

10 .

- 6

- 6

6 - 6 -

( )

( )

20

- .

- ]

29 [ ]

29 [

7 .

1 2 3 4 5 6 7

1 10 100 1000

- ] 30 [ 30 ] - [ 30 ] [

1 1.5 2 2.5 3

1 10 100 1000

- ] 30 [

] 30 [

0.325

0.34 0.355 0.37

1 10 100 1000

- ] 30 [ 30 ] - [ 30 ] [

0.2 0.3 0.4 0.5 0.6 0.7

1 10 100 1000

- ] 30 [

] 30 [

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(7)

- 7

- - 8

] 29 [

100

7 .

100

1000 .

20 225

. 7

100 .

.

20 225

. 7

31 [ -

8 .

- . .

.

. 2100

1500 .

810 510 . -

. 8

] 31

. [

9 .

] 31 [

9

- . 9

-

. 15

/0 - 0

. 65

/0 - 15 /0

. 65

/0

. 65

/0 .

.

. 9 1200

0 200 400 600 800 1000 1200

0 0.1 0.2 0.3 0.4 0.5 0.6

) (

(%)

100

] 29 [ 100

] 29 [ 100

20

] 29 [ 20

20

0 500 1000 1500 2000 2500

0 0.3 0.6 0.9 1.2

) (

(%)

]

31 [

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(8)

1400 -

. )

9 .(

-

10 .

10

- -

.

. 155

235

. -

. 14

/0 - 0

. 48

/0 - 14 /0

. 48

/0

. 48

/0

-

- 9

- 10

- 11

11 0035

/0 - 0055 /0 -

00627

/

/0 - .

11

.

11 0035

/0 - 0055 /0 -

/s

00627 /0 - 185

215 235

. 00627

/s

/0 -

.

627 - .

T

0 300 600 900 1200 1500

0 0.3 0.6 0.9 1.2

) (

(%)

] 31 [ 0

300 600 900 1200 1500

0 0.3 0.6 0.9 1.2

) (

(%)

0 100 200 300 400 500

0 0.25 0.5 0.75 1

) (

(%)

) / (

0/00627 -

) / (

0/0055 -

) / (

0/0035 -

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(9)

. 0035

/0 -

0055 /0 - 00627

/s

/0 - 1/

0 - 0

12 /0 - 0 14 /0 - 0

. 0035

/0 - 0055 /0 -

00627

/

/0 - 81

/0 - 1/

0 67 /0 -

12 /0 48 /0 - 14 /0 . .

0035 /0 - 0055 /0 -

00627

/s

/0 - 82

/0 67 /0 48 /0

5 - 2 -

.

- -

=

. 12

235 -

296

. 8/

0

. 12

. 290

200

-

=

. 13 -

( )

.

13 -

305 .

55 /0 .

13 -

150

- 12

- 13

5 - 3 -

= =

14 .

14 - 380

270

. 14

-

0 400 800 1200 1600

0 0.3 0.6 0.9 1.2

) (

(%)

0 300 600 900 1200

0 0.25 0.5 0.75 1

) (

(%)

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(10)

- 14

- 15

15 .

. .

- 6

-

.

c×r×h

3 .

. .

. -

. .

7 - -

.

1 -

= 0

. ) .(

2 - .

) ((

=

3 - -

.

= 1

4 - .

5 - )

(

= + ×

.

6 -

, = 0

.

7

,

-

, ,

<

,

6 .

=

8

, ,

-

<

7 .

9 -

0 300 600 900 1200

0 0.3 0.6 0.9 1.2

) (

(%)

0 200 400 600 800

0 0.25 0.5 0.75 1

) (

(%)

- -

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(11)

4

.

10 -

=

3

= + 1

.

8 -

[1] T. W. Clyne, P. J. Withers, An introduction to metal matrix composites Cambridge University Press, 1993

[2] D. H. Allen, D. C. Lagoudas Damage mechanics in composites ASME AMD- 150, AD-132, New Yourk, 1992

[3] G. Z. Voyiadjis, Damage in composite materials Amsterdam:Elsevier, 1993 [4] D. H. Allen, J. W. Ju, Damage mechanics in composites ASME AMD-185,

New Yourk, 1994

[5] R. Talreja, Damage mechanics of composite materials Amsterdam:Elsevier, 1994.

[6] S. R. Nutt, F. E. Wawner, Silicon carbide filaments: Microstructure, Journal of Materials Science Vol. 20, pp.1953-1960, 1985

[7] W. S. Johnson, S. J. Lubowinski, A. L. Highsmmith, Mechanical characterization of unnotched SCS/Ti-15- metal matrix composites at room temperature, Thermal Mechanical Behavior of Metal Matrix Ceramic Matrix Composites ASTM STP 1080, Philadelphia, pp 193-218, 1990.

[8] R. P. Nimmer, R. J. Bankert, E. S. Russell, G. A. Smith, P. K. Wright, Micromechanical modeling of fiber/matrix interface effects in transversely loaded SiC/Ti-6- metal matrix composites, Journal of Composites Technology Research Vol. 13, pp 3-13, 1991

[9] C. J. Lissenden, C. T. Herakovich, M. P. Pindera, Response of SiC/Ti under combined loading. Part 1: Theory and experimental for imperfect bonding, Journal of composite Materials Vol. 29, pp 130-155, 1995a [10] C. J. Lissenden, C. T. Herakovich, M. P. Pindera, Response of SiC/Ti under

combined loading. Part 2: Room temperature creep effects, Journal of composite Materials Vol. 29, pp 1403-1417, 1995b

[11] C. J. Lissenden, B. A. Lerch, C. T. Herakovich, Response of SiC/Ti under combined loading. Part 3: Microstructural evaluation, Journal of composite Materials Vol. 30, pp 84-108, 1995c

[12] J. S. Kim, A. H. Muliana, combined viscoelastic–viscoplastic behavior of particle reinforced composites, International Journal of Solids and Structures Vol. 47, pp 580-594, 2010

[13] O. C. Zienkiewicz, I. C. Cormeau, Viscoplasticity–plasticity and creep in elastic solids: unified numerical solution approach, International Journal of Numerical Methods in Engineering Vol. 8, pp 821–845, 1974 [14] B. A. Bednarcyk, S. M. Arnold, Transverse Tensile and Creep Modeling of

Continuously Reinforced Titanium Composites with Local Debonding, International Journal of Solids and Structures Vol. 39, pp 1987–2017, 2002.

