• Tidak ada hasil yang ditemukan

ʇ|ÀÆ» ®Ì¿Z°»

N/A
N/A
Protected

Academic year: 2024

Membagikan "ʇ|ÀÆ» ®Ì¿Z°»"

Copied!
5
0
0

Teks penuh

(1)

mme.modares.ac.ir

Al7022

1

* 2

2

1 -

2 -

* 741

- 89195 [email protected]

19 :

1393

: 16 1394

25 :

1394

.

.

Al7022

.

. 5

/ 33

. .

8 / 10 %

The Effect of Cutting Parameters and Vibration Amplitude on Cutting Forces in Vibration-Assisted Side Milling Process of Al7022 Aluminum Alloy

Mohammad Mahdi Abootorabi Zarchi

1*

Mohammad Reza Razfar

2

Amir Abdullah

2

1- Department of Mechanical Engineering, Yazd University, Yazd, Iran

2- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran P.O.B. 89195-741 Yazd, Iran. [email protected]

A RTICLE I NFORMATION A BSTRACT

Original Research Paper Received 08 February 2015 Accepted 05 April 2015 Available Online 14 April 2015

Reduction of cutting force in machining process offers several advantages including, increase in tool life and improvement in the quality of the machined surface. One of the new techniques for reducing cutting force relates to ultrasonic vibration assisted machining. In the present paper, one-dimensional ultrasonic vibration-assisted side milling process of Al7022 aluminum alloy has been studied. In order to investigate the effect of cutting speed, feed rate, radial depth of cut, and vibration amplitude on three cutting force components and their resultant, special experimental setup has been designed and established which applies one dimensional ultrasonic vibration to work piece. Applying the ultrasonic vibrations on milling process, mostly affects the feed component of cutting force, which is unidirectional with the work piece vibration, and decreases it by 33.5% on average. Decrease in cutting speed and increase in vibration amplitude results in increasing the separation of tool and work piece from each other in portion of each vibration cycle, and larger decrease of the feed force. The average decrease of the resultant cutting force in ultrasonic-assisted milling process is 10.8%.

Keywords:

Ultrasonic Assisted Milling Conventional Milling Cutting Force Vibration Amplitude Cutting Speed

1 -

] 1 [

] 2 .[

] 3 .[

] 4 5 [

] 6

] [

7

] [

8 [

] .

1

9 [

1- Ultrasonic assisted milling

[ Downloaded from mme.modares.ac.ir on 2023-12-20 ]

(2)

1394 15 5

393

Al6061-T6

.

] 10 [

MAR-M247

] .

11 [

.

] .

12 [ .

Al7022 1

.

2

2 -

. 3

kW

. 2

kW

MPI

50

Hz

20500

Hz)

=

(

f

. .

.

. 1

. ) (

M8 8

.

2- Side milling 3- Conventional milling PU-09

AEC-5509

. 4/

mm

0

) 1 (

) 2 .(

Al7022

4 10

mm

.

Al7022

20

mm

10

mm

) 1 .(

.

(N) (fz)

(ar)

1

2 .

(a)

[ DOR: 20.1001.1.10275940.1394.15.5.13.7 ] [ Downloaded from mme.modares.ac.ir on 2023-12-20 ]

2 / 5

(3)

1 .

.

5

mm aa=

200

Hz

20500 ±

f=

3 -

(Fx) (Fy)

(Fz)

9255

B

. 3

400

rpm N=

mm/tooth

15 /0

fz=

5/

mm

1

ar=

24

µm a=

. 2

.

FCM

FUAM

.

2 .

1

] 13 14 .[

. ]

14 .[

.

8

µm a=

12

µm a=

24

µm a=

] 15 16 .[

) 1 (

) 1 ( ) = sin(2 ) (

a f

) 2 (

1

) (

rpm

)

mm/tooth

) (

(

mm

)

(

mm

1 400

05 /0 5

/0 8

2 800

1 /0 1

12

3 1600

15 /0 5

/1 24

4 2500

2 /0 2

-

.

. )

3 ( :

) 3 (

=

D N

.

.

.

