• Tidak ada hasil yang ditemukan

ʇ|ÀÆ» ®Ì¿Z°»

N/A
N/A
Protected

Academic year: 2024

Membagikan "ʇ|ÀÆ» ®Ì¿Z°»"

Copied!
11
0
0

Teks penuh

(1)

mme.modares.ac.ir

1 2

*

3

1 -

2 -

3 -

* 143

- 14115

[email protected]

28 :

1393

: 24 1394

1394 13 :

.

.

.

) (

. .

.

. -

4 .

.

.

Aerothermoelasticity of 2D shell with Finite Volume and Gallerkin Method

Hamid Moosazadeh

1

Behzad Ghadiri Dehkordi

2*

Masud Rasekh

1- Department of Aerospace Engineering, TarbiatModares University, Tehran, Iran 2- Department of Aerospace Engineering, TarbiatModares University, Tehran, Iran 3- Department of Mechanical Engineering, Tafresh University, Tafresh, Iran

*P.O.B. 14115-143 Tehran, Iran, [email protected]

A RTICLE I NFORMATION A BSTRACT

Original Research Paper Received 19 March 2015 Accepted 14 May 2015 Available Online 04 July 2015

The panel flutter is concentrated with aerospace researchers because of fatigue failure on structures. The usage of the numerical simulation is in good company with analytical method. The 2D cylindrical panel flutter is simulated with Navier Stokes equations for fluid flow with finite volume theory. Also, simulation is prepared with piston theory for analytical solution of irrotational fluid. Comparison of full numerical finite volume and assumed mode method in post flutter domain is produced. Non-linear shell with the effect of in-plane load, thermal load and aerodynamic load with 3rd order piston theory is modeled to solve with assumed mode method.

The effect of camber in flutter and post flutter is investigated with both methods. Pressure distribution is defined numerically and analytically for viscid and inviscid flow. The effect of expansion waves decreased the pressure of the second half of shell in analytical method compared to numerical. The principle of Hamilton is used and virtual work, virtual potential energy and virtual kinetic energy are developed. The 4th order Runge-Kutta method is used to solve nonlinear ODEs numerically. The most important output depends on similar result for flat plate and different result on curved plate with numerical and analytical solution.

Keywords:

Shell flutter Viscose flow Finite element Finite volume gallerkin

1 -

. .

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(2)

. .

. .

.

1

.

1 ]

. [

2 . [

3 ]

. [

4 ]

. [

2

5 ]

. [

6 ]

. [

7 ]

. [

.

. 8 ]

. [

9 ]

. [

. 10 ]

. [

11 ]

. [

. .

12 ]

. [

. .

13 ]

. [

14 ]

. [

15 ]

. [

25 /2

.

1- Perturbation 2- Singular Bifurcation

.

) ( DNS

16 ]

. [

17 ]

. [

18 ]

. [

19 ]

. [

20 ]

. [

21 ]

. [

.

)

(

3

.

4

) ( .

2 -

2770

10 1/ e

7 35

/0

) 1

( ) .(

. ( )

2 - 1 -

- .

k-

. )

1 (

1

3- FSI 4- Ansys CFX

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(3)

) 1 (

d d 0

d

d 0 0

v v

dV U n

t dv U v

t U

t

. )

2 (

) 2 (

M

U U U p S

t d ...

d ...

d d

d d

j

d

j j i j

i j

j j u

j i

U V U U n

t P n U U n S V

x x

j i

.

P

.

) 3 (

) 3 (

tot

tot

tot

tot tot

d d d d d

d

M

j j i j h

j

h p Uh T U US

t t

h V U h n U n S V

t x

+ (1 2)

.

T

.

. ) 6

. (

k

-

) 4

. (

) 4

= + (

k- t

) 5 (

) 5

t

k (

) 6 (

i k k k k

i j j

i

i j j

k kU k P Y S

t x x x

U P Y D S

t x x x

P

k

) 7 (

' ' j

t t

k k i j k

k i t

P u u u P G

x

i j' '

. u u

) 8 (

0 t

* t

*

t 0

Re /R 1 Re /R

R 2.92,Re , , 1

3

i

k

) 9 (

abs

d

0

d ( )

p

p p

wp h c T R T c c T

2 - 2 -

.