[15] M. Eynbeygi, M. Mohammadi Aghdam, micromechanical study on the electro-elastic behavior of piezoelectric fibrous composites using element free Galerkin method, Modares Mechanical Engineering Vol. 14, No. 6, pp 175-184, 2014 (In Persian)

[16] J. Aboudi, Micromechanical Analysis of Composites by the Method of Cell, Journal of Applied Mechanics Vol. 42, pp 193-221, 1989

[17] R. Ansari, M. K. Hassanzadeh Aghdam, Effects of regular and random distribution of silica nanoparticles on the thermo-elastic and viscoelastic properties of polymer nanocomposites- Micromechanics-based analysis, Modares Mechanical Engineering Vol. 15, No 1, pp 99-107, 2012 (In Persian)

[18] M. Mehrdad Shokrieh, M. Elahi, new model to estimate the Young's modulus of polymer concrete using micromechanical relations, Modares Mechanical Engineering Vol. 12, No 2, pp 162-153, 2012 (In Persian) [19] J. Aboudi, The Effective Moduli of Short-fiber Composites, International

Journal of Solids and Structures Vol. 19, pp 693-707, 1983

[20] M. M. Aghdam, D. J. Smith, M. J. Pavier, Finite Element Micromechanical Modelling of Yield and Collapse Behaviour of Metal Matrix Composites, Journal of the Mechanics and Physics of Solids Vol. 48, pp 499-528, 2000 [21] M. M. Aghdam, A. Dezhsetan, Micromechanics based analysis of

randomly distributed fiber reinforced composites using simplified unit cell model, Composite Structures Vol. 71, pp 327–332, 2005

[22] A. Sayyidmousavi, H. Bougherara, S. R. Falahatgar, Z. Fawaz, Thermomechanical viscoelastic response of unidirectional graphite/polyimide composite at elevated temperatures using micromechanical approach, Journal of Composite Materials Vol. 6, pp 1–

16, 2014

[23] S. R. Bodner, Y. Partom, Constitutive Equations for Elastic-viscoplastic Strain Hardening Materials, Journal of Applied Mechanics Vol. 42, pp 385-389, 1975

[24] A. Needleman, Micromechanical modeling of interfacial decohesion, Ultramicroscopy Vol. 40, pp 203-214, 1992

[25] J. L. Kroupa, The Nonisothermal Viscoplastic Behavior of Titanium- matrix Composite, Composites Engineering Vol. 4, pp 965-977, 1994 [26] J. L. Kroupa, Implementation of Nonisothermal Unified Inelastic-Strain

Theory Into ADINA6. for Titanium Alloy-User Guide Wright Laboratory Report WL-TR-93-4005. University of Dayton, Dayton, Ohio, 1993 [27] M. J. Mahmoodi, M. M. Aghdam, M. Shakeri, The effects of interfacial

debonding on the elastoplastic response of unidirectional silicon carbide–titanium composites, Part C: Journal of Mechanical Engineering science Vol. 223, pp 259-269, 2010

[28] R. T. Arenburg, J. N. Reddy, Applications of the Aboudi micromechanics theory to metal matrix composites, Mechanics of Composite Materials and Structures Vol. 3, pp 33-40, 1989

[29] Sh. Yang, H. Qin, Fiber interactions and effective elasto-plastic properties of short-fiber composites, Composite Structurs Vol. 54, 523-528, 2001 [30] Ch. L. Tucker, E. Liang, Stiffness predictions for unidirectional short-

fiber composites, Composites Science and Technology Vol. 59, pp 655- 671, 1999

[31] R. K. Goldberg, S. M. Arnold, Study of Influencing Factors on the Tensile Response of Titanium Matrix Composite with Weak Interfacial Bonding NASA/TM—2000-209798, 2000

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

Referensi

Dokumen terkait

In this study creep fracture mechanic parameter value of a CT specimen made of P91 steel was derived by application of Norton and Liu- Murakami creep behavior models and results were

Keywords: Rapid prototyping Metal powder apparent density Selective Laser Melting SLM Thermal conductivity Thermal diffusivity -1... 3 Schematic view of the test setup for

Study of Process Window in Square Cup Hydromechanical Deep Drawing of Aluminium/Steel Double Layer Sheet Seyed Mohammad Hossein Seyedkashi1*, Farzad Rahmani1, Hossein Amirabadi1,

Analysis of stress, strain and estimation of the fatigue life of amir kabir semi-submersible drilling platform by using hot spot method in Caspian Sea Rahmatollah Ghajar* Seyed

Rahimi, combined experimental and computational study on the melting behavior of medium temperature phase change storage material inside shell and tube heat exchanger, International

Melt Behavior and Shrinkage Force Effect of Al Melt in Al/Mg Bimetal Cast via Centrifugal Casting Morteza Sarvari, Mehdi Divandari School of Metallurgy and Materials Engineering, Iran

The obtained results showed that the reduction of the horizontal distance between the metal fibers in the longitudinal direction improves the distribution of the peel stress and shear