1

] 17 .[

3

rpm

400

N

=

mm/tooth

15 /0

fz

= 5/

mm

1

ar

= 24

µm a

=

1- Vibro-impact effect

) 2

= 2 cos( 2 ) (

[ Downloaded from mme.modares.ac.ir on 2023-12-20 ]

(4)

1394 15 5

395

2

N ar

fz

a Fx

Fy

Fz

Fx

Fy

Fz

FUAM

FCM

21 6/ 21 4/ 7 1/ 15 9/ 12 8/ 11 1/ 12 1/ 13 7/ 1 1 1 1 1

2 1 2 2 2 4/

26 4/

10 8/

18 7/

43 3/

49 5/

11 0/

34 9/

66

3 1 3 3 3 7/

53 1/

16 9/

24 0/

92 8/

96 9/

24 3/

61 8/

135

4 1 4 4 1 6/

145 0/

156 1/

47 1/

148 8/

163 5/

44 5/

218 3/

225

5 2 1 2 3 3/

19 3/

7 5/

20 6/

22 7/

28 3/

4 1/

29 8/

36

6 2 2 1 1 6/

25 1/

23 5/

7 2/

23 7/

25 0/

8 3/

35 5/

35

7 2 3 4 1 5/

99 5/

124 6/

38 2/

97 4/

127 8/

35 0/

164 2/

164

8 2 4 3 2 1/

85 2/

49 8/

16 4/

122 0/

118 9/

29 7/

99 6/

172

9 3 1 3 1 7/

27 0/

31 6/

8 4/

21 0/

34 3/

9 5/

42 2/

41

10 3 2 4 3 0/

75 9/

42 2/

10 0/

74 8/

87 6/

18 0/

87 3/

116

11 3 3 1 2 8/

53 4/

17 1/

8 0/

43 2/

35 9/

9 1/

57 4/

56

12 3 4 2 1 8/

92 3/

68 8/

23 2/

87 7/

76 0/

22 7/

117 2/

118

13 4 1 4 2 1/

37 9/

40 5/

6 9/

28 1/

43 6/

8 6/

55 6/

52

14 4 2 3 1 6/

53 6/

55 1/

16 7/

46 8/

59 3/

17 9/

78 8/

77

15 4 3 2 1 7/

65 8/

54 8/

18 1/

59 8/

59 6/

20 6/

87 6/

86

16 4 4 1 3 8/

76 3/

16 1/

10 4/

57 0/

39 3/

11 2/

79 3/

70

(Fy)

.

Fy

5/

33

. .

3

Fy

Fx

4

Fy

.

Fy

.

Fy

mm/tooth

2/

0

fz= Fy

4

) .

Fy

. 4

Fy

. .

3 400

rpm

N=

24

µm a=

Fy

8/

96 1/

16

83

2

.

(Fy)

8/

10

[ DOR: 20.1001.1.10275940.1394.15.5.13.7 ] [ Downloaded from mme.modares.ac.ir on 2023-12-20 ]

4 / 5

(5)

4 -

. .

(Fx) (Fy)

(Fz)

.

Fx

Fz

.

Fy

.

Fy

5/

33 .

Fy

Fx

Fz

.

8/

10 .

) (

y Fy

.

Fy

400

rpm N=

24

µm

8/

a=

96

1/

16

83

5 -

[1] D. E. Brehl, T. A. Dow, Review of vibration-assisted machining, Precision Engineering Vol. 32, pp. 153-172, 2007.

[2] M. Zhou, Y. Eow, B. Ngoi, E. Lim, Vibration-assisted precision machining of steel with PCD tools, Materials and Manufacturing Processes Vol. 18, No. 5, pp. 825–834, 2003.

[3] S. Amini, M. J. Nategh, One directional and elliptical ultrasonic vibration assisted cutting if IN738, Modares Mechanical Engineering Vol. 12, No. 6, pp. 117-123, 2012. (In Persian)

[4] M. J. Nategh, S. Amini, H. Soleimanimehr, A. Abdullah, M. H. Sadeghi, Machining Force Model Developed for Ultrasonic Vibration-Assisted Turning, through Statistical Analysis of Influential Parameters, Aerospace Mechanics Journal Vol. 4, No. 4, pp. 83-91, 2009. (In Persian) [5] E. Shakouri, M.H. Sadeghi, M. Maerefat, M.R. Karafi, M. Memarpour,

Experimental and analytical investigation of thrust force in ultrasonic assisted drilling of bone, Modares Mechanical Engineering Vol. 14, No. 6, pp. 194-200, 2014. (In Persian)

[6] M. Xiao, K. Sato, S. Karube, T. Soutome, The effect of tool nose radius in ultrasonic vibration cutting of hard metal, International Journal of Machine Tools and Manufacture Vol. 43, pp. 1375–1382, 2003.