) 10 (

) 10

0

(

0

T

( U V K t )d

U V

)

K

11 (

) 11 (

V

: d

U V

0

d d

V p u x y

,t ,t

d K

V

u u V

u p u

,t

.

.

0

) 11 ( )

10 ( ) 12 (

22 ]

. [

) 12

4 2 2

(

0 0 0

4 2 2

x

1 ( )

x

R

m

w w w

D N h F t

x x t

0

( , )

w x t Nx

( ) F t

3

.

12(1

2

)

D Eh

D E

2 0 2

w x

. )

13 (

) 13 (

2

0 0

1

1

x

2

w w

x R

Nx

] x

23 .[

) 14 (

2 1

0 2

0 0

2 1 0 x 0

0

2 1 0 22

0

...

1 (1 ) ( ) d

1 1 d 1 d

2 R

(1 ) ( ) d

1 1 (1 ) ( ) d

.. d

(1 ) ( ) d

x a

a a

a

a h a h

N ah

E x x

h w x w x

E x x x

x T z x E x x

( ) x

.

T

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(4)

Tref

) 24 ( 24 ]

. [

) 15

ref 0 1

(

( , ) ( ) ( )

T x z T T T x zT x ( )

0

( ) T x T x .

) 16 (

T

) 16

0

( ) ( T x T

2 - 3 -

.

P

a

) 17 (

) 17

a

( , ) ( P P x t

( , ) P x t .

V

z 1

)

(

) 18 (

) 18 (

2

1

1

( , ) 1

2

z

P x t P V

c

) 19 (

2 1

( , ) 1

1 V

z

P x t P M

M c

) 20 (

2 1

2 3

1 1

( , ) 1

1

( 1) ( 1)

4 12

...

z

z z

M V

P x t P M c

V V

c c

1 2

1

M . M

V

z

) 21 (

0 0

ˆ

0

( )

z

w w w

V U

t x x

2

P c

. c P 1.4

. ˆ

0

w x .

.

M U c

2

2 q U

1- Downwash velocity

2 - 4 -

) 22 (

2 0

0 0

0

0 cr 2

0 2 cr

3 0 2

0 0 2 0

ˆ ˆ

, , , , ,

, , , , , ,

, 2 , ,

(1 )

m m

x r

m

w w x D

W W t t

a h a a h

a h h T D T T

c a Eha T

E ha

a qa R C K

h D D

K

0

r

. C

)

23 ( 25 ]

. [

) 23

0

(

1

ˆ

N

sin

n

w n x

a .

) 24

0

(

1

ˆ

N

sin

n

w n

) 12 (

) 25 (

) 25 (

4 1 2 1 2

4 2 0 0 2

1 0

2 2

4

2 2

...

....

ˆ ˆ

12 1 2

1 1 sin( ) sin( )

1

. . ˆ ( )

T cr

W W d h Wd W h

h h

h

T d

W h W F t

h t

) 20 (

) 26 (

) 26 (

2 4 2 1

1 3 1

2

2 2

3 1

2

3

...

...

(

ˆ 1

...

4

ˆ 1

12 ....

1

ˆ , )

.

a a

a

M h

W W W

C h C M

M t

W W h W C M

M t

W W h W

M t

P t M

) 26 ) ( 25 (

2 - 5 -

6

) -

- (

26 27 ]

. [

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(5)

) 27

2

(

2

0, ... 0,1

W W

) 28 ... (

0, 0,1 W W

) 29

1

(

( , ) ( ) ( ) ( ) sin( ),

n

i i

i

i i i

W t a t

i

) 30 (

1

( , ) ( ) ( ) ( ) sinh( ) sin( )

sinh( ) sin( )

cosh( ) cos( ) cos( ) cosh( )

, 4.73,7.853 ...

,10.9

. .. 9 6,14.137,17.274,...

n

m m

m

m m m

m m

m m

m m

m

W t a t

r

( )

. )

40 (

) 31

1

(

0

( ) ( )d

e r

R W

3 -

3 - 1 -

2 .

10000

x

.

. .

.

) (

t

. 001

/0 -

001 /0 .

.

) 25 (

F(t)

3

1 6 .

1

2 7

1

6

3 .

6

.

3 - 2 -

) (

) .

26 (

t

W

0 2 4 6 8 10

-0.1 -0.05 0 0.05 0.1

Analytical FEM model

_

t

W

4 6 8 10 12 14 16 18 20

-0.15 -0.1 -0.05 0 0.05 0.1

Analytica FEM model

_

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(6)

. 4

.

. ( )

k

. 2 1

.

6 - 1 e

.

.

Y+

Y+

.

) 5 .(

4

5

Y+

1 6

. .

5 2/ e

1

5 9/ e

0

( )

1 7

.

.

.

3 - 3 -

6

7

0 0.2 0.4 0.6 0.8 1

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(7)

.

) (

. .

7 3

7

.

) )

25 (

) 26

. ((

.

8 .

4

3 50

100 200

9 75

/0

. . 50

100

100 200

. 100

. 7

T/2

50 100 200

.

100 200

.

75 /0 .

75 /0 1

. 100

200

.

8

0.75l

9

T/2

1 )

( s

( Hz

) ( mm

50 0156

/0 1/

64 1/

5

100 017

/0 82

/ 58 9/

2

200 01705

/0 65

/ 58 3

t

W

0.2 0.22 0.24 0.26 0.28 0.3

-0.015 -0.01 -0.005 0 0.005

0.01 N.E. 200

N.E. 100 N.E. 50

_

W

-0.4 -0.2 0 0.2 0.4

0 0.002 0.004 0.006

N.E. 200 N.E. 100 N.E. 50

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(8)

3

10 . 00025

/0 00005 /0

. 00025

/0

00005 /0 .

00025 /0

2 001

/0 00025 /0

00005 /0 .

00025 /0 00005 /0

) ( )

(

11 2

2

4

T

2

.

T

.

3 4 5

. 3

12

. 3

. .

4 .

5 .

10 2

) ( s )

( s

( Hz

) ( mm

001 /0 01666

/0 60

5/

6

00025 /0 01533

/0 21

/ 65 6/

4

00005 /0 01499

/0 71

/ 66 3/

4

T/4

T/2

11 13

12 .

2

. 3

4 .

5

14 .

5 4 4

5/

4

5

.

.

.

15

6 .

. .

t

W

0.36 0.38 0.4 0.42 0.44

-0.01 -0.005 0 0.005

_

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(9)

3

4

5 3 12

3

4

5

13 3

t

W

10 11 12 13 14 15

-0.007 -0.0035 0 0.0035

0.007 Numerical

Analytical

_

t

W

12 14 16 18 20

-0.007 -0.0035 0 0.0035 0.007

Numerical Analytical

_

t

W

0 10 20 30 40 50

-0.007 -0.0035 0 0.0035 0.007

Numerical Analytical

_

W

W

-0.01 -0.005 0 0.005

-3 -2 -1 0 1 2 3

h =0.003

.

W

W

-0.01 -0.005 0 0.005

-0.8 -0.4 0 0.4

0.8 h =0.004

.

W

W

-0.01 -0.005 0 0.005

-1 -0.5 0 0.5 1

h =0.005

.

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(10)

5 14

15

.

16

( ) 3

.

5 .

15

4 -

17 24 ]

. [

7/

1

5 -

16 5

17 24 ]

[

)

. (

Y+

.

) 1 ( ) .

2 (

. .

) . 3 (

) . 4 (

.

M

W

3 4 5 6 7

-0.0004 -0.0002 0 0.0002 0.0004

H/h

0 1 2 3 4 5 6

0 100 200 300 400 500 600 700

Numerical Analytical

f

H/h

1 1.5 2 2.5 3

0 50 100 150 200 250 300

f

H/h

0 1 2 3 4 5

0 100 200 300 400 500

Dow Pre

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

(11)

) . 5 (

( )

. ( )

.

) . 6 ( .

.

6 -

[1] M .Ai-Jun, C .Su-Huan, S .Da-Tong, Flutter, new method of nonlinearresponse analysis for large deflection forced vibrations of beams, Finite Elements in Analysis and Design, Vol. 20, pp. 39-4625, 1995.

[2] J.Awrejcewicz, O.A.Saltykova, Yu.B.Chebotyrevskiy, V.A.Krysko,Nonlinear vibrations of the Euler-Bernoulli beam subjected to transversal load and impact actions, NONLINEAR STUDIES Vol. 18, No. 3, pp. 329-364, 2011.

[3] G.R.Bhashyam, G.Prathap,Galerkin finite element method for non-linear beam vibrations, Journal of Sound and Vibration,Vol. 72, No. 2, pp. 191- 203, 1980.

[4] J. Q.Liu, Nonlinear Vibration OF Beam,Nonlinear analysis, Theory, Methods and applications Vol. 13, No.IO, pp. 1139- 148, 1989

[5] T.Igypper, A.Molitor, NonlinearVibrations OF simply supported beams,Nonlinear analysis, Theory, Methods and applications Vol.3, No. 1, pp. 45-48, 1977

[6] R.MarurSudhakar, Advances in nonlinear vibration analysis of structures Part-I. Beams, Sadhana Vol. 26, No. 3, pp. 243–249, 2001.

[7] J. Z. Zhang, D. H. Van Campen, Stability and bifurcation of Doubly Curved Shallow Panels Under Quasi-static Uniform Load, International Journal of Nonlinear Mechanics Vol. 38, No. 4, pp.457-466, 2003.

[8] M. K. Singha, M.Mandal, Supersonic flutter characteristics of composite cylindrical panels, Composite Structures,Vol. 82,pp. 295-301,2008.

[9] S. S.Ghoman, M. S. Azzouz, C.Mei, Time domain method for nonlinear flutter of curved panels under yawed supersonic flow at elevated temperature,Palm Springs,pp. 2009-2598, 2009.

[10] K.Li, J.Zhang, G. Mei, Aerothermoelastic model of panel flutter with consideration of the history effects of aerodynamic heating, International Journal of Applied Mechanics, Vol. 4, No. 3, pp. 1250034 22, 2012.

[11] P.F. Jordan, The Physical nature of panel flutter, Aero Digest pp. 34-38, 1956.

[12] T. Y. Yang, S. H. SUNG, Finite-element Panel Flutter In Three-Dimensional SupersonicUnsteady Potential Flow. AIAA Journal,Vol. 15,pp. 1677- 1683,1977.

[13] A.D. Han, T.Y. Yang, Nonlinear Panel Flutter UsingHigh-order Triangular Finite Element. AIAA journal,Vol. 21,pp. 1453-1461,1983.

[14] P.J.Sunder, C.V. Ramakrishnan, S. Sengupta, Finite Element Analysis OF 3-PLY Laminated Conical Shell FOR Flutter,International Journal for Numerical Methods in Engineering,Vol. 19,pp. 1183-1192,1983.

[15] L.KUO-JIUN, L.PONG-JEU, T. JIANN-QUO, Flutter analysis of composite panels using high- precision finite elements, Computers and Structures, Vol. 33,pp. 561-574,1989.

[16] C. M.OSTOICH, D. J.BODONY, P. H. GEUBELLE, Interaction of Mach 2.25 turbulent boundary layer with fluttering panel using direct numerical simulation, Physics of Fluids, Vol. 25, No. 11, pp. 110806-27, 2013.

[17] C.A.Featherston, Imperfection sensitivity of flat plates under combined compression and shear,International Journal of Non-Linear MechanicsVol.

36, pp. 249–259, 2001.

[18] G. Satyajit, C. Mei, Frequency domain method for flutter analysis of Curved Panels Under Yawed Supersonic Flow at Elevated Temperature, AIAA Vol.10, pp.2008-2312, 2008

[19] J.Girish, L.S. Ramachandra, Thermal postbuckled vibrations of symmetrically laminated composite plates with initial geometric imperfections. Journal of Sound and Vibration,Vol. 282,pp. 1137- 1153,2005.

[20] H. Pourshamsi, A. Mazinani, S. A. Fazelzadeh, Flutter analysis of an aircraft wing carrying elastically an external store, Tarbiat modares journal Vol. 15, No. 1, pp. 49-58, 2014. (In persian)

[21] M. Dardel, and F. Bakhtiari-Nejad, Flutter and Limit Cycle Oscillation Control of Nonlinear Wing with Actuators Saturation, Iranian Journal of Mechanical Engineering, Transaction of ISME Vol.9, No.1, pp. 36-56, 2008.

[22] E.H. Dowell, Nonlinear lutter of curved plate, part 1, AIAA Journal Vol. 7, pp. 424-431, 1969.

[23] B. A. Miller, J. J. Mcnamara, S. M. Spottswood, A. J. Culler, The Impact of Flow Induced Loads on Snap-Through Behaviorof Acoustically Excited, Thermally Buckled Panels,Journal of Sound and Vibration Vol. 330, pp.

5736-5752, 2011.

[24] Yang ,K.M.Liew, S.Kitipornchai, Imperfection sensitivity of the post- buckling behaviorhigher-order shear deformable functionally graded plates, International Journal of Solids and Structures Vol. 43, pp. 5247- 5266, 2006.

[25]B. I. Epureanu, L. S. Tang, M. P. Paidoussis, Coherent structures and their influence on the dynamics of aeroelastic panels, International Journal of Non-Linear Mechanics Vol. 39, pp. 977-991, 2004.

[26] H. Moosazadeh, B. Ghadiri Dehkordi, M. Rasekh, 2D Curved plate Non- linear vibration and Aeroelastic analysis with in-plane and Supersonic Aerodynamic load in Time domain, Modares Mechanical Engineering Vol.

14, No. 15, pp. 405-413, 2015 (In Persian).

[27] H. Moosazadeh, B. Ghadiri Dehkordi, M. Rasekh, 2D Local Imperfect plate Non-linear Vibration and Aerothermoelastic analysis in Supersonic Flow, Modares Mechanical Engineering Vol. 15 No. 3, pp.

113-124, 2015 (In Persian).

[ Downloaded from mme.modares.ac.ir on 2023-12-06 ]

Referensi

Dokumen terkait

This method, based on four specifications, proper cavitation number in pumps, especially in oxidizer component, power balance between pumps and turbines, strength of material in main

In this study creep fracture mechanic parameter value of a CT specimen made of P91 steel was derived by application of Norton and Liu- Murakami creep behavior models and results were

The study of the flow pattern visualization, velocity values and vorticity shows, at first, the flow separation shear layer forms and the clockwise vortex generate at the rear edge of

167651719 Tehran, Iran, [email protected] ARTICLEINFORMATION ABSTRACT Original Research Paper Received 04 January 2016 Accepted 12 March 2016 Available Online 30 April 2016 In

: Mathematical and Numerical Modeling along with the Stability Analysis of Liquid Propellant Rocket Engine Cut-off Valve Mohammad Shafiey Dehaj1 Reza Ebrahimi2,Hassan

Ramakrishnan, Comparison of Morphing Wing Strategies Based Upon Aircraft Performance Impacts, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics Materials Conference, 19 22

10 Experimental buckling shapes together with force-time curveat different velocities for cylindrical shells with uniform thickness and functionally graded thickness distributions