[7] V. I. Babitsky, A. N. Kalashnikov, A. Meadows, A. A. H. P. Wijesundara, Ultrasonically assisted turning of aviation materials, Journal of Materials Processing Technology Vol. 132, No. 1, pp.157-167, 2003.

[8] M. M. Abootorabi Zarchi, M. R. Razfar, A. Abdullah, Experimental Investigation of Chip Formation and Surface Topology in Ultrasonic- Assisted Milling of X20Cr13 Stainless Steel, in ASME 2013 Manufacturing Science and Engineering Conference Madison, Wisconsin, USA, 2013.

[9] G. L. Chern, Y. C. Chang, Using two-dimensional vibration cutting for micro-milling, International Journal of Machine Tools and Manufacture Vol. 46, pp. 659-666, 2006.

[10] C. Y. Hsu, C. K. Huang, C. Y. Wu, Milling of MAR-M247 nickel-based superalloy with high temperature and ultrasonic aiding, International Journal of Advanced Manufacturing Technology Vol. 34, pp. 857-866, 2007.

[11] H. Ding, S. J. Chen, K. Cheng, Two-dimensional vibration-assisted micro end milling: cutting force modeling and machining process dynamics, Proc IMechE, Part B: Engineering Manufacture Vol. 224, No. 12, pp.

1775-1783, 2010.

[12] X. H. Shen, J. H. Zhang, H. Li, J. J. Wang, X. C. Wang, Ultrasonic vibration- assisted milling of aluminum alloy, International Journal of Advanced Manufacturing Technology Vol. 63, No. 1-4, pp. 41–49, 2012.

[13] N. Suresh, P. Rao, Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling, International Journal of Machine Tools and Manufacture Vol. 46, pp.

189–198, 2006.

[14] P. K. Baro, S. S. Joshi, S. G. Kapoor, Modeling of cutting forces in face- milling operation with self-propelled round insert milling cutter, International Journal of Machine Tools and Manufacture Vol. 45, pp.

831–839, 2005.

[15] V. I. Babitsky, A. V. Mitrofanov, V. V. Silberschmidt, Ultrasonically assisted turning of aviation materials, Ultrasonics Vol. 42, pp. 81-86, 2004.

[16] T. Tawakoli, B. Azarhoushang, Influence of ultrasonic vibrations on dry grinding of soft steel, International Journal of Machine Tools and Manufacture Vol. 48, pp. 1585-1591, 2008.

[17] J. Pujana, A. Rivero, A. Celaya, L. N. Lopez de Lacalle, Analysis of ultrasonic-assisted drilling of Ti6Al4V, International Journal of Machine Tools and Manufacture Vol. 49, pp. 500-508, 2009.

[ Downloaded from mme.modares.ac.ir on 2023-12-20 ]

Referensi

Dokumen terkait

This method, based on four specifications, proper cavitation number in pumps, especially in oxidizer component, power balance between pumps and turbines, strength of material in main

In this study creep fracture mechanic parameter value of a CT specimen made of P91 steel was derived by application of Norton and Liu- Murakami creep behavior models and results were

Study of Process Window in Square Cup Hydromechanical Deep Drawing of Aluminium/Steel Double Layer Sheet Seyed Mohammad Hossein Seyedkashi1*, Farzad Rahmani1, Hossein Amirabadi1,

Rasekh, 2D Curved plate Non- linear vibration and Aeroelastic analysis with in-plane and Supersonic Aerodynamic load in Time domain, Modares Mechanical Engineering Vol.. Rasekh, 2D

Analysis of stress, strain and estimation of the fatigue life of amir kabir semi-submersible drilling platform by using hot spot method in Caspian Sea Rahmatollah Ghajar* Seyed

6 Different parameters effect on projectile velocity and maximum projectile base pressure: a initial light gas pressure and rupture disk pressure on velocity b initial light gas

Abu Zeid, On the effect of electro discharge machining parameters on the fatigue life of AISI D6 tool steel, Journal of Materials Processing Technology, Vol.. Todd Mower, Degradation

AZ31C The effect of pass numbers over microstructure and mechanical properties of magnesium alloy of AZ31C in the tubular channel angular pressing TCAP at temperature of 300